XVME-564

Analog Input Module

P/N 74564-001B

© 1996 XYCOM, INC.

Printed in the United States of America Part Number 74564-001B **XYCOM** 750 North Maple Road Saline, Michigan 48176-1292 (313) 429-4971

Revision	Description	Date	
А	Manual Released	6/95	
В	Manual Updated (incorporates PCN 200)	10/96	

Trademark Information

Brand or product names are registered trademarks of their respective owners. Windows is a registered trademark of Microsoft Corp. in the United States and other countries.

Copyright Information

This document is copyrighted by Xycom Incorporated (Xycom) and shall not be reproduced or copied without expressed written authorization from Xycom.

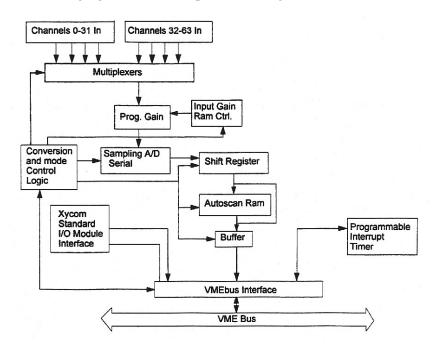
The information contained within this document is subject to change without notice. Xycom does not guarantee the accuracy of the information and makes no commitment toward keeping it up to date.

Chapter 1 – XVME-564 Overview	1-1
Product Features	
Operational Description	
Xycom Standard I/O Architecture	
Specifications	
Chapter 2 – Installation	2-1
System Requirements	2-1
Relevant Components	2-1
Switch Settings	2-3
Switch SW-1	2-3
Interrupt Level Select Switch (SW-2)	
Jumper Settings	
XVME-560 Mode	
SYSFAIL*	
Analog-to-Digital Conversion Options External Connectors	
Card Cage Installation	
Chapter 3 – Programming	
Chapter 3 – Programming Flow Charts	
Flow Charts	3-1
Flow Charts	3-1 3-2
Flow Charts	
Flow Charts Board Initialization Flow Chart Autoscanning Mode Flow Chart Random Channel Mode Flow Chart External Trigger Mode Flow Chart	
Flow Charts Board Initialization Flow Chart Autoscanning Mode Flow Chart Random Channel Mode Flow Chart External Trigger Mode Flow Chart Single Channel Mode Flow Chart	
Flow Charts Board Initialization Flow Chart Autoscanning Mode Flow Chart Random Channel Mode Flow Chart External Trigger Mode Flow Chart Single Channel Mode Flow Chart Sequential Channel Mode Flow Chart	3-1 3-2 3-3 3-3 3-4 3-5 3-6 3-7
Flow Charts Board Initialization Flow Chart Autoscanning Mode Flow Chart Random Channel Mode Flow Chart External Trigger Mode Flow Chart Single Channel Mode Flow Chart Sequential Channel Mode Flow Chart End-of-Conversion Flow Charts	
Flow Charts Board Initialization Flow Chart Autoscanning Mode Flow Chart Random Channel Mode Flow Chart External Trigger Mode Flow Chart Single Channel Mode Flow Chart Sequential Channel Mode Flow Chart	3-1 3-2 3-3 3-4 3-4 3-5 3-6 3-6 3-7 3-8 3-9
Flow Charts Board Initialization Flow Chart Autoscanning Mode Flow Chart Random Channel Mode Flow Chart External Trigger Mode Flow Chart Single Channel Mode Flow Chart Sequential Channel Mode Flow Chart End-of-Conversion Flow Charts Module Base Addressing	
Flow Charts Board Initialization Flow Chart Autoscanning Mode Flow Chart Random Channel Mode Flow Chart External Trigger Mode Flow Chart Single Channel Mode Flow Chart Sequential Channel Mode Flow Chart End-of-Conversion Flow Charts Module Base Addressing	3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-11 3-11
Flow Charts Board Initialization Flow Chart Autoscanning Mode Flow Chart Random Channel Mode Flow Chart External Trigger Mode Flow Chart Single Channel Mode Flow Chart Sequential Channel Mode Flow Chart Sequential Channel Mode Flow Chart Module Base Addressing I/O Interface Block Module Identification Data Status/Control Register (base + 81h) Interrupt Timer Register (base + 101h)	3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-11 3-11 3-11 3-13 3-13 3-13
Flow Charts Board Initialization Flow Chart Autoscanning Mode Flow Chart Random Channel Mode Flow Chart External Trigger Mode Flow Chart Single Channel Mode Flow Chart Sequential Channel Mode Flow Chart Sequential Channel Mode Flow Chart End-of-Conversion Flow Charts Module Base Addressing I/O Interface Block Module Identification Data Status/Control Register (base + 81h) Interrupt Timer Register (base + 101h)	3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-9 3-11 3-11 3-13 3-13 3-14
Flow Charts Board Initialization Flow Chart Autoscanning Mode Flow Chart Random Channel Mode Flow Chart External Trigger Mode Flow Chart Single Channel Mode Flow Chart Sequential Channel Mode Flow Chart End-of-Conversion Flow Charts Module Base Addressing I/O Interface Block Module Identification Data Status/Control Register (base + 81h) Interrupt Timer Register (base + 101h) Programmable Timer Interrupt Vector Register (base + 103h) Autoscan Control Register (base + 111h)	
Flow Charts	3-1 3-2 3-3 3-3 3-4 3-5 3-6 3-7 3-8 3-7 3-8 3-9 3-11 3-11 3-11 3-13 3-13 3-14 3-14 3-15
Flow Charts Board Initialization Flow Chart Autoscanning Mode Flow Chart Random Channel Mode Flow Chart External Trigger Mode Flow Chart Single Channel Mode Flow Chart Sequential Channel Mode Flow Chart End-of-Conversion Flow Charts Module Base Addressing I/O Interface Block Module Identification Data Status/Control Register (base + 81h) Interrupt Timer Register (base + 101h) Programmable Timer Interrupt Vector Register (base + 103h) Autoscan Control Register (base + 111h) A/D Mode Register (base + 180h) A/D Status/Control Register (base + 181h)	3-1 3-2 3-3 3-3 3-4 3-5 3-6 3-7 3-8 3-7 3-8 3-9 3-11 3-11 3-11 3-13 3-13 3-14 3-14 3-15 3-17
Flow Charts Board Initialization Flow Chart Autoscanning Mode Flow Chart Random Channel Mode Flow Chart External Trigger Mode Flow Chart Single Channel Mode Flow Chart Sequential Channel Mode Flow Chart End-of-Conversion Flow Charts Module Base Addressing I/O Interface Block Module Identification Data Status/Control Register (base + 81h) Interrupt Timer Register (base + 101h) Programmable Timer Interrupt Vector Register (base + 103h) Autoscan Control Register (base + 111h) A/D Mode Register (base + 180h) A/D Status/Control Register (base + 181h) End of Conversion Vector Register (base + 183h)	
Flow Charts Board Initialization Flow Chart Autoscanning Mode Flow Chart Random Channel Mode Flow Chart External Trigger Mode Flow Chart Single Channel Mode Flow Chart Sequential Channel Mode Flow Chart End-of-Conversion Flow Charts Module Base Addressing I/O Interface Block Module Identification Data Status/Control Register (base + 81h) Interrupt Timer Register (base + 101h) Programmable Timer Interrupt Vector Register (base + 103h) Autoscan Control Register (base + 111h) A/D Mode Register (base + 180h) A/D Status/Control Register (base + 181h)	

XVME-564 Manual

Chapter 4 – Calibration	
Programmable Gain Offset Adjustment	4-1
A/D Offset and Gain Adjustment	
Zero Calibration	
Full Scale Calibration	
Appendix A – Schematics and Diagrams	A-1

Product Features


The XVME-564 is a powerful VMEbus-compatible analog input module capable of performing analog-to-digital (A/D) conversions with a 16-bit resolution. The module can be configured to provide 64 single-ended, 32 differential, or 64 pseudo-differential analog input channels, with three ranges of programmable gain and six modes of operation.

In addition to offering these powerful capabilities, the XVME-564 offers backward compatibility with the XVME-560 via a jumper selection. In this mode, the XVME-564 offers 12-bit analog input conversions.

XVME-564 features include

- 64 single-ended, 32 differential, or 64 pseudo-differential 16-bit analog input channels
- Unipolar 0-5 V, 0-10 V, or bipolar ± 5 V, ± 10 V operation
- Programmable gains of 1, 2, 5,10; 4, 8, 20, 40; or 10, 20, 50, 100
- 16-bit conversion
- 6 operating modes
 - Single channel conversion
 - Sequential channel conversion
 - Random channel conversion
 - External trigger conversion
 - Autoscanning conversion
 - Programming gain
- 10 µsec acquisition and conversion time
- 16 µsec settling time

Operational Description

The following figure shows the operational diagram of the XVME-564 module.

XVME-564 Operational Block Diagram

Xycom Standard I/O Architecture

All Xycom XVME I/O modules conform to the Xycom VMEbus Standard I/O Architecture. This architecture is intended to make the programming of all Xycom VMEbus I/O modules simple and consistent. The following features apply to the operation of the module:

- Module Address Space All XVME I/O modules are controlled by writing to addresses within the 64 Kbyte short I/O address space (or the upper 64 Kbyte FFXXXXh of VMEbus standard address space). A module can be configured to occupy any one of 64 available 1 Kbyte blocks within the address space. The 1 Kbyte block occupied by the module (known as the I/O interface block) contains all of the module's programming registers, module identification data, and I/O registers. Within the I/O interface block, the address offsets are standardized so that users can find the same registers and data at the same address offsets across the entire Xycom XVME product line.
- Module Identification The module has ID information which provides the module name, model number, manufacturer, and revision level information at a location that is consistent with other Xycom input modules.
- Status/Control Register This register is always located at address module base + 81h, and the lower two bits are standard from module to module.

Specifications

Characteristic	Specification
Number of channels	
Single-ended	64
Differential	32
Pseudo-differential	64
Accuracy	
Resolution	16 bits
Single-channel mode	.003% FSR
All other modes	.006% FSR
Speed	
Conversion time, 16 bits	10 μsec
Settling time	16 µsec
Throughput	
Single-channel mode	100 KHz
Autoscanning mode	62.5 KHz
All other modes	38.5 KHz
A/D full scale voltage ranges (G=1)	
Unipolar	0-5 V, 0-10 V
Bipolar	±5 V, ±10 V
Programmable Gain	
Range 1	1, 2, 5, 10
Range 2	4, 8, 20, 40
Range 3	10, 20, 50, 100
Maximum input voltage	
Power on	44 V
Power off	30 V
Input impedance	18 M ohm, minimum
Bias current	±200 pA, maximum
Input capacitance	100 pF, maximum
Operating common mode voltage	-11 V, +13 V
External trigger to sample	26 μsec
Power requirements	5 V ±5%, 1.1 A typical

Specifications for the XVME-564 are detailed in the following tables.

XVME-564 Analog Input Specifications

Characteristic	Specification		
Temperature			
Operating	0° to 65°C (32° to 149°F)		
Non-operating	-40 to 85°C (-40° to 185°F)		
Humidity	5 to 95% RH, non-condensing		
Altitude			
Operating	Sea level to 10,000 ft. (3048 m)		
Non-operating	Sea level to 50,000 ft. (15240 m)		
Vibration			
Operating	5 to 2000 Hz		
	.015" peak-to-peak displacement		
	2.5 g acceleration (maximum)		
Non-operating	5 to 2000 Hz		
	.030" peak-to-peak displacement		
	5.0 g acceleration (maximum)		
Shock			
Operating	30 g peak acceleration,		
	11 msec duration		
Non-operating	50 g peak acceleration		
	11 msec duration		
VMEbus Compliance			
A24/16:D16 DTB slave			
AM CODES 29, 2D, 39, 3D			
BGXIN hardwired to BGXOUT			
Conforms to Xycom Standard I/O			
I(1) - I (7) (STAT) (Programmable	e Vector)		

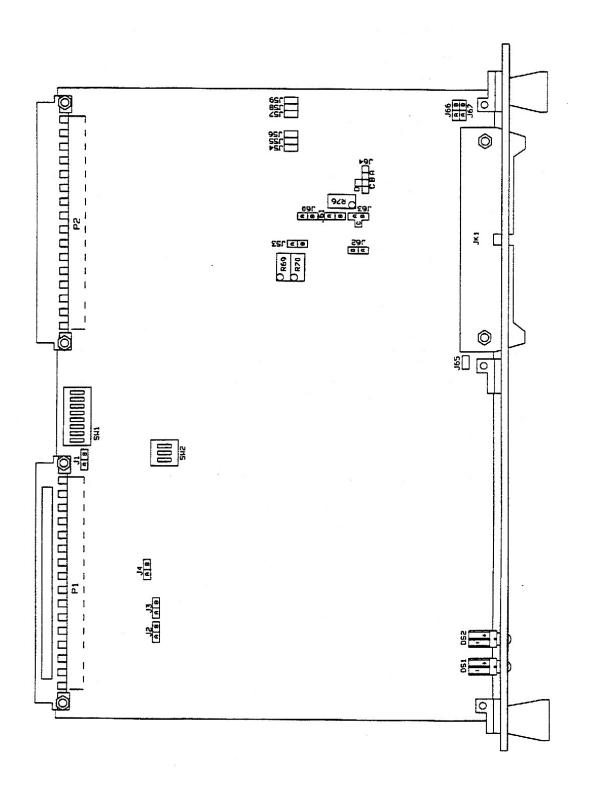
Environmental Specifications

System Requirements

To operate correctly, the XVME-564 module must be properly installed in a VMEbus backplane. Following are the minimum system requirements for module operation:

• A host processor installed in the same backplane and a properly installed controller subsystem

or


• A host processor module that incorporates an on-board controller subsystem

Relevant Components

Prior to installing the analog input module, you must configure several jumper/switch options. The configuration of the jumpers and switches is dependent upon which of the module operational capabilities are required for a given application. The switches are used to set VMEbus-related options. The jumper options can be divided into three categories:

- VMEbus-related options
- Analog-to-digital conversion options

The figure on the following page illustrates the jumpers, switches, connectors, and potentiometers located on the XVME-564.

XVME-564 Jumpers, Switches, Connectors, and Potentiometers

Switch Settings

The XVME-564 has two switches: an eight-position addressing switch and a three-position interrupt level select switch.

Switch SW-1

Addressing switch SW-1 is used to

- Select the address on a 1 Kbyte boundary in the VMEbus short I/O or FF*XXXX* h in the VMEbus standard address space
- Select supervisory only or both supervisory and non-privileged accesses
- Choose between the short I/O or FFXXXXh in the standard address space

The table below describes the switch bits and their functions.

Position	Function	Setting	
1	Address bit A10	Open = 1	
		Closed = 0	
2	Address bit A11	Open = 1	
		Closed = 0	
3	Address bit A12	Open = 1	
		Closed = 0	
4	Address bit A13	Open = 1	
		Closed = 0	
5	Address bit A14	Open = 1	
		Closed = 0	
6	Address bit A15	Open = 1	
		Closed = 0	
7	Supervisory/non-	Open = supervisory	
	privileged	Closed = supervisory &	
		non-privileged	
8	Standard/short I/O Open = standard a		
		Closed = short I/O access	

Switch SW-1 Bit Settings

Interrupt Level Select Switch (SW-2)

This three-position switch selects which VMEbus interrupt level the XVME-564 uses to generate a periodic interrupt or an interrupt at the end of a conversion. The time period is determined by the interrupt timer register (base + 101h).

Position 1	Position 2	Position 3	VMEbus Interrupt Level
Open	Open	Open	7
Open	Open	Closed	6
Open	Closed	Open	5
Open	Closed	Closed	4
Closed	Open	Open	3
Closed	Open	Closed	2
Closed	Closed	Open	1
Closed	Closed	Closed	None

Interrupt Level Switch Settings

Jumper Settings

This section defines the XVME-564 jumper settings.

XVME-560 Mode

To enable compatibility with the XVME-560, set jumper J1 to B. To remain in XVME-564 mode (with all its associated features), set J1 to A. There is an incompatibility in gain ranges between the XVME-564 and XVME-560 that can be corrected through jumper settings. Refer to the Input Gain Range Options section later in this chapter for more information on these settings.

SYSFAIL*

The position of jumper J3 determines whether the XVME-564 can assert a SYSFAIL*. When J3 is set to A, the SYSFAIL* driver is disabled; when it is set to B the SYSFAIL* driver is enabled and the module asserts SYSFAIL* when the red (fail) LED is on. J3A is the factory-shipped configuration.

Analog-to-Digital Conversion Options

Following are the jumper settings for analog-to-digital conversions.

Input Conversion Format Options

Jumper J62 sets the conversion of analog information to straight binary or two's complement binary format. J62A sets straight binary format; J62B sets two's complement binary format.

Differential/Single-ended Input Options

Use jumpers J2 and J64 to configure the analog input channels for 64 single-ended, 64 pseudo-differential, or 32 differential input channels.

Jumper Single-ended		Pseudo-differential	Differential
J2	В	А	А
J64	A, C	A, D	В

Jumper Settings: Input Channels

Input Voltage Options

Jumpers J53, J60, J61, and J63 configure the module for one of four input voltage ranges.

Jumper	0-5 V	0-10 V	±5 V	±10 V
J53	В	В	В	А
J60	А	А	А	В
J61	А	В	В	А
J63	С	А	В	В

Jumper Settings: Input Voltage

Input Gain Range Options

You can program each analog input channel gain for one of three ranges, as shown below:

Jumper	1, 2, 5, 10	4, 8, 20, 40	10, 20, 50, 100
J54	In	Out	Out
J55	Out	In	Out
J56	Out	Out	In
J57	In	Out	Out
J58	Out	In	Out
J59	Out	Out	In

Jumper Settings: Input Gain Range

Because the XVME-564's programmable gains of 1, 2, 5, 10 are incompatible with the XVME-560's programmable gains of 1, 2, 4, 8, you can achieve gains of 1, 2 using the 1, 2, 5, 10 jumper settings, or gains of 4, 8 using the 4, 8, 20, 40 jumper settings.

Input Calibration Grounding Options

Use jumpers J66 and J67 to ground channel 0 in single-ended or differential mode for programmable gain offset adjustment.

Jumper	Single-ended Ground	Differential Ground
J66	В	В
J67	А	В

Jumper Settings: Input Calibration Grounding

If you do not want to ground channel 0, jumpers J66 and J67 should be set to A.

In external trigger mode, set J65 IN to pick up digital ground for external trigger signals returned on JK1 top or bottom, pin 49. If external trigger mode is not used, remove J65.

External Connectors

The XVME-564 uses standard VMEbus connectors for P1 and P2 (96-pin DIN). P2 is used for extra +5 V and GND connections only.

JK1 is a dual 50-pin ribbon connector with latches containing 100 pins. Pinouts are shown in the following tables.

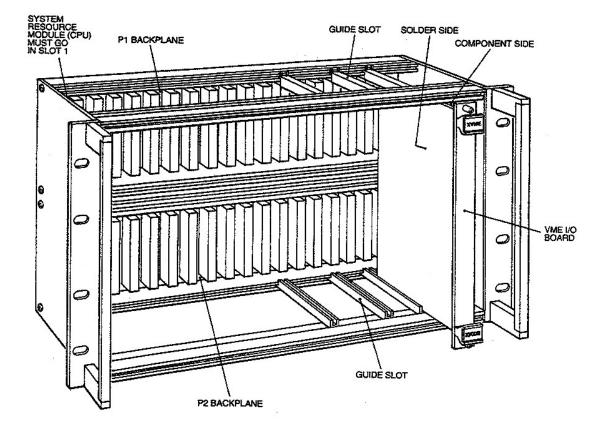
Pin	Single-Ended	Differential	Pin	Single-Ended	Differential
	Configuration	Configuration		Configuration	Configuration
1	Channel 0	Channel 0 low	26	Channel 24	Channel 8 high
2	Channel 8	Channel 0 high	27	Analog GND	Analog GND
3	Analog GND	Analog GND	28	Channel 25	Channel 9 high
4	Channel 9	Channel 1 high	29	Channel 17	Channel 9 low
5	Channel 1	Channel 1 low	30	Analog GND	Analog GND
6	Analog GND	Analog GND	31	Channel 18	Channel 10 low
7	Channel 2	Channel 2 low	32	Channel 26	Channel 10 high
8	Channel 10	Channel 2 high	33	Analog GND	Analog GND
9	Analog GND	Analog GND	34	Channel 27	Channel 11 high
10	Channel 11	Channel 3 high	35	Channel 19	Channel 11 low
11	Channel 3	Channel 3 low	36	Analog GND	Analog GND
12	Analog GND	Analog GND	37	Channel 20	Channel 12 low
13	Channel 4	Channel 4 low	38	Channel 28	Channel 12 high
14	Channel 12	Channel 4 high	39	Analog GND	Analog GND
15	Analog GND	Analog GND	40	Channel 29	Channel 13 high
16	Channel 13	Channel 5 high	41	Channel 21	Channel 13 low
17	Channel 5	Channel 5 low	42	Analog GND	Analog GND
18	Analog GND	Analog GND	43	Channel 22	Channel 14 low
19	Channel 6	Channel 6 low	44	Channel 30	Channel 14 high
20	Channel 14	Channel 6 high	45	Analog GND	Analog GND
21	Analog GND	Analog GND	46	Channel 31	Channel 15 high
22	Channel 15	Channel 7 high	47	Channel 23	Channel 15 low
23	Channel 7	Channel 7 low	48	Analog GND	Analog GND
24	Analog GND	Analog GND	49	Power GND	Power GND
25	Channel 16	Channel 8 low	50	External trigger	External trigger

JK1 Pinouts (bottom 50-pin connector)

JK1 Pinouts continued on following page

Pin	Single-Ended Configuration	Differential Configuration	Pin	Single-ended Configuration	Differential Configuration
1	Channel 32	Channel 16 low	26	Channel 56	Channel 24 high
2	Channel 40	Channel 16 high	27	Analog GND	Analog GND
3	Analog GND	Analog GND	28	Channel 57	Channel 25 high
4	Channel 41	Channel 17 high	29	Channel 49	Channel 25 low
5	Channel 33	Channel 17 low	30	Analog GND	Analog GND
6	Analog GND	Analog GND	31	Channel 50	Channel 26 low
7	Channel 34	Channel 18 low	32	Channel 58	Channel 26 high
8	Channel 42	Channel 18 high	33	Analog GND	Analog GND
9	Analog GND	Analog GND	34	Channel 59	Channel 27 high
10	Channel 43	Channel 19 high	35	Channel 51	Channel 27 low
11	Channel 35	Channel 19 low	36	Analog GND	Analog GND
12	Analog GND	Analog GND	37	Channel 52	Channel 28 low
13	Channel 36	Channel 20 low	38	Channel 60	Channel 28 high
14	Channel 44	Channel 20 high	39	Analog GND	Analog GND
15	Analog GND	Analog GND	40	Channel 61	Channel 29 high
16	Channel 45	Channel 21 high	41	Channel 53	Channel 29 low
17	Channel 37	Channel 21 low	42	Analog GND	Analog GND
18	Analog GND	Analog GND	43	Channel 54	Channel 30 low
19	Channel 38	Channel 22 low	44	Channel 62	Channel 30 high
20	Channel 46	Channel 22 high	45	Analog GND	Analog GND
21	Analog GND	Analog GND	46	Channel 63	Channel 31 high
22	Channel 47	Channel 23 high	47	Channel 55	Channel 31 low
23	Channel 39	Channel 23 low	48	Analog GND	Analog GND
24	Analog GND	Analog GND	49 50	Power GND	Power GND
25	Channel 48	Channel 24 low	50	External Trigger	External Trigger

JK1 Pinouts continued from previous page (top 50-pin connector)


Card Cage Installation

Caution

Do not attempt to install or remove any boards without first turning off power to the bus and all related external power supplies.

Prior to installing a module, determine and verify all relevant jumper configurations. Check the jumper configuration with the diagram and lists in the manual.

Xycom VMEbus modules can accommodate typical VMEbus backplane construction. The following illustration depicts a standard VMEbus chassis and a typical backplane configuration. There are two rows of backplane connectors depicted (the P1 and the P2 backplane).

Perform the following steps to install a board in the card cage:

- 1. Make sure the card cage slot that you are going to use is clear and accessible.
- 2. Center the board on the plastic guides in the slot so that the handle on the front panel is toward the bottom of the card cage.
- 3. Push the card slowly toward the rear of the chassis until the connectors are fully engaged and properly seated.

Note

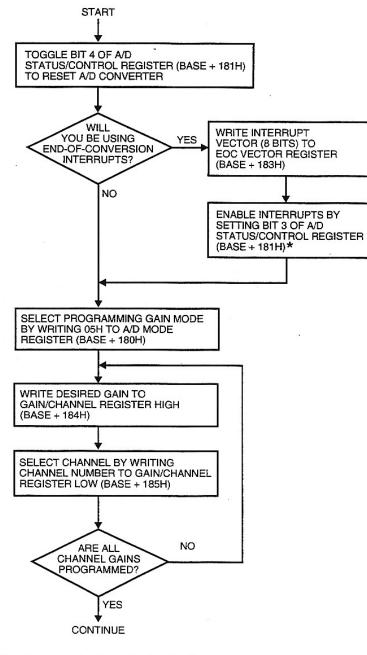
It should not be necessary to use excess force to engage the connectors. If the board does not properly connect with the backplane, remove the module and inspect all connectors and guide slots for possible damage or obstructions.

4. Once the board is properly seated, tighten the two machine screws at the top and bottom of the front panel.

This chapter provides the information required to program the XVME-564 for analog input signal conversions. This information includes the following:

- Flow charts providing quick-start information
- Module address map showing programming locations
- Base addressing and the module I/O interface block
- A/D conversion modes

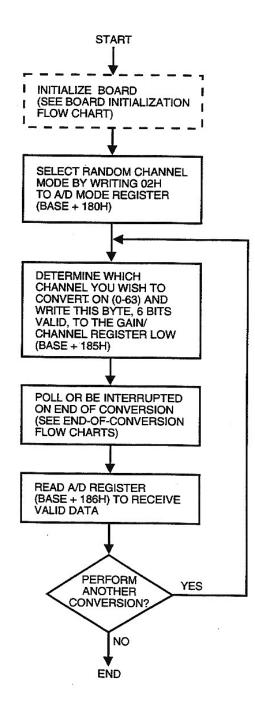
Flow Charts


The following flow charts provide information on initializing the XVME-564 board, using A/D conversion modes, and detecting the end of a conversion. The flow charts assume that hardware jumpers have been set. See Chapter 2 for information on setting jumpers.

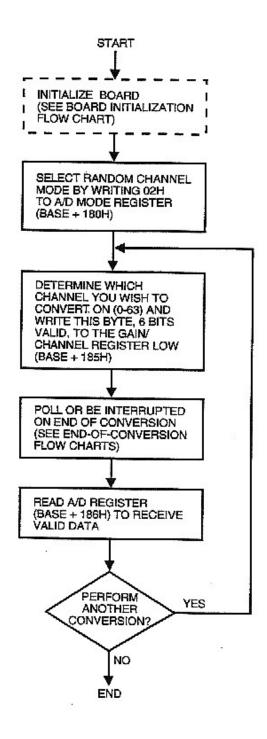
Note

Register information begins on page 3-13.

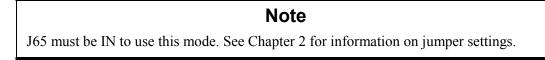
Board Initialization Flow Chart

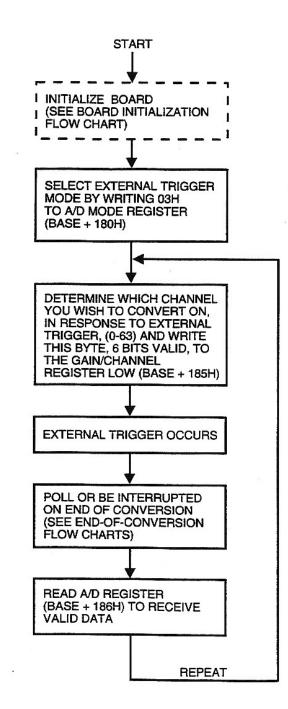

This flow chart describes the steps necessary to initialize the XVME-564.

*End-of-conversion interrupts will not work if board is used in autoscanning mode.

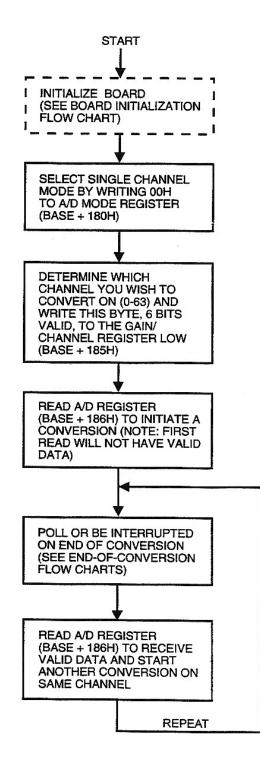

Autoscanning Mode Flow Chart

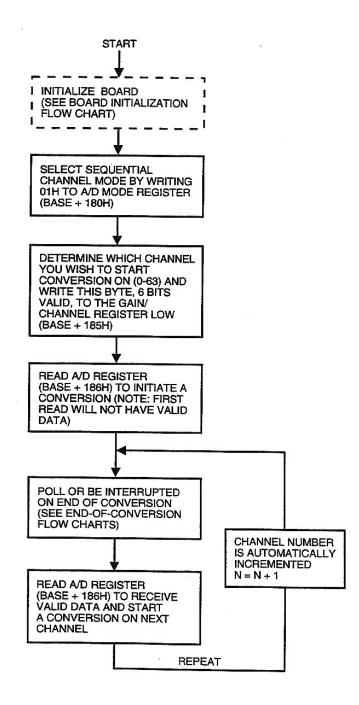
In autoscanning mode, continuous conversions are performed on 8, 16, 32, or 64 channels, and the results of each channel are stored in 16-bit registers, starting at offset base + 200h for channel 0 to base + 27Fh for channel 63.


Random Channel Mode Flow Chart

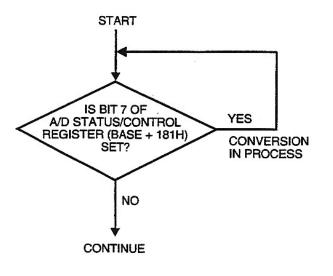

In random channel mode, a control byte written to the low byte of the gain/channel register that specifies a channel automatically starts a conversion on that channel.

External Trigger Mode Flow Chart

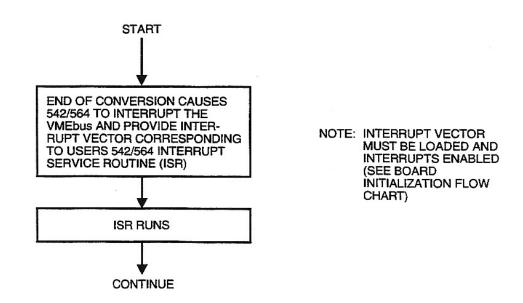

In external trigger mode, the rising edge of a low-going, externally triggered pulse (on pin 50 of JK1)–referenced to power ground (pin 49 of JK1, J65IN)–initiates a conversion.


Single Channel Mode Flow Chart

In single channel mode, the module automatically starts another conversion on the specified channel after the low order A/D register (base + 187h) has been read.

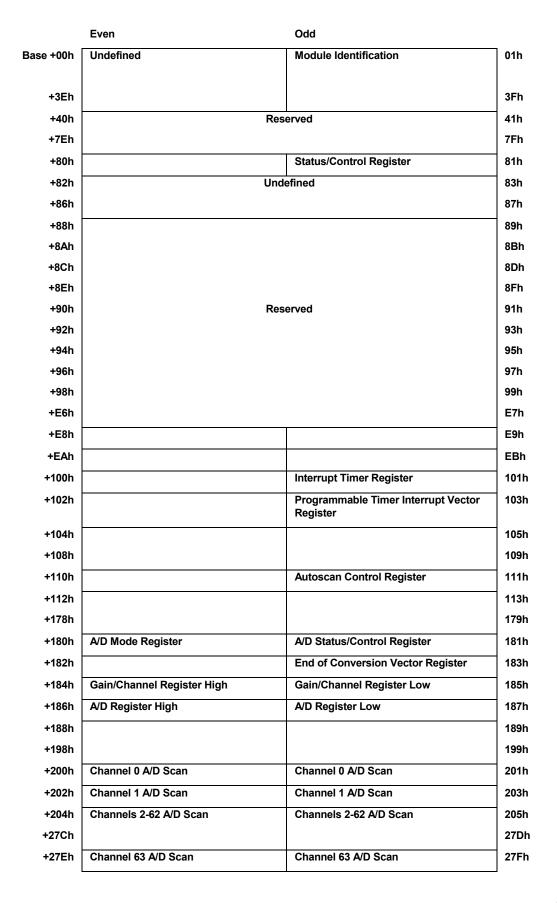

Sequential Channel Mode Flow Chart

In sequential channel mode, the module automatically increments the channel number by one and initiates a conversion on the next channel (previous channel + 1) after the low byte A/D register (base + 187h) has been read.



End-of-Conversion Flow Charts

1- Polling method


2 - Interrupt vector method

Module Base Addressing

The XVME-564 is designed to be addressed within either the VMEbus-defined 64 Kbyte short I/O address space or the upper 64 Kbytes of the standard address space (FF0000h-FFFC00h). Because each I/O module connected to the bus must have a unique base address, the addressing scheme for Xycom XVME I/O modules is configurable. When the XVME-564 is installed in a system, it will occupy a 1 Kbyte block of address space (also referred to as the I/O block).

The base address decoding scheme for the XVME-564 positions the starting address of each board on a 1 Kbyte boundary. Thus, there are 64 possible base addresses (1 Kbyte boundaries) for the XVME-564 within either the short I/O address space or the upper 64 Kbytes of standard address space. (Refer to Chapter 2 for a list of base addresses and their corresponding SW-1 bit locations.)

XVME-564 Memory Map

Any location within the XVME-564's 1 Kbyte I/O interface block can be accessed by adding the module base address to the address of the specific location within the I/O interface block (referred to as the I/O interface block offset). For example, the status/control register is located at address 81h within the I/O interface block. If the module base address is set at 1000h, then the status/control register would be accessible at address 1081h.

Module Base Address		I/O Interface Block Offset		Status/Control Register
1000h	+	081h	=	1081h

For memory-mapped CPU modules, the short I/O address space is memory mapped to begin at a specific address. For such modules, the I/O interface block offset is an offset from the start of this memory-mapped short I/O address space. For example, if the short I/O address space of a CPU module starts at F90000h and if the base address of the module is set at 1000h, the actual module base address would be F91000h.

I/O Interface Block

This section describes the programming locations in the XVME-564 I/O interface block.

Note

Reading from or writing to undefined I/O interface block locations may make application software incompatible with future XVME modules.

Module Identification Data

The Xycom module identification scheme provides a unique method of registering module-specific information in an ASCII-encoded format. ID data is provided as 32 ASCII encoded characters consisting of the board type, manufacturer identification, module model number, number of 1 Kbyte blocks occupied by the module, and module functional revision level. This information can be read by the system processor on power up to verify the system configuration and operational status. The table on the following page defines the identification information locations.

Offset Relative to	Contents	ASCII Encoding	Description
a Module Base		(hexadecimal)	
1 3 5 7 9	V M E I D	56 4D 45 49 44	ID PROM identifier; always VMEID (five characters)
B D F	X Y C	58 59 43	Manufacturer's ID, always XYC for Xycom modules (three
11 13 15 17 19 1B 1D	5 6 4	35 36 34 20 20 20 20	characters) Module Model Number (three characters, four trailing blanks)
1F	1	31	Number of 1 Kbyte blocks of I/O space occupied by this module (one character)
21 23	1	20 31	Major functional revision level with leading blank (if single digit)
25 27	1	31 20	Minor functional revision level with trailing blank (if single digit)
29 2B 2D 2F 31 33 35 37 39 3B 3D 3F	Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved		Manufacturer-dependent information; reserved for future use

Identification Data

The module has been designed so that it is only necessary to use odd backplane addresses to access the ID data. Thus, each of the 32 bytes of ASCII data have been assigned to the first 32 odd I/O interface block bytes (that is, odd bytes 1h-3Fh).

ID information can be accessed by addressing the module base, offset by the specific address for the character(s) needed. For example, if the base address of the board is jumpered to 1000h, and if you wish to access the module model number (I/O interface block locations 11h, 13h, 15h, 17h, 19h, 1Bh, and 1Dh), individually add the offset addresses to the base addresses to read the hex-encoded ASCII value at each location. Thus, in this example, the ASCII values that make up the module model number are found sequentially at locations 1011h, 1013h, 1015h, 1017h, 1019h, 101Bh, and 101Dh.

Status/Control Register (base + 81h)

This 8-bit register is used to control the red and green LEDs used on the module.

Below is a description of the bits in this register:

0

Bits 1, 0 (LSB) These bits control the green and red LEDs.

1 = Turns on red LED

= Turns on green LED

The following table defines bits 1 and 0.

Status Bits		LEDs			
1	0	Green	Red	SYSFAIL*	Status
0	0	Off	On	On	Module failed, or not yet tested
0	1	Off	Off	Off	Inactive module
1	0	On	On	Off	Module undergoing test
1	1	On	Off	Off	Module passed test

Note

Whenever bit 0 is 0, the VMEbus SYSFAIL* signal is asserted, and the red LED turns on. The power-up or reset state for status bits is 00.

Interrupt Timer Register (base + 101h)

The 8-bit interrupt timer register generates VMEbus interrupts with configurable delay times. It has the following bit definitions:

Bit 7 (MSB) Depending on jumper and switch settings, this bit enables or disables periodic VMEbus interrupts.

	1	=	Enables periodic interrupts
	0	=	Disables periodic interrupts
Bit 6	This period select bit selects the time interval for a one-bit change in delay bits.		ect bit selects the time interval for a one-bit change in
	1	=	Delay bit time interval is 131.072 msec
	0	=	Delay bit time interval is 8.192 msec
Bits 5-3	Reserv	red	

Bits 2-0 (LSB) These period multiplier bits select a timeout period for the interrupt timer. The resolution for each bit is determined by the delay set bit.

Period Multiplier Bits	Period Select Bit	Interrupt Timeout Period
000	0	8.192 msec
001	0	16.384 msec
010	0	24.576 msec
011	0	32.768 msec
100	0	40.960 msec
101	0	49.152 msec
110	0	57.344 msec
111	0	65.536 msec
000	1	131.072 msec
001	1	262.144 msec
010	1	393.216 msec
011	1	524.288 msec
100	1	655.360 msec
101	1	786.432 msec
110	1	917.504 msec
111	1	1048.576 msec or 1.048 sec

The table below defines the interrupt timeout periods.

Interrupt Timeout Periods

Programmable Timer Interrupt Vector Register (base + 103h)

This read/write register holds the vector to be driven on the VMEbus when the interrupt generated by the interrupt timer is acknowledged. This register clears on power up.

Autoscan Control Register (base + 111h)

Continuous conversions are performed on 8, 16, 32, or 64 channels when autoscanning mode is selected (that is, base + 180h is set to 4). The results of each channel are stored in a 16-bit register (using dual-ported RAM) starting at offset 200h (channel 0) and ending at 2Fh (channel 63).

In this mode, end of A/D conversion interrupts cannot be used; however, the programmable interrupt timer is still available.

This register clears on power up or SYSRESET*. Bit 7 can also be cleared by an A/D section software reset.

The bits in this register are defined below:

- Bit 7 (MSB) This bit enables or disables the autoscan control register. It is cleared on power up, SYSRESET*, or A/D software reset.
 - 1 = Autoscanning enabled
 - 0 = Autoscanning disabled

Bits 6-2 Reserved

Bits 1, 0 (LSB) These bits, defined in the table below, are used to select the channels to be scanned. These bits are cleared on power up or SYSRESET*.

Scan Select Bits		
Bit 1	Bit 0	Channels Scanned
0	0	0-7
0	1	0-15
1	0	0-31
1	1	0-64

A/D Mode Register (base + 180h)

This 8-bit register determines the operating mode for the analog inputs used on the module. The bits are defined below:

Bits 15 (MSB) -11	Reserved
Bit 10	Mode bit 2
Bit 9	Mode bit 1
Bit 8 (LSB)	Mode bit 0

The mode bits determine the operating mode for analog inputs. One of six modes can be selected, as defined in the table below:

Mode Bits			
Bit 2	Bit 1	Bit 0	A/D Conversion Mode
0	0	0	Single channel
0	0	1	Sequential channel
0	1	0	Random channel
0	1	1	External trigger
1	0	0	Autoscanning
1	0	1	Programming gain

The A/D conversion modes are described below.

Single Channel Mode

In single channel mode, the module automatically starts another conversion on the specified channel after the low byte of the A/D register (base + 187h) has been read. An added feature of the single channel mode is that it offers faster conversions than the other modes (10 μ sec as opposed to 26 μ sec in sequential, random channel, and external trigger modes, and 18 μ sec in autoscanning mode).

Sequential Channel Mode

In sequential channel mode, the module automatically increments the channel number by one and initiates a conversion on the next channel (previous channel + 1), after the low byte of the A/D register (base + 187h) has been read. You can force a conversion in this mode without incrementing the channel number by writing a 1 to bit 7 of the status/control register (base + 181h).

Random Channel Mode

In random channel mode, a control byte written to the low byte of the gain/channel register (base + 184h) that specifies a channel number automatically starts a conversion on the specified channel.

External Trigger Mode

External trigger mode allows the rising edge of a low-going, externally triggered pulse (on pin 50 of JK1)–referenced to power ground (pin 49 of JK1, J65IN)–to initiate a conversion.

Autoscanning Mode

Autoscanning mode performs continuous conversions on 8, 16, 32, or 64 channels, and stores the results of each channel in its own 16-bit register starting at offset base + 200h (channel 0) to base + 27Fh (channel 63). When autoscanning mode is selected and bit 7 of the autoscan control register is set to 1, conversions are initiated and stored. End of A/D conversion interrupts cannot be used with this mode and will not generate interrupts. However, the programmable interrupt timer is available.

Programming Gain Mode

After power up or system reset, use this mode to initialize the XVME-564's on-board gain RAM to provide each input channel with an associated gain factor from the jumper-selectable range set at installation. Once an input channel is initialized, the associated gain factor is automatically applied when an A/D conversion occurs on that channel.

To program the gain RAM, first select programming gain mode. Once this mode is set, you can write the gain for each channel to the high byte of the gain/channel register (base + 184h). Refer to the A/D Gain/Channel Register section later in this chapter for more information on programming the gain RAM.

A/D Status/Control Register (base + 181h)

This 8-bit register is used to monitor the status of A/D channels, enable and disable interrupts, and reset the module. The bits in this register are defined below:

Bit 7 (MSB)	This bit acts as a busy flag to show when an A/D conversion is in progress.			
	1	=	A/D conversion in process	
	0	=	No conversion in process	
Bit 6		This bit initiates a conversion. The length of the conversion is dependent upon which of the six A/D modes the board is operating.		
	1	=	Conversion initiated	
	0	=	No conversion initiated	
Bit 5	Reserv	red		
Bit 4	This bit is used to perform an analog input section software reset. A software reset stops a conversion in process and clears any end-of-conversion interrupts. It also clears the interrupt pending flag (bit 2), resets the gain/channel register (base + 184h), and disables scanning by clearing the scan control bit (bit 7 of base + 111h).			
	1	=	Starts the software reset process	
	0	=	Stops the reset	

Bit 3	When the associated jumpers and switches are set, this bit generates end of A/D conversion VMEbus interrupts.			
	1	=	Enables end of A/D conversion VMEbus interrupts	
	0	=	Disables end of A/D conversion VMEbus interrupts	
Bit 2	This bit is an interrupt pending flag.			
	1	=	End of conversion has occurred	
	0	=	End of conversion has not occurred	
	To clear this bit you must cause a new A/D conversion, perform a backplane or software reset, read the converted input data from the low order data byte, or select autoscanning mode.			
\mathbf{D}^{\prime} (1.0 (LCD)	р	1		

Bits 1, 0 (LSB) Reserved

End of Conversion Vector Register (base + 183h)

This register stores the vector used for end of A/D conversion interrupts.

A/D Gain/Channel Register (base + 184h)

This 16-bit register initiates A/D conversions when you write the desired channel to the lower byte while in random channel mode.

This register is also used to program a gain factor for input channels by writing to the higher byte while in programming gain mode. Use bits 8 and 9 to first select the gain, as shown in the table below.

Gain/Channel F	Register	Jumper-Selected Gain		
Bit 9	Bit 8	Range 1	Range 2	Range 3
0	0	1	4	10
0	1	2	8	20
1	0	5	20	50
1	1	10	50	100

Once the gain has been selected, write to the lower byte with the desired channel to program. Writing to the lower byte programs the gain for that channel. You may also write a word at a time to simultaneously select the gain and the desired channel to program.

A/D Scan Registers (base + 200h - 3FEh)

While in autoscanning mode, these registers are used to store A/D readings. Each register keeps an updated reading of the specified channel.

A/D Conversions

Following are some general steps for configuring the XVME-564 to convert analog inputs to digital data:

- 1. Configure jumpers and switches (refer to Chapter 2) for the desired interrupt level, input type (differential, single-ended, or pseudo-differential and bipolar or unipolar), input voltage range, input gain range, and input binary data format.
- 2. Program the gain RAM by setting programming gain mode, then writing to the gain/channel register (base + 184h).
- 3. Perform calibration (see Chapter 4).
- 4. Select one of the five A/D conversion modes by writing to the A/D mode register (base + 180h).
- 5. Initiate the A/D conversion process.

Calibration facilities have been provided on the module for analog circuits. The module is calibrated in the ± 10 V A/D input voltage before it leaves the factory. However, if the module is configured to operate in ranges other than these, it is recommended that the calibration be checked and adjusted. As a general rule, the input circuitry should be recalibrated whenever voltage range jumpers and voltage/current select jumpers are changed.

Resistor Number	Type of Adjustment
R69	Offset for A/D convertor
R70	Gain for input circuit
R76	Programmable gain amp offset

A/D Calibration Potentiometers

Input circuit calibration entails offset nulling the instrumentation amplifier, and offset adjusting and gain adjusting the A/D converter.

You will need the following equipment to perform an input calibration:

- Five-digit volt meter capable of reading $\pm 30 \,\mu V$
- Small flat-bladed screw driver
- Precision voltage source capable of supplying $1.22 \text{ mV} \pm 30 \mu \text{V}$

Inputs can be calibrated in either single-ended or differential configuration. Calibration begins by offset nulling the instrumentation amplifier with channel 0 selected and its inputs grounded.

Programmable Gain Offset Adjustment

Perform the following steps to adjust the programmable gain offset for single-ended, unipolar operation:

- 1. Remove any connectors at JK1.
- 2. Ground input channel 0 by setting jumper J66 to B.
- 3. Measure and record the output voltage of gain amp U39, pin 6 using the Fluke 8860 DMM.
- 4. Next, measure the voltage of gain amp U37, pin 6.
- 5. Adjust R76 so the output voltage of U37, pin 6 matches the output voltage of U39, pin 6.
- 6. Reset jumper J66 to A for the rest of the calibration.

A/D Offset and Gain Adjustment

With the previous networks nulled, it is necessary to perform continuous conversion on channel 0. Channel 0 must be set for the lowest programmable gain (G=1; bits 6 and 7 of the gain/channel register must be set to 0).

There are two types of input calibration: zero (0 + .5 LSB) and full scale (+FS - 1.5 LSB). Conversion results should be display on a CRT in hex format for verification. Both must be performed on the XVME-564, as described below.

Zero Calibration

Binary Encoding Mode	Voltage Range	Analog Voltage In	Adjust POT	Transition Points
Unipolar	0-5 V	.04 mV	R69	0000h/0001h
(straight binary)	0-10 V	.08 mV	R69	0000h/0001h
Bipolar	±2.5 V	.04 mV	R69	8000h/8001h
(offset binary)	±5 V	.08 mV	R69	8000h/8001h
	±10 V	.15 mV`	R69	8000h/8001h
Bipolar	±2.5 V	.04 mV	R69	0000h/0001h
(two's	±5 V	.08 mV	R69	0000h/0001h
complement)	±10 V	.15 mV`	R69	0000h/0001h

The table below provides information necessary to perform a zero calibration (+.5 LSB).

A/D Zero Calibration Points

To perform a zero calibration,

- 1. Apply the .5 LSB analog voltage in (for binary encoding mode and the voltage range chosen) to channel 0.
- 2. Adjust the zero calibration and the POT until the display reading toggles between the zero calibration and transition point values.

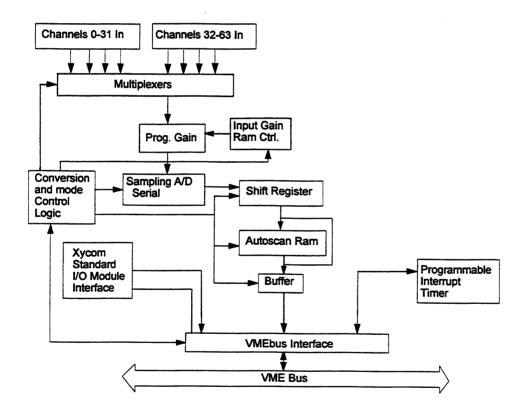
For example, to perform a zero calibration on an XVME-564 configured for bipolar, offset binary, ± 10 V range operation,

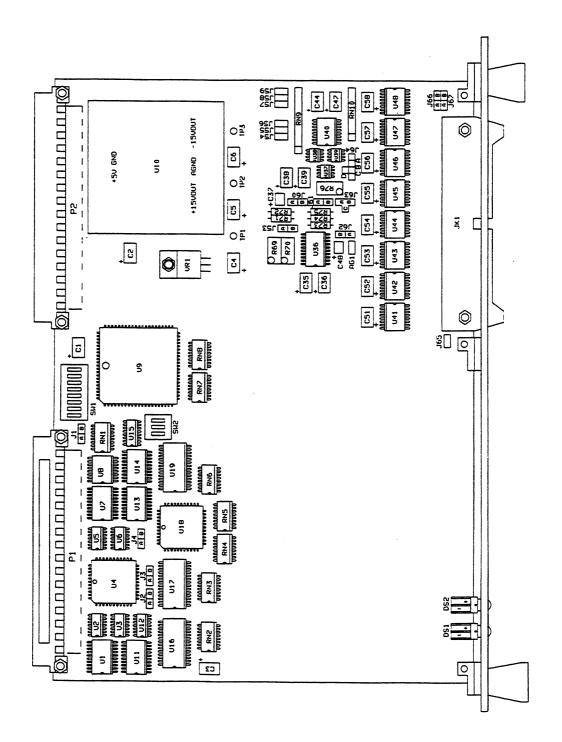
- Apply +.15 mV to channel 0
- Adjust R69 until the display reading toggles between 0000h and 0001h

Full Scale Calibration

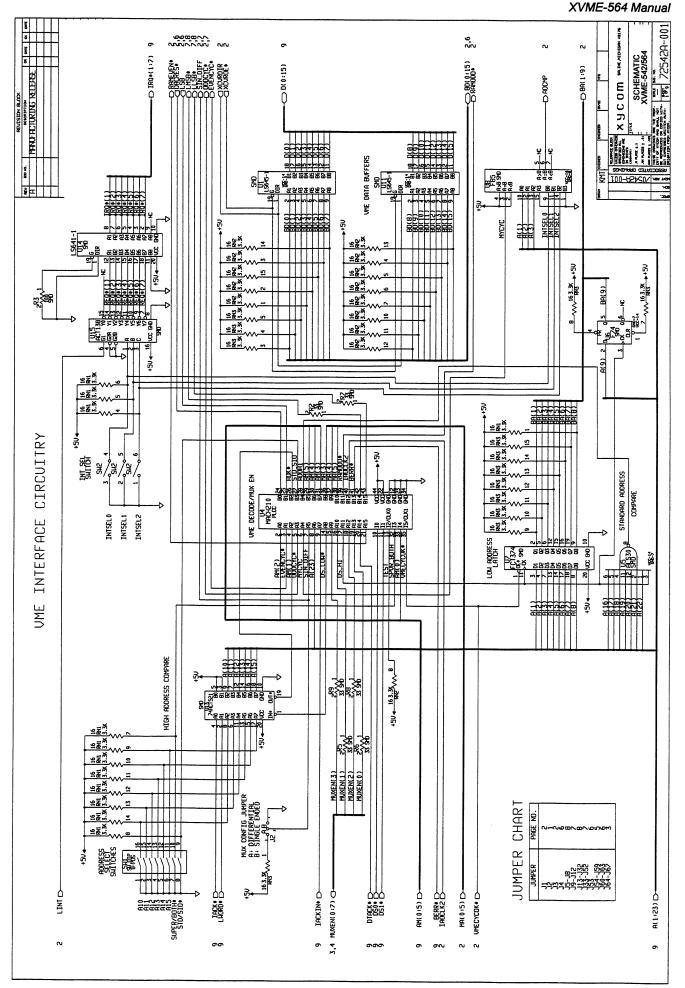
Binary Encoding Mode	Voltage Range	Analog Voltage In	Adjust POT	Transition Points
Unipolar	0-5 V	4.99988 V	R70	FFFEh/FFFFh
(straight binary)	0-10 V	9.99977 V	R70	FFFEh/FFFFh
Bipolar	±2.5 V	2.49988 V	R70	FFFEh/FFFFh
(offset binary)	±5 V	4.99977 V	R70	FFFEh/FFFFh
	±10 V	9.99954 V	R70	FFFEh/FFFFh
Bipolar	±2.5 V	2.49988 V	R70	7FFEh/7FFFh
(two's	±5 V	4.99977 V	R70	7FFEh/7FFFh
complement)	±10 V	9.99954 V	R70	7FFEh/7FFFh

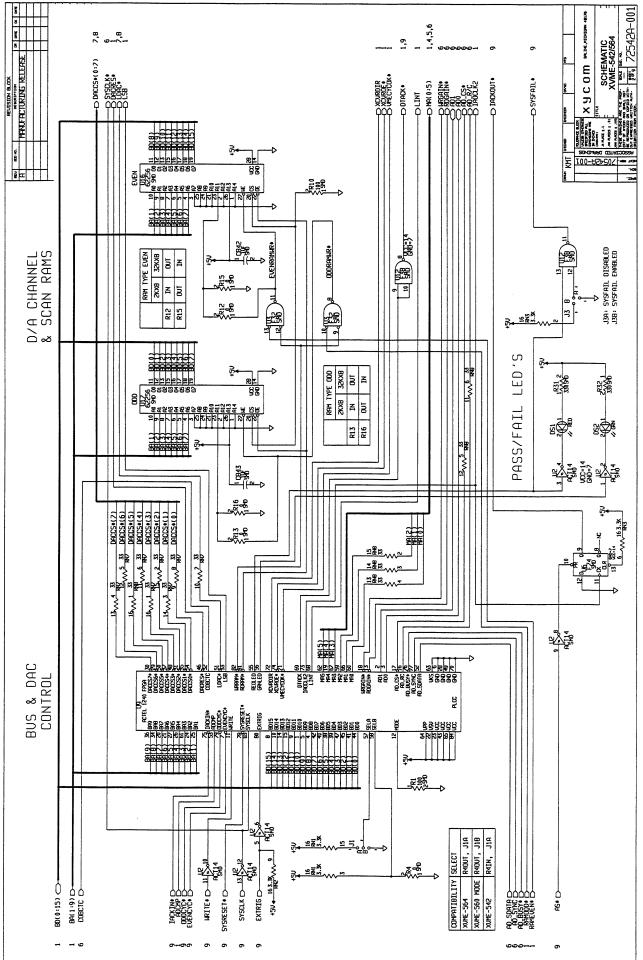
The table below provides information necessary to perform a full scale calibration (+FS - 1.5 LSB).


A/D Full Scale Calibration Points

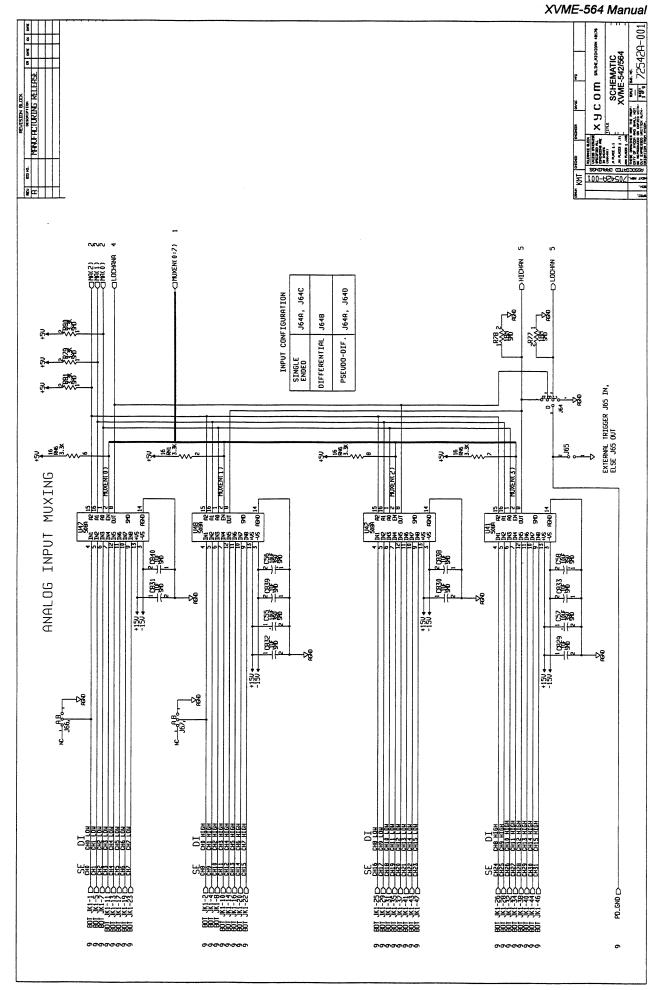

To perform a full scale calibration,

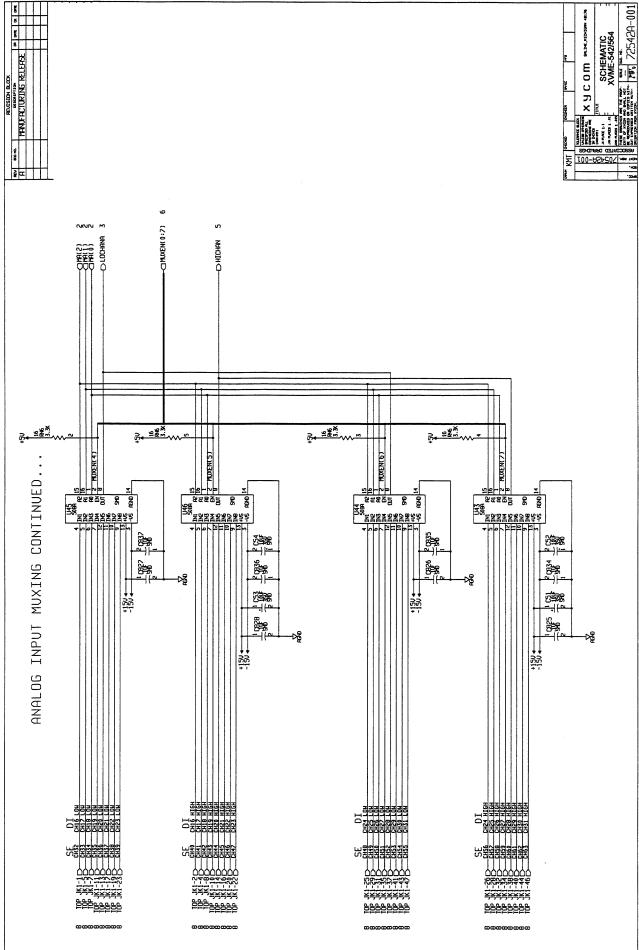
- 1. Apply the analog voltage in (for binary encoding mode and the voltage range chosen) to channel 0.
- 2. Adjust the full scale calibration and the POT until the display reading toggles between the full scale calibration and transition point values.


For example, to perform a full scale calibration on an XVME-564 configured for bipolar, offset binary, ± 10 V range operation,


- Apply +9.99954 V to channel 0
- Adjust R70 until the display reading toggles between FFFEh and FFFFh

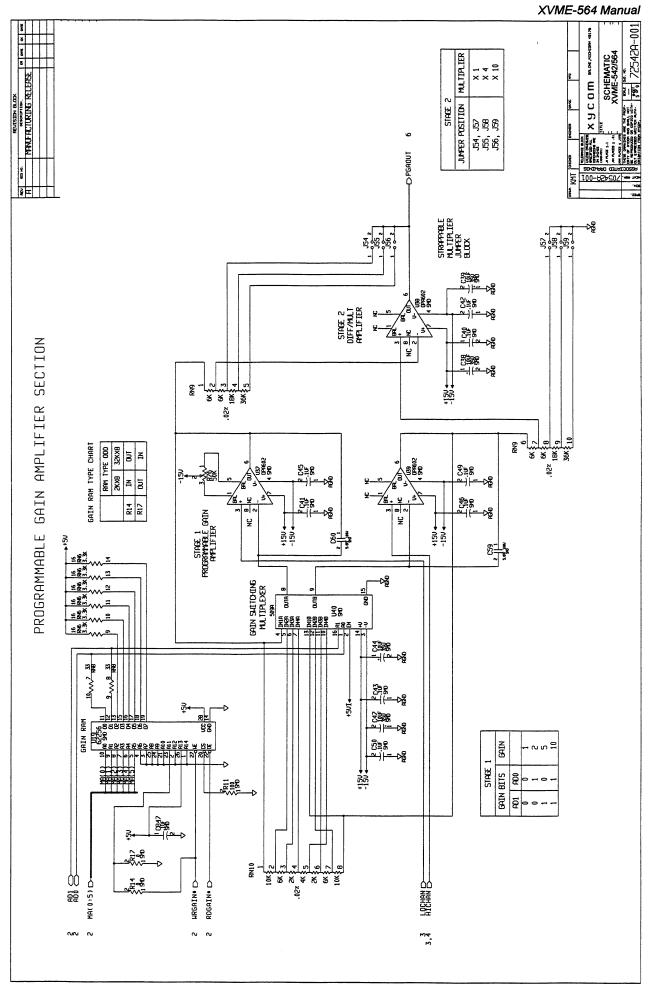
XVME-564 Assembly Drawing

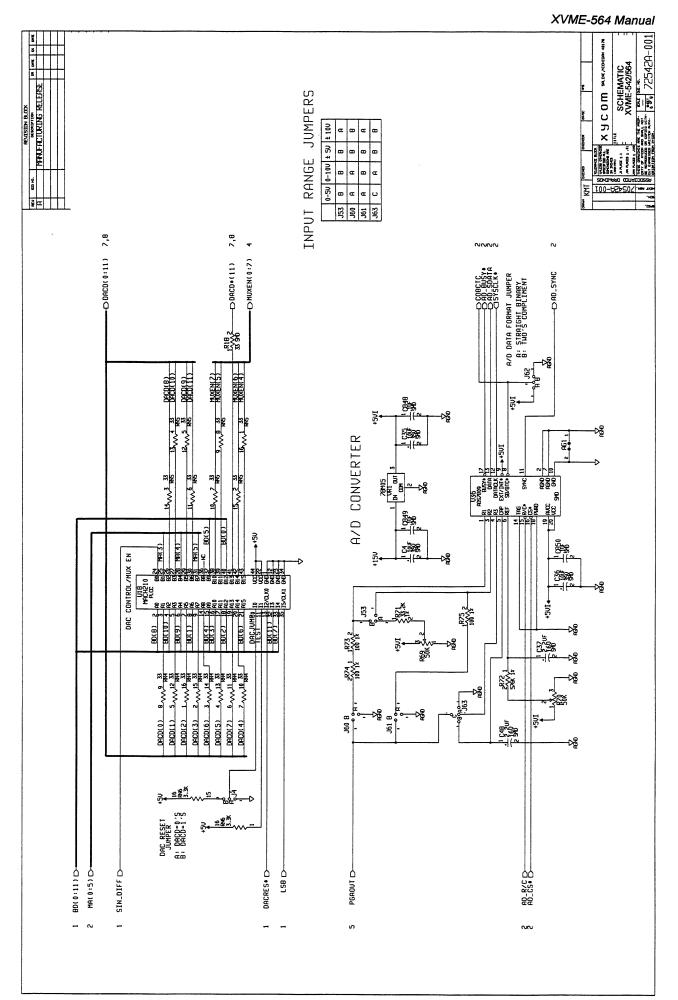


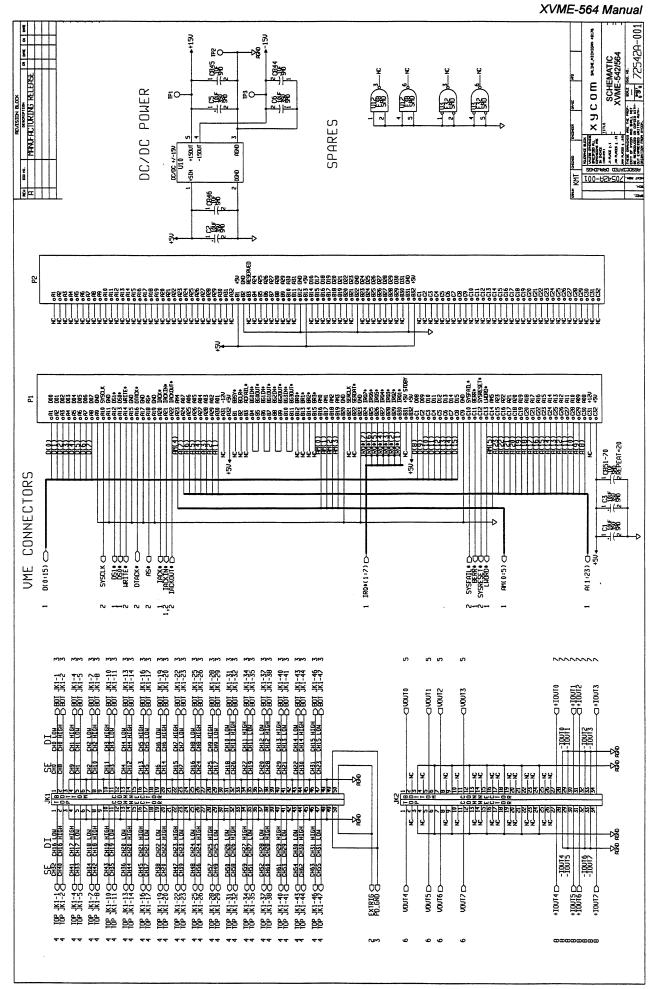

XVME-564 Manual

XVME-564 Schematic, page 2 of 7

A-4




XVME-564 Schematic, page 3 of 7



XVME-564 Manual

XVME-564 Schematic, page 4 of 7

XVME-564 Schematic, page 7 of 7

Index

Α

A/D calibration potentiometers, 4-1 A/D conversion modes autoscanning, 3-16 external trigger, 3-16 programming gain, 3-16 random channel, 3-16 sequential channel, 3-16 single channel, 3-16 A/D conversions, 3-19 A/D mode register, 3-15 A/D offset and gain adjustment, 4-2 A/D gain/channel register, 3-18 A/D scan registers, 3-18 A/D status/control register, 3-17 analog input features, 1-1 specifications, 1-3 analog-to-digital conversion options, 2-5 differential/single-ended input options, 2-5 input calibration grounding, 2-6 input conversion format, 2-5 input gain range options, 2-6 input voltage, 2-5 assembly drawing, A-2 autoscan control register, 3-14 autoscanning mode, 3-3, 3-16

В

block diagram, 1-2, A-2 board initialization, 3-2 board overview, 1-1

С

cabling, 2-7 calibration, 4-1 card cage installation, 2-9 chassis, VMEbus, 2-9 connectors, external, 2-6 conversion, A/D, 3-19

Ε

end of conversion flow charts, 3-8 end of conversion vector register, 3-18 environmental specifications, 1-4 **E** (*continued*) external connectors, 2-6 external trigger mode, 3-5, 3-16

F

features, analog input, 1-1 flow charts autoscanning mode, 3-3 board initialization, 3-2 end of conversion, 3-8 external trigger mode, 3-5 random channel mode, 3-4 sequential channel mode, 3-7 single channel mode, 3-6

Η

host processor, 2-1

I

I/O interface block, 3-11 initialization, board, 3-2 input calibration grounding options, 2-6 input conversion format options, 2-5 input gain range options, 2-6 input voltage options, 2-5 installation, into a card cage, 2-9 interrupt timer register, 3-13

J

JK1 connector pinouts, 2-7 jumper settings, 2-4

Μ

memory map, 3-10 modes autoscanning, 3-16 external trigger, 3-16 programming gain, 3-16 random channel, 3-16 sequential channel, 3-16 single channel, 3-16 module base addressing, 3-9 module identification data, 3-11

0

operational diagram, 1-2 options, analog-to-digital conversions, 2-5

Ρ

potentiometers, A/D calibration, 4-1 programming gain mode, 3-16 programmable gain offset adjustment, 4-1 programmable timer interrupt vector register, 3-14

R

random channel mode, 3-4, 3-16 registers A/D, 3-18 A/D mode, 3-15 autoscan control, 3-14 end of conversion vector, 3-18 interrupt timer, 3-13 programmable timer interrupt vector, 3-14 requirements, system, 2-1

S

schematics, A-3 sequential channel mode, 3-7, 3-16 settings jumper, 2-4 switch, 2-3 single channel mode, 3-6, 3-16 specifications analog input, 1-3 environmental, 1-4 standard I/O architecture, 1-2 switch settings, 2-3 switches interrupt level select, 2-4 SW-1, 2-3 system requirements, 2-1

V

VMEbus chassis, 2-9