VMIVME-1129 128-bit Digital Input Board with Built-In-Test

Product Manual

COPYRIGHT AND TRADEMARKS

© Copyright 2001. The information in this document has been carefully checked and is believed to be entirely reliable. While all reasonable efforts to ensure accuracy have been taken in the preparation of this manual, VMIC assumes no responsibility resulting from omissions or errors in this manual, or from the use of information contained herein.

VMIC reserves the right to make any changes, without notice, to this or any of VMIC's products to improve reliability, performance, function, or design.

VMIC does not assume any liability arising out of the application or use of any product or circuit described herein; nor does VMIC convey any license under its patent rights or the rights of others.

For warranty and repair policies, refer to VMIC's Standard Conditions of Sale.

AMXbus, BITMODULE, COSMODULE, DMAbus, IOMax, IOWorks Foundation, IOWorks Manager, IOWorks Server, MAGICWARE, MEGAMODULE, PLC ACCELERATOR (ACCELERATION), Quick Link, RTnet, Soft Logic Link, SRTbus, TESTCAL, "The Next Generation PLC", The PLC Connection, TURBOMODULE, UCLIO, UIOD, UPLC, Visual Soft Logic Control(ler), *VMEaccess*, VMEbus Access, *VMEmanager*, *VMEmonitor*, VMEnet, VMEnet II, and *VMEprobe* are trademarks and The I/O Experts, The I/O Systems Experts, The Soft Logic Experts, and The Total Solutions Provider are service marks of VMIC.

The I/O man figure, IOWorks, IOWorks man figure, UIOC, Visual IOWorks and the VMIC logo are registered trademarks of VMIC.

ActiveX, Microsoft, Microsoft Access, MS-DOS, Visual Basic, Visual C++, Win32, Windows, Windows NT, and XENIX are registered trademarks of Microsoft Corporation.

Celeron and MMX are trademarks, and Intel and Pentium are registered trademarks of Intel Corporation.

PICMG and CompactPCI are registered trademarks of PCI Industrial Computer Manufacturers' Group.

Other registered trademarks are the property of their respective owners.

VMIC

All Rights Reserved

This document shall not be duplicated, nor its contents used for any purpose, unless granted express written permission from VMIC.

Table of Contents

ist of Figures	. 7
ist of Tables	. 9
Overview	11
Features	. 11
Functional Description	. 12
Reference Material	. 13
Physical Description and Specifications	. 13
Safety Summary	. 14
Ground the System	. 14
Do Not Operate in an Explosive Atmosphere	. 14
Keep Away from Live Circuits	. 14
Do Not Service or Adjust Alone	. 14
Do Not Substitute Parts or Modify System	. 14
Dangerous Procedure Warnings	. 14
Safety Symbols Used in This Manual	. 15
Chapter 1 - Theory of Operation	. 17
Operational Overview	. 17
Test Registers	. 18
Input Circuitry	. 19
Input Types	
Chapter 2 - Configuration and Installation	. 2 [.]
Unpacking Procedures	. 22
Board Configuration	
Input Topology	
Address Modifiers	

VMIVME-1129 128-bit Digital Input Board with Built-In-Test

	Address Selection Jumpers	. 31
	Before Applying Power: Checklist	. 31
	I/O Cable and Front Panel Connector Configuration	32
CI	hapter 3 - Programming	.37
	Board ID Register (BD ID)	. 39
	Control and Status Register Bit Definitions	40
	Input Registers Bit Definitions	41
	Built-In-Test Programming	43
Ma	aintenance	
	Maintenance	45
	Maintenance Prints	46

List of Figures

Figure 1-1	VMIVME-1129 Block Diagram	17
Figure 1-2	VMIVME-1129 Test and Input Data Registers	18
Figure 1-3	Basic Input Circuit Topology	19
Figure 2-1	Physical Location of Jumpers	24
Figure 2-2	Basic Current Sinking Input	25
Figure 2-3	Basic Voltage Sourcing Input	25
Figure 2-4	Input Circuitry Jumper Configurations	27
Figure 2-5	Jumper Configuration for Short Supervisory Access (Factory Default)	28
Figure 2-6	Jumper Configuration for Standard Supervisory Access	28
Figure 2-7	Jumper Configuration for Short Nonprivileged Access	29
Figure 2-8	Jumper Configuration for Standard Nonprivileged Access	29
Figure 2-9	Jumper Configuration for Short Addressing and Supervisory or Nonprivileged Access	29
Figure 2-10	Jumper Configuration for Standard Addressing and Supervisory or Nonprivileged Access	29
Figure 2-11	Base Address Select Jumpers	30
Figure 2-12	P3/P4 Connector Pin Layout	32
Figure 2-13	P2 Connector Pin Layout	35

List of Tables

Table 2-1	Threshold Voltages	25
Table 2-2	Header Assignments	20
Table 2-3	P3 Pin - Channel Assignments	3
Table 2-4	P4 Pin - Channel Assignments	3
Table 2-5	P2 Connector Pin Assignments	30
Table 3-1	Address Map	3
Table 3-2	BD ID Register Bit Map	3!
Table 3-3	CSR Bit Map	40
Table 3-4	Input Data Registers Bit Map	4
Table 3-4	Input Data Registers Bit Map (Continued)	4

Overview

Introduction

Features

The VMIVME-1129 Digital Input Board is designed to read a voltage from a variety of devices. The signals may originate from electronic switching circuits, standard logic circuits, mechanical switch contacts, relay contacts, Opto 22 type signal conditioning modules, or numerous other sources. The inputs can be configured to receive current sinking or voltage sourcing signals.

The VMIC VMIVME-1129 Digital Input Board has several unique features as specified below:

- 128 bits of voltage sourcing or current sinking digital inputs
- 3 msec input noise suppression filter
- Each group of 8 inputs are jumper selectable to monitor, voltage source, or current sinking signals
- On-board Built-in-Test logic for fault detection and isolation
- Front panel with Fail LED
- User-selectable input voltage thresholds (1.25 to 34 V)
- VMEbus compatible
- 8-, 16- or 32-bit data transfers
- Double Eurocard form factor

Functional Description

The VMIVME-1129 Board has input circuitry that permits the user to select and configure the basic input functions. The input functions and threshold levels are built into the circuitry. The configuration of the board by the user sets up these functions. This allows the user to set some of the inputs for one function and the rest to another.

The basic function of this board is to sample the external inputs (when the board is accessed by the host) and place this data on the appropriate data lines of the VMEbus. In other words, this board takes a snapshot of the external data and guides it to the host via the VMEbus.

This board supports built-in-testing of its active components. Test registers are mapped into the same addresses as the input registers they are to test. In this way, the host simply writes data to an address then reads the same address, and compares the data *read* with the data sent to determine the health of the board. Testing can be done with the board off-line or on-line. A Control and Status Register (CSR) is used to control the operating state of the board.

Reference Material

The reader should refer to "The VMEbus Specification" for a detailed explanation of the VMEbus. "The VMEbus Specification" is available from the following source:

VITA
VMEbus International Trade Association
7825 East Gelding Dr., No. 104
Scottsdale, AZ 85260
(480) 951-8866
EAX: (480) 951-0720

FAX: (480) 951-0720 www.vita.com

The following Application and Configuration Guides are available from VMIC to assist the user in the selection, specification, and implementation of systems based on VMIC's products.

<u>Title</u>	Document No.
Digital Input Board Application Guide	825-000000-000
Change-of-State Application Guide	825-000000-002
Digital I/O (with Built-in-Test) Product Line Description	825-000000-003
Synchro/Resolver (Built-in-Test) Subsystem Configuration Guide	825-000000-004
Analog I/O Products (with Built-in-Test) Configuration Guide	825-000000-005
Connector and I/O Cable Application Guide	825-000000-006

Physical Description and Specifications

Refer to VMIC Specification No. *800-001129-000* for a detailed explanation and physical description of the VMIVME-1129 128-bit Digital Input Board with Built-In-Test, available from the following:

VMIC 12090 South Memorial Pkwy. Huntsville, AL 35803-3308, USA (256) 880-0444 (800) 322-3616 FAX: (256) 882-0859 www.vmic.com

Safety Summary

The following general safety precautions must be observed during all phases of the operation, service, and repair of this product. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture and intended use of this product.

VMIC assumes no liability for the customer's failure to comply with these requirements.

Ground the System

To minimize shock hazard, the chassis and system cabinet must be connected to an electrical ground. A three-conductor AC power cable should be used. The power cable must either be plugged into an approved three-contact electrical outlet or used with a three-contact to two-contact adapter with the grounding wire (green) firmly connected to an electrical ground (safety ground) at the power outlet.

Do Not Operate in an Explosive Atmosphere

Do not operate the system in the presence of flammable gases or fumes. Operation of any electrical system in such an environment constitutes a definite safety hazard.

Keep Away from Live Circuits

Operating personnel must not remove product covers. Component replacement and internal adjustments must be made by qualified maintenance personnel. Do not replace components with power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them.

Do Not Service or Adjust Alone

Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

Do Not Substitute Parts or Modify System

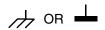
Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the product. Return the product to VMIC for service and repair to ensure that safety features are maintained.

Dangerous Procedure Warnings

Warnings, such as the example below, precede only potentially dangerous procedures throughout this manual. Instructions contained in the warnings must be followed.

WARNING: Dangerous voltages, capable of causing death, are present in this system. Use extreme caution when handling, testing and adjusting.

Safety Symbols Used in This Manual


Indicates dangerous voltage (terminals fed from the interior by voltage exceeding 1000 V are so marked).

Protective conductor terminal. For protection against electrical shock in case of a fault. Used with field wiring terminals to indicate the terminal which must be connected to ground before operating equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a signal common, as well as providing protection against electrical shock in case of a fault. Before operating the equipment, terminal marked with this symbol must be connected to ground in the manner described in the installation (operation) manual.

Frame or chassis terminal. A connection to the frame (chassis) of the equipment which normally includes all exposed metal structures.

Alternating current (power line).

Direct current (power line).

Alternating or direct current (power line).

STOP informs the operator that a practice or procedure should not be performed. Actions could result in injury or death to personnel, or could result in damage to or destruction of part or all of the system.

WARNING denotes a hazard. It calls attention to a procedure, a practice or condition which, if not correctly performed or adhered to, could result in injury or death to personnel.

CAUTION denotes a hazard. It calls attention to an operating procedure, a practice or a condition, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the system.

NOTE denotes important information. It calls attention to a procedure, a practice, a condition or the like, which is essential to highlight.

CHAPTER

Theory of Operation

Introduction

Operational Overview

The VMIVME-1129 Digital Input Board is designed to read voltage sourcing or current sinking devices. (For example: contact closure to ground). The input voltage levels and threshold trip levels are set up by the user.

The VMIVME-1129 is a snapshot type board. When the VMEbus address decoded by this board matches its address, the inputs are stored in an associated input register. The data is then steered to the proper data lines on the backplane for the host to use.

The VMIVME-1129 has built-in-test registers. They are used to check the board. The host simply writes data to the register or registers to be checked. Then by reading these registers and comparing the data read to the data written, the user can determine if the board is working. This can be done whenever the user wishes to check the board. The written data will overwrite the external input level. The VMIVME-1129 has input noise filters for the external inputs.

Figure 1-1 below is a block diagram of the basic functions of the VMIVME-1129 Board stated above. These blocks will be discussed in more detail in the following sections.

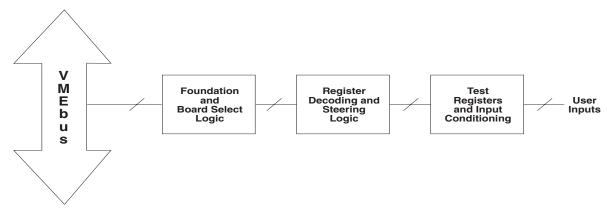


Figure 1-1 VMIVME-1129 Block Diagram

Test Registers

The test registers are used to check the "health" of the board. The user writes data into these registers. If their outputs are enabled (TEST MODE active), the data in these registers will overwrite the external inputs. This way the active components can be checked without disconnecting the external inputs. The test registers are mapped into the same address as their corresponding input registers. This way the user simply writes to and then reads from the port to be checked. If the data written is different from the data read, there is a problem. Figure 1-2 below is a block diagram of the Test and Input Data Registers of the VMIVME-1129 Board.

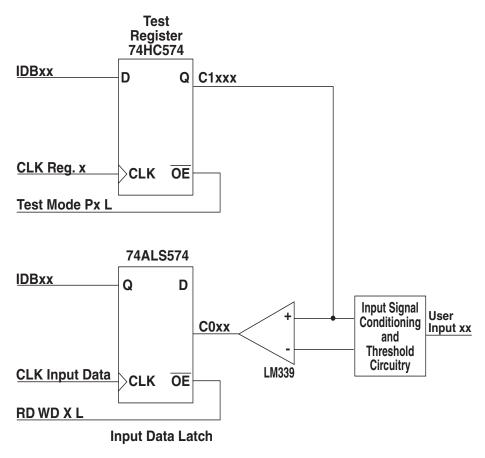


Figure 1-2 VMIVME-1129 Test and Input Data Registers

Input Circuitry

Figure 1-3 below shows the basic topology for each input. The BIT (Built-in-Test) Register is shown with only one of its eight lines (each register controls eight input circuits). The comparator output goes to an Input Data Register (IDR). When the board is selected, these registers are clocked. This is the snapshot effect. The incoming data is then held in these registers while the board guides the data to the appropriate VMEbus data lines. The filter module provides the 3 msec input noise suppression circuitry.

The input circuit of Figure 1-3 uses RP4, RP3, and associated header to set the threshold (or trip) level for the comparator. Table 2-1 on page 23 is a detailed listing of the thresholds for some common input levels. The threshold equation is also provided. The user can use this to calculate the trip voltage for the specific input voltage range he is using.

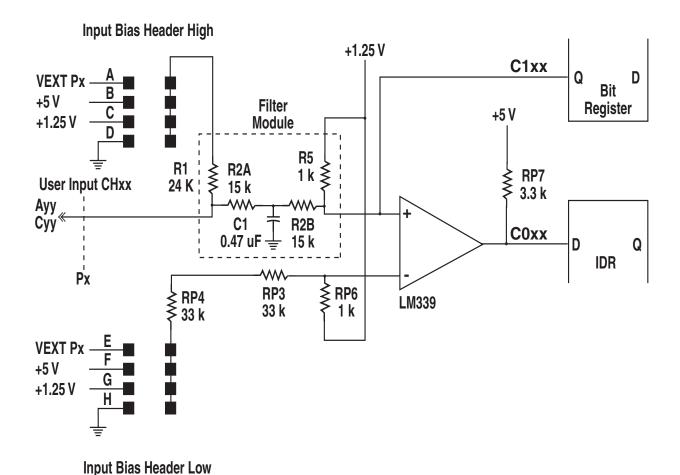


Figure 1-3 Basic Input Circuit Topology

19

Input Types

The VMIVME-1129-000 inputs can be configured in one of two types, either as voltage sourcing or current sinking. In the voltage sourcing input setup, R1's jumper is grounded. The input must be a voltage across R1. RP4 has its jumper going to a voltage the user chooses. The voltage chosen will establish the threshold level for the input voltage. Please refer to Table 2-1 on page 23 for the actual value of the trip voltage. In the current sinking configuration, R1's jumper is connected to $V_{\rm EXT}$. Now R1 acts as a pull up for the user's external circuit. RP4 and its jumper work as before.

The VMIVME-1129-100 option is only for contact sensing using an external voltage of 24 V. This input requires R1's jumper to be connected to V_{EXT} . This makes R1 a wetting resistor for the contacts, and limits the contact current to 1 mA. This requires one end of the contacts to be connected to ground. In this option, RP4 is 100 k Ohm. If RP4's jumper is set to V_{EXT} (24 V), the threshold voltage is approximately:

7.5 V, or VT =
$$\left[\frac{V_R - 1.25}{134 \text{ k}} \right] \times 34 \text{ k} + 1.25 \text{ V}$$

Configuration and Installation

Contents

Unpacking Procedures	22
Board Configuration	23
Address Modifiers	28
Address Selection Jumpers	31
I/O Cable and Front Panel Connector Configuration	32

Unpacking Procedures

CAUTION: Some of the components assembled on VMIC's products may be sensitive to electrostatic discharge and damage may occur on boards that are subjected to a high-energy electrostatic field. When the board is placed on a bench for configuring, etc., it is suggested that conductive material should be inserted under the board to provide a conductive shunt. Unused boards should be stored in the same protective boxes in which they were shipped.

Upon receipt, any precautions found in the shipping container should be observed. All items should be carefully unpacked and thoroughly inspected for damage that might have occurred during shipment. The board(s) should be checked for broken components, damaged printed circuit board(s), heat damage, and other visible contamination. All claims arising from shipping damage should be filed with the carrier and a complete report sent to VMIC, together with a request for advice concerning the disposition of the damaged item(s).

Board Configuration

The VMIVME-1129 circuitry permits the user to configure the inputs based on the application. The following sections of the manual are intended to instruct the user in the implementation of these input configurations. The user must first decide which input topology to use: the inputs can receive either current sinking; i.e., open-collector or voltage sourcing signals. Next, the user must select a threshold level; the threshold can be set as shown in Table 2-1 below. The input channels are configured in groups of 8 so the channels can be setup on a byte-by-byte basis.

Input Topology

The input topology is configured by placing jumpers in certain positions of a header field. Figure 2-2 on page 25 shows the circuit topology for a current sink input. Figure 2-3 on page 25 shows a voltage source input. Jumper J1 selects the pull-up voltage applied to input resistor RP1 and J2 selects the reference voltage applied to the threshold resistor RP4. Jumpers J1 and J2 in these figures represent the jumpers used to control a group of 8 input channels. The physical location of these jumpers is shown in Figure 2-1 on page 24.

If J1 is in the ground position, the input circuit is voltage sourcing. In any other position, the input is current sinking. In the circuit shown in Figure 2-3 on page 25, the voltage is 5 V. If the voltage you are using is greater than 5 V, then you should use Vext for J1. Table 2-2 on page 26 shows the location of Vext for each group of channels.

Jumper J2 chooses the reference voltage (V_r) for the threshold level (V_t) . Table 2-1 below lists several threshold values as a function of reference voltage. An equation for the threshold voltage is given if the value you require is not listed. Figure 2-4 on page 27 describes the possible jumper configurations.

$V_t = 0.46 V_r + 0.67$			
V _r	V _t		
0 V	0.67 V		
1.25 V	1.25 V		
5 V	3.0 V		
12 V	6.2 V		
24 V	11.7 V		
28 V	13.6 V		
48 V	22.8 V		
66 V	31.0 V		

Table 2-1 Threshold Voltages

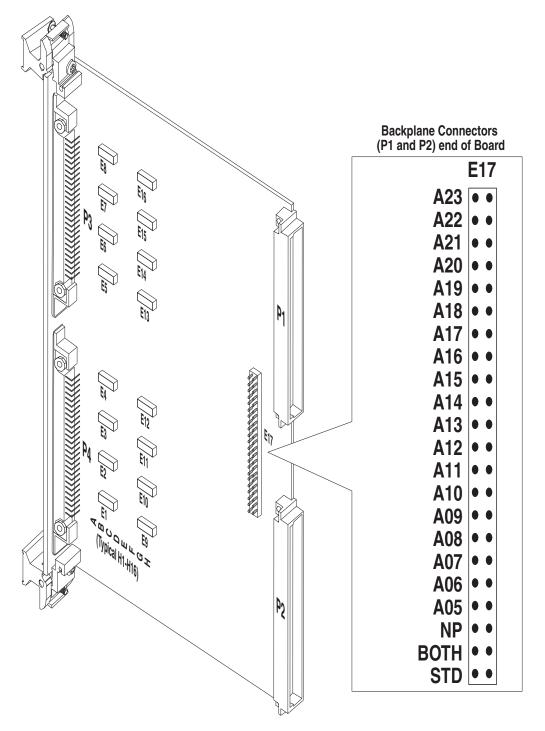


Figure 2-1 Physical Location of Jumpers

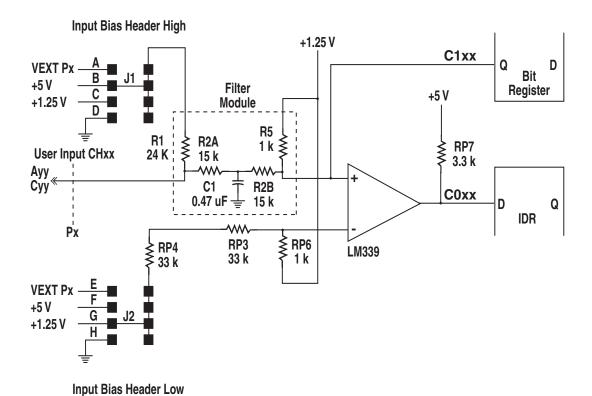
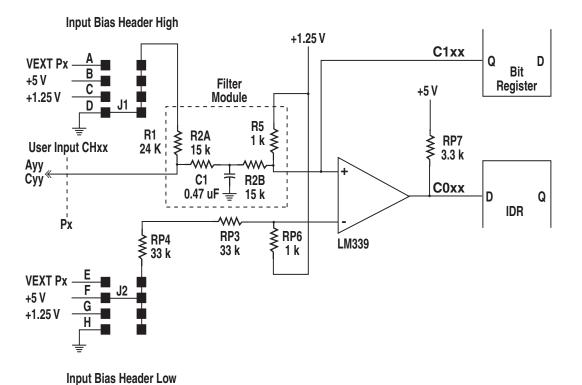



Figure 2-2 Basic Current Sinking Input

•

Figure 2-3 Basic Voltage Sourcing Input

Table 2-2 Header Assignments

Header Ref. Des.	Associated Channels	Location of VEXT	
E1	CH07 - CH00	P2-C32	
E2	CH15 - CH08	P2-C30	
E3	CH23 - CH16	P2-C28	
E4	CH31 - CH24	P2-C26	
E5	CH64 - CH71	P2-C16	
E6	CH72 - CH79	P2-C14	
E7	CH80 - CH87	P2-C12	
E8	CH88 - CH95	P2-C10	
E9	CH32 - CH39	P2-C24	
E10	CH40 - CH47	P2-C22	
E11	CH48 - CH55	P2-C20	
E12	CH56 - CH63	P2-C18	
E13	CH103 - CH96	P2-C8	
E14	CH111 - CH104	P2-C6	
E15	CH119 - CH112	P2-C4	
E16	CH127 - CH120	P2-C2	

INPUT BIAS HIGH JUMPER LOCATION

		Α	В	С	D	
NOIL	E	$T = CS$ $V_{P} = V_{EXT}$ $V_{OC} = Eq 2$ $V_{T} = Eq 1$	T = CS $V_P = +5 V$ $V_{OC} = +3.35 V$ $V_T = Eq 1$	T = CS $V_P = +1.25 V$ $V_{OC} = +1.25 V$ $V_T = Eq 1$	T = VS V _T = Eq 1	H1 A 0 0
INPUTBIAS LOW JUMPER LOCATION	F	$T = CS$ $V_{p} = V_{EXT}$ $V_{OC} = Eq 2$ $V_{T} = +3.2 V$	T = CS $V_P = +5 V$ $V_{OC} = +3.35 V$ $V_T = +3.2 V$	NOT USED	T = VS V _T = +3.2 V	B O O INPUT C O O BIAS D O O
PUTBIASLOW	G	$T = CS$ $V_{P} = V_{EXT}$ $V_{OC} = Eq 2$ $V_{T} = +1.25 V$	$T = CS$ $V_P = +5 V$ $V_{OC} = +3.35 V$ $V_T = +1.25 V$	NOT USED	FACTORY CONFIGURATION T = VS V _T = +1.25 V	F O O INPUT G O O BIAS LOW
Z	н	$T = CS$ $V_{P} = V_{EXT}$ $V_{OC} = Eq 2$ $V_{T} = +0.61 V$	T = CS $V_P = +5 V$ $V_{OC} = +3.35 V$ $V_T = +0.61 V$	NOT USED	T = VS V _T = +0.61 V	

T =Input Circuit Topology

VS = Voltage Sourcing Input

CS = Current Sinking Input

V_T =Threshold Voltage

V_P =Pull-Up Voltage (applied to 24 k_ pull-up resistor)

V_{OC} =Open Circuit Input Voltage

Eq 1 = $0.46 V_{EXT} + 0.67$

Eq 2 = $0.56 V_{EXT} + 0.55$

Figure 2-4 Input Circuitry Jumper Configurations

27

Address Modifiers

The VMIVME-1129 is configured at the factory, as shown in Figure 2-5, to respond to short supervisory I/O access. This configuration can be changed by installing jumpers at the appropriate locations in header E17 as shown in the corresponding figures.

I/O ACCESS	CORRESPONDING FIGURE
Short Supervisory	Figure 5.3-1 (factory configuration)
Standard Supervisory	Figure 5.3-2
Short Nonprivileged	Figure 5.3-3
Standard Nonprivileged	Figure 5.3-4
Short (responds to either supervisory or nonprivileged)	Figure 5.3-5
Standard (responds to either supervisory or nonprivileged)	Figure 5.3-6

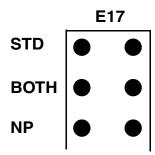


Figure 2-5 Jumper Configuration for Short Supervisory Access (Factory Default)

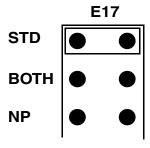


Figure 2-6 Jumper Configuration for Standard Supervisory Access

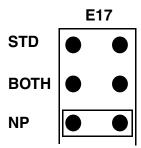


Figure 2-7 Jumper Configuration for Short Nonprivileged Access

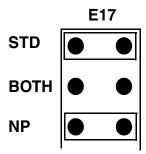


Figure 2-8 Jumper Configuration for Standard Nonprivileged Access

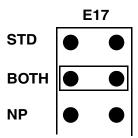


Figure 2-9 Jumper Configuration for Short Addressing and Supervisory or Nonprivileged Access

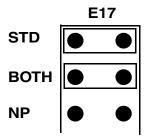
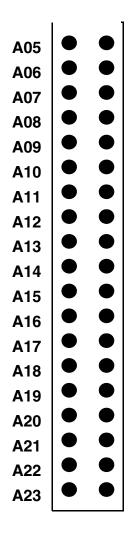



Figure 2-10 Jumper Configuration for Standard Addressing and Supervisory or Nonprivileged Access

NOTE: The example shown is for a short I/O base address of FF00 Hexadecimal (FFFFFF00 for Standard I/O access.

Figure 2-11 Base Address Select Jumpers

Address Selection Jumpers

The VMIVME-1129 is designed with a bank of address select jumpers that specify the beginning board address for data transfers. The address selection jumpers are shown in Figure 2-11 on page 30. The VMIVME-1129 is factory configured to respond to FF00 HEX.

Before Applying Power: Checklist

Before installing the board in a VMEbus system, perform the following checklist to verify that the board is ready for the intended operation:

- Have the sections on Theory and Programming of the VMIVME-1129 been read and applied to system requirements?
- Review this chapter to verify factory installation of the jumpers. See Figure 2-2 on page 25 for factory configuration.
 - —To change the address jumpers, refer to "Address Selection Jumpers" on page 31.
 - —To change the address modifier response, refer to "Address Modifiers" on page 28.
- The VMIVME-1129 is designed to accommodate either current sink or voltage source inputs. See Figure 2-2 and Figure 2-3 on page 25, respectively, for the correct configuration of the desired input.
- Have the cables, with proper mating connectors, been connected to the input connectors?

After completing the checklist, the VMIVME-1129 Board may be installed. Generally the VMIVME-1129 may be installed in any slot position except slot one, which is usually reserved for the system controller processing unit.

I/O Cable and Front Panel Connector Configuration

The input connectors (P3 and P4) on the VMIVME-1129 are 96-pin DIN standard and were selected by VMIC because of their high quality. Although these connectors are generally used with flat-ribbon cables, a variety of cables and mating connectors are available for most user requirements.

Figure 2-12 below shows the pin layout of the P3 and P4 connectors. Table 2-3 on page 33 and Table 2-4 on page 34 detail the connector pin assignments. The P2 connector pin layout is shown in Figure 2-13 on page 35, while the pin assignments are listed in Table 2-5 on page 36.

Refer to specification number 800-001129-000 for the type of connector to use.

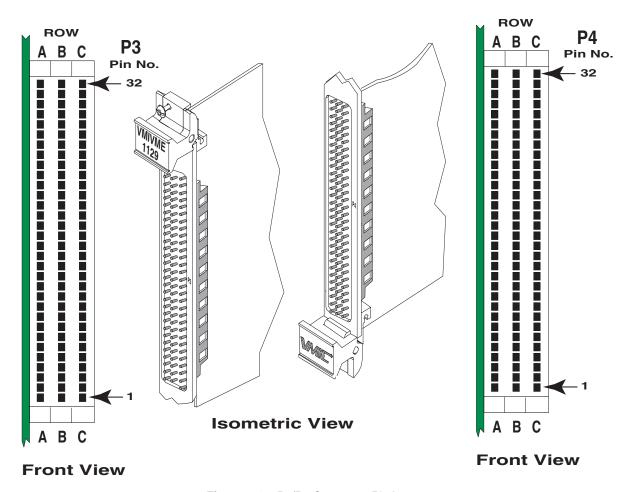


Figure 2-12 P3/P4 Connector Pin Layout

Table 2-3 P3 Pin - Channel Assignments

P3			P3
ROW C Pin	CHANNEL No.	ROW C Pin	CHANNEL No.
32	127	16	111
31	126	15	110
30	125	14	109
29	124	13	108
28	123	12	107
27	122	11	106
26	121	10	105
25	120	09	104
24	119	08	103
23	118	07	102
22	117	06	101
21	116	05	100
20	115	04	99
19	114	03	98
18	113	02	97
17	112	01	96
NOTE: All Pins in	Row B are grounded		-

Р3			P3
ROW A Pin	CHANNEL No.	ROW A Pin	CHANNEL No
32	95	16	79
31	94	15	78
30	93	14	77
29	92	13	76
28	91	12	75
27	90	11	74
26	89	10	73
25	88	09	72
24	87	08	71
23	86	07	70
22	85	06	69
21	84	05	68
20	83	04	67
19	82	03	66
18	81	02	65
17	80	01	64
OTE: All Pins in	Row B are grounded		

Table 2-4 P4 Pin - Channel Assignments

	P4		P4	
ROW C Pin	CHANNEL No.	ROW C Pin	CHANNEL No.	
32	63	16	47	
31	62	15	46	
30	61	14	45	
29	60	13	44	
28	59	12	43	
27	58	11	42	
26	57	10	41	
25	56	09	40	
24	55	08	39	
23	54	07	38	
22	53	06	37	
21	52	05	36	
20	51	04	35	
19	50	03	34	
18	49	02	33	
17	48	01	32	
NOTE: All Pins in	Row B are grounded			

	P4		P4
ROW A Pin	CHANNEL No.	ROW A Pin	CHANNEL No.
32	31	16	15
31	30	15	14
30	29	14	13
29	28	13	12
28	27	12	11
27	26	11	10
26	25	10	09
25	24	09	08
24	23	08	07
23	22	07	06
22	21	06	05
21	20	05	04
20	19	04	03
19	18	03	02
18	17	02	01
17	16	01	00
NOTE: All Pins i	n Row B are grounde	d.	•

Pin No.

P2 Connector

Figure 2-13 P2 Connector Pin Layout

Rear View of Board

32-

ISOMETRIC VIEW

Table 2-5 P2 Connector Pin Assignments

Pin NO.	ROW A	ROW B	ROW C
1	NC	+5 V	GND
2	NC	GND	VEXT CH 120_127
3	NC	N/C	GND
4	NC	N/C	VEXT CH 112_119
5	NC	N/C	GND
6	NC	N/C	VEXT CH 104_111
7	NC	N/C	GND
8	NC	N/C	VEXT CH 96_103
9	NC	N/C	GND
10	NC	N/C	VEXT CH 88_95
11	NC	N/C	GND
12	NC	GND	VEXT CH 80_87
13	NC	+5 V	GND
14	NC	D16	VEXT CH 72_79
15	NC	D17	GND
16	NC	D18	VEXT CH 64_71
17	NC	D19	GND
18	NC	D20	VEXT CH 56_63
19	NC	D21	GND
20	NC	D22	VEXT CH 48_55
21	NC	D23	GND
22	NC	GND	VEXT CH 40_47
23	NC	D24	GND
24	NC	D25	VEXT CH 32_39
25	NC	D26	GND
26	NC	D27	VEXT CH 24_31
27	NC	D28	GND
28	NC	D29	VEXT CH 16_23
29	NC	D30	GND
30	NC	D31	VEXT CH 8_15
31	NC	GND	GND
32	NC	+5 V	VEXT CH 0_7

CHAPTER 3

Programming

Introduction

The VMIVME-1129 is a snapshot board. The user simply performs a read or write operation within the board's address space and the appropriate transfer is performed. The only setup involved with this board deals with the Control and Status Register. Once this register is programmed, the user performs data transfers to or from this board. The following table (Table 3-1 below) lists the address map for the VMIVME-1129. X's in the address are determined by the address select header E17. This header's function will be discussed in more detail in Section 5 of this manual. This board will respond to nonprivileged, supervisory, or both accesses depending on how the jumpers are positioned.

Table 3-1 Address Map

RELATIVE ADDRESS*	MNEMONIC	NAME/FUNCTION
XXX0 0000	IDU	BOARD ID REGISTER UPPER BYTE
XXX0 0001	IDL	BOARD ID REGISTER LOWER BYTE
XXX0 0010	CSRU	CSR UPPER BYTE
XXX0 0011	CSRL	CSR LOWER BYTE
XXX0 0100 through XXX0 1111	•	NOT USED**
XXX1 0000	DR0U	TEST REGISTER 0 UPPER BYTE
XXX1 0001	DR0L	TEST REGISTER 0 LOWER BYTE
XXX1 0010	DR1U	TEST REGISTER 1 UPPER BYTE
XXX1 0011	DR1L	TEST REGISTER 1 LOWER BYTE
XXX1 0100	DR2U	TEST REGISTER 2 UPPER BYTE
XXX1 0101	DR2L	TEST REGISTER 2 LOWER BYTE
XXX1 0110	DR3U	TEST REGISTER 3 UPPER BYTE
XXX1 0111	DR3L	TEST REGISTER 3 LOWER BYTE
XXX1 1000	DR4U	TEST REGISTER 4 UPPER BYTE
XXX1 1001	DR4L	TEST REGISTER 4 LOWER BYTE
XXX1 1010	DR5U	TEST REGISTER 5 UPPER BYTE
XXX1 1011	DR5L	TEST REGISTER 5 LOWER BYTE

Table 3-1 Address Map (Continued)

RELATIVE ADDRESS*	MNEMONIC	NAME/FUNCTION
XXX1 1100	DR6U	TEST REGISTER 6 UPPER BYTE
XXX1 1101	DR6L	TEST REGISTER 6 LOWER BYTE
XXX1 1110	DR7U	TEST REGISTER 7 UPPER BYTE
XXX1 1111	DR7L	TEST REGISTER 7 LOWER BYTE

^{*} The relative address is defined by A4-A0. All other address lines help to define the base address.

^{**} A read or write access to these addresses will not result in a bus error; however, any data written to these addresses will not be stored. Any data read from these addresses will not be meaningful.

Board ID Register (BD ID)

The BD ID Register is a read-only register. Its data is fixed at \$2900. You can write to this address; however, the data you write will be lost and there will be no effect on the board. If you choose to write to this location, the board will DTACK to prevent any bus errors. The BD ID can be read as a word or as two bytes. The following table (Table 3-2 below) shows the bit values for this register.

 Table 3-2
 BD ID Register Bit Map

XX	X0 0000	BOAF	D ID UPPER	ВҮТЕ	(Read Only)		
Bit 31	Bit 30	Bit 29 Bit 28 Bit 27 Bit 26 Bit 25				Bit 24	
L	L	Н	L	Н	L	L	Н

XXX	(0 0001	BOARD ID LOWER BYTE			E (Read Only)		
Bit 23	Bit 22	Bit 21 Bit 20 Bit 19 Bit 18 Bit 17				Bit 17	Bit 16
L	L	L	L	L	L	L	L

3

Control and Status Register Bit Definitions

The Control and Status Register (CSR) is a 16-bit register that is used to control the board's Fail LED and the test registers' outputs. Table 3-3 shows the bits used to perform these functions. Bit 15 controls the LED. Bit 14 controls the test registers for P4 and P3 Row A (Channels 0 through 31 and Channels 64 through 95) while Bit 13 controls the test registers for P4 and P3 Row C (Channels 32 through 64 and Channels 96 through 127). P3 and P4 channel assignments are shown in Table 2-3 on page 33 (P3) and Table 2-4 on page 34 (P4). The Bit map for each channel is shown in Table 3-4 on page 41.

All of these bits are active low. All of the other bits are not used. When the board is powered up or after a system reset, these signals are activated. Writing a logic high into each bit location will deactivate them. Writing a logic low in these locations will subsequently activate the function. Each of the functions are independent of the others. Thus, the LED can be turned ON and OFF as you wish.

Table 3-3 CSR Bit Map

XXX0 0010 CSF		R UPPER BYTE		(Bits 12 through 08 are Read Only)			
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 09	Bit 08
FAIL_L	TEST_ MODE_ P3/P4 ROW A_L	TEST_ MODE_ P3/P4 ROW C_L	L	L	L	L	L

XXX0 0011 CSR LOWER BYTE (Read Or					(Read Only)		
Bit 07	Bit 06	Bit 05	Bit 04	Bit 03	Bit 02	Bit 01	Bit 00
L	L	L	L	L	L	L	L

Input Registers Bit Definitions

The following table (Table 4.4-1) lists the input channels and their associated register bit locations. The internal data bit can be used as a guide to locate an input channel when you are doing a longword transfer. When doing word or byte transfers the even address bytes will go to bits 15 through 8 on the VMEbus data bus while the odd address bytes go to bits 7 through 0.

Table 3-4 Input Data Registers Bit Map

XXX	(1 0000	DATA REGISTER 0 UPPER BYTE (Read /Write)					
Bit 31	Bit 30	Bit 29	Bit 29 Bit 28 Bit 27			Bit 25	Bit 24
CH 127	CH 126	CH 125	CH 124	CH 123	CH 122	CH 121	CH 120

XXX	(1 0001	DATA REG	DATA REGISTER 0 LOWER BYTE (Read /Write)				
Bit 23	Bit 22	Bit 21	Bit 21 Bit 20 Bit 19			Bit 17	Bit 16
CH 119	CH 118	CH 117	CH 116	CH 115	CH 114	CH 113	CH 112

XXX	(1 0010	DATA REGISTER 1 UPPER BYTE			(Read /Write)		
Bit 15	Bit 14	Bit 13	Bit 13 Bit 12 Bit 11			Bit 09	Bit 08
CH 111	CH 110	CH 109	CH 108	CH 107	CH 106	CH 105	CH 104

XXX	(1 0011	DATA REG	SISTER 1 LOV	VER BYTE			
Bit 07	Bit 06	Bit 05	Bit 04	Bit 03	Bit 02	Bit 01	Bit 00
CH 103	CH 102	CH 101	CH 100	CH 099	CH 098	CH 097	CH 096

XXX	(1 0100	DATA REC	GISTER 2 UPF	PER BYTE	BYTE (Read /Write)		
Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24
CH 095	CH 094	CH 093	CH 092	CH 091	CH 090	CH 089	CH 088

XXX	(1 0101	DATA REG	SISTER 2 LOV	LOWER BYTE (Read /Write)			
Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
CH 087	CH 086	CH 085	CH 084	CH 083	CH 082	CH 081	CH 080

XXX	(1 0110	DATA REC	SISTER 3 UPF	PER BYTE			
Bit 15	Bit 14	Bit 13 Bit 12 Bit 11 Bit 10 Bit 09				Bit 09	Bit 08
CH 079	CH 078	CH 077	CH 076	CH 075	CH 074	CH 073	CH 072

XXX	(1 0111	DATA REG	SISTER 3 LOW	/ER BYTE			
Bit 07	Bit 06	Bit 05 Bit 04 Bit 03 Bit 02 Bit 01				Bit 00	
CH 071	CH 070	CH 069	CH 068	CH 067	CH 066	CH 065	CH 064

Table 3-4 Input Data Registers Bit Map (Continued)

XXX	(1 1000	DATA REC	SISTER 4 UPF	PER BYTE			
Bit 31	Bit 30	Bit 29 Bit 28 Bit 27 Bit 26 Bit 25				Bit 25	Bit 24
CH 063	CH 062	CH 061	CH 061				

XXX	(1 1001	DATA REGISTER 4 LOWER BYTE			(Read /Write)		
Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
CH 055	CH 054	CH 053	CH 052	CH 051	CH 050	CH 049	CH 048

XXX	XXX1 1010		DATA REGISTER 5 UPPER BYTE			(Read /Write)		
Bit 15	Bit 14	Bit 13	Bit 13 Bit 12 Bit 11 Bit 10				Bit 08	
CH 047	CH 046	CH 045	CH 044	CH 043	CH 042	CH 041	CH 040	

XXX	(1 1011	DATA REGISTER 5 LOWER BYTE (Read /Write)					
Bit 07	Bit 06	Bit 05 Bit 04 Bit 03 Bit 02 Bit 01				Bit 01	Bit 00
CH 039	CH 038	CH 037	CH 036	CH 035	CH 034	CH 033	CH 032

XXX	(1 1100	DATA REC	SISTER 6 UPF	PER BYTE	TE (Read /Write)		
Bit 31	Bit 30	Bit 29	Bit 29 Bit 28 Bit 27 Bit 26 Bit 25				Bit 24
CH 031	CH 030	CH 029	CH 028	CH 027	CH 026	CH 025	CH 024

XXX	(1 1101	DATA REG	SISTER 6 LOV	VER BYTE			
Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
CH 023	CH 022	CH 021	CH 020	CH 019	CH 018	CH 017	CH 016

XXX	(1 1110	DATA REC	SISTER 7 UPF	PER BYTE			
Bit 15	Bit 14	Bit 13	Bit 13 Bit 12 Bit 11			Bit 09	Bit 08
CH 015	CH 014	CH 013	CH 012	CH 011	CH 010	CH 009	CH 008

XXX1 1111		DATA REGISTER 7 LOWER BYTE			(Read /Write)		
Bit 07	Bit 06	Bit 05	Bit 04	Bit 03	Bit 02	Bit 01	Bit 00
CH 007	CH 006	CH 005	CH 004	CH 003	CH 002	CH 001	CH 000

 $\label{eq:NOTE:P4} \textbf{NOTE:} Input channels CH00 through CH63 are routed from input connector P4 while inputs CH64 through CH127 are routed from the P3 connector.$

Built-In-Test Programming

Built-in-test is activated when either or both test mode bits in the CSR are cleared. When test mode is active, data written to a data register will overwrite the external inputs. Then when the same register is read, the data stored in the test register should be read. If there is a difference, then the board has a problem. When you are through testing the board, the test mode bits **MUST** be set to a one (1) in the CSR; otherwise, the board will not be able to monitor the external inputs.

VMIVME-1129 128-bit Digital Input Board with Built-In-Test

Maintenance

Maintenance

This section provides information relative to the care and maintenance of VMIC's products. If the product malfunctions, verify the following:

- Software
- System configuration
- Electrical connections
- Jumper or configuration options
- Boards are fully inserted into their proper connector location
- Connector pins are clean and free from contamination
- No components of adjacent boards are disturbed when inserting or removing the board from the chassis
- Quality of cables and I/O connections

If the product must be returned, contact VMIC for a Return Material Authorization (RMA) Number. **This RMA Number must be obtained prior to any return**.

Contact VMIC customer Service at 1-800-240-7782, or E-mail: customer.service@vmic.com .

Maintenance Prints

User level repairs are not recommended. The drawings and tables in this manual are for reference purposes only.