

PRODUCT DATA

4-Channel Isolated Power Analog Output Board for VMEbus Computers

FEATURES

- · 4 isolated output channels
- Voltage mode or current loop
- Active mode 160mA loop output
- 12-bit D/A resolution
- Selectable output ranges per channel
- For servos, controls, motors
- Industrial current loops

Intended for industrial and medium current test systems, DATEL's model DVME-621 is a four channel power analog output board configured on a 6U VMEbus outline. Up to 100mA is available in voltage mode while current loops may be powered up to 160mA

The DVME-621 is ideal for direct drive of servo amplifiers, small motors, deflection coils, actuators, power amplifiers, lamps, low power heaters and industrial controls. Other applications include robotics, power supply testers, programmable amplifier loads and semiconductor screening systems.

Each output channel features dual isolation from adjacent channels and from the VMEbus. This offers freedom from ground loop problems and provides user safety and equipment protection. The 500V rms isolation is achieved with individual DC/DC power converters for each analog channel. Fast optoisolators buffer digital data and the channel logic is double buffered to eliminate data loading transients.

For maximum flexibility, each channel may be individually selected for current or voltage mode, unipolar or bipolar operations. The voltage output ranges are 0 to +11V or ±11V.

Full scale current ranges are 0 to +160mA or 0 to ±160mA. Analog connections use a single front panel 25-pin connector. For accurate load voltage which is not affected by long power leads, all channels include sense inputs.

The DVME-621 appears as four VME memory locations in 24-bit standard address space. The board will accept 16-bit memory reference instructions in any computer language using any operating system. Data is stable within 11 microseconds after data write. User software may read back each channel to verify proper data loading and for board test. Very high speed memory loads may use DMA or block transfers from the host computer.

The DVME-621 uses one VME slot and has a 6U "double height" outline. All power is supplied from the +5V and +12V VMEbus power connections.

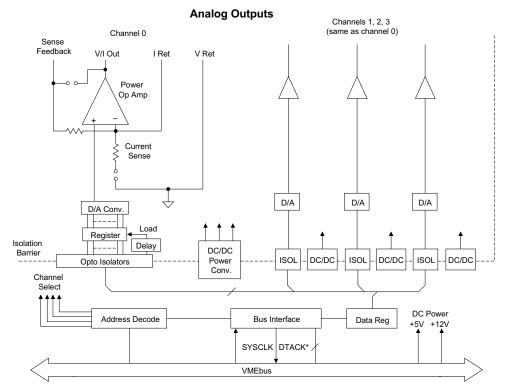


Figure 1. DVME-621 Simplified Block Diagram

(233,5 x 160 x 15,24mm)

FUNCTIONAL SPECIFICATIONS

FUNCTIONAL SPECIFICATION	—	Feedback Control	Current and voltage sense
(Typical at +25°C unless otherwise noted)			feedback control is
ANALOG INPUTS			provided. Remote load sense is included for
Number of Channels	Four		voltage mode.
Output Configuration	Single-ended, isolated per	VME DUO INTEDEACE	voltage mode.
	(See Technical Note 3)	VME BUS INTERFACE	
	channel	Standards Compliance	IEEE P1014/D1.0
Modes	Current or voltage source,	Architecture	Memory mapped in four
	individually selected per channel		contiguous words in the
Full Scale Voltage Range	0 to +11V or -11 to +11V at		bottom of a 256 location
Tuli Scale Voltage Kange	0 to 100 mA max. per channel.		memory block. A24:D16
Full Scale Current Range	0 to +160 mA (source only)	Memory Mapping	slave. Decodes memory address
3	(See Technical Note 1)	метногу маррину	lines A23 through A01 plus
	or -160 to +160mA (source		six address modifiers, AM5
	or sink)		- AMO.
Current Mode Load	3 Ohms min. to 45 Ohms	Address Modifier Codes	39h or 3Dh, user selectable,
	max. for full scale range.		"standard I/O" access.
Output Current Limit	±175 mA max.		(Short I/O is also selectable).
Output Impedance Output Protection	500 milliohms max.	Data Bus	SYSCLK to generate
Output Protection	Short circuit recovery and open circuit voltage		DTACK* with selectable
	protection.		delay. Note: The 16 MHz
Overvoltage Protection	±14V max. (no damage).	Interrupts	SYSCLK signal is required. None
o ronningo i ronomon	Reactive loads should	interrupts	None
	externally clamp voltage	MISCELLANEOUS	
	spikes.	Analog Section Adjustments	Full scale and zero or offset
Stability	Stable for capacitive loads	(See Technical Note 2)	multi-turn precision
54.50 4.11	up to 0.1 μF per channel	(potentiometers are
D/A Digital Inputs	Double buffered to prevent		provided for each DAC
	output transients during data transfers.		channel. Recalibration is
D/A Resolution	12 bits resolution, 1 part in		recommended every 90
DIA Resolution	4096. (Bipolar configuration		days in stable conditions.
	uses 11 data bits and one	Analog Connector	One 25-pin DB-25S female
	polarity bit).	VME bus Connector	mounted on front panel. 96-pin DIN connector. Uses
Input Data Coding	Straight binary (unipolar)	VIVIE bus Connector	P1 only. (P2 is not installed).
	and offset binary (bipolar),	Operating Temp. Range	0 to +40°C. Forced cooling
	right justified.	operating rempiritungs	is (continuous) required at
ISOLATION			full power and maximum
Channel to channel legistion 500V was sustained			temperature. Operation
Channel-to-channel Isolation Channel-to-VME bus Isolation	500V rms sustained 500V rms sustained		may be linearly derated to
Channel-to-channel Leakage	10 µA		zero power at +60°C.
Isolation Capacitive Coupling	25 pF per channel to non	Storage Temp. Range	-25 to +85°C
останов сарасное ссарииз	-isolated ground.	Thermal Shock	±5°C change per minute max.
	<u> </u>	Relative Humidity Altitude	0% to 90% non-condensing 0 to 10,000 feet (0-3048m).
PERFORMANCE		Aithudo	Forced cooling is required
Monotonicity	No missing codes		at high altitude and full
Linearity Error	±0.1% of Full Scale Range		power output.
Zero Temp. Coefficient	±10 ppm of FSR/°C	Weight	1 Kilogram
Offset Temp. Coefficient	±20 μV/°C (after calibration)	Power Supply	+5V, ±% at 3.75A max.
Settling Time to 0.1% of FSR	11 microseconds max.		+12V, ±5% at 1.5A max.
Slew Rate	1 Volt/microsecond min.		Both are supplied by VME bus.
CONFIGURATION		Power Supply Input Regulation	±0.1% max.
Channels may be individually selected for current or voltage		Input Ripple and Noise Reflected Switching Noise	50 mV rms below 10MHz 45 mA max. reflected back
mode, unipolar or bipolar.		ivenected Switching Noise	to VME bus from DC/DC
Data Readback	Any D/A channel may be		converters.
	read back immediately after	Outline Dimensions	Double height 6U VME
	writing channel data. Only		outline, one slot wide
	the last channel written		9.19"W x 6.3"D x 0.6"H
	may be read back		(222 F v 160 v 15 24mm)

may be read back.

TECHNICAL NOTES

- All current mode excitation is internally supplied via VME bus. This is also referred to as "active" mode.
- All DAC input registers are reset to zero or half scale (0800 hex) at power up or VME bus reset depending on the unipolar/bipolar jumper selection. In either case, the output voltage is set at zero volts.
- 3. Since each output is isolated, they may be connected to either single-ended or differential receivers.

REGISTER MEMORY MAPPING

The memory base address may be selected anywhere using 24-bit addressing up to FFFF00h. 16-bit memory reference word instructions much be used. The registers may be programmed in any sequence and will accept host DMA or block transfer operations for highest speed. In readback mode, only the last register written will be returned. Read a DAC channel immediately after writing it to test each data load. In readback mode, bits 15-12 will always be logic "1".

Address (hex)	Direction	Description
BASE + 0	Write	Load DAC0 data register
BASE + 0	Read	Readback DAC0 data
BASE + 2	Write	Load DAC1 data register
BASE + 2	Read	Readback DAC1 data
BASE + 4	Write	Load DAC2 data register
BASE + 4	Read	Readback DAC2 data
BASE + 6	Write	Load DAC3 data register
BASE + 6	Read	Readback DAC3 data

DATA REGISTER FORMAT

15	14	13	12	11 0
Х	х	х	х	MSB data LSB

On write, "x" bits 15-12 are "don't care". On readback, bits 15-12 will always be logic "1". In bipolar mode, the Most Significant Bit (MSB), bit 11, indicates polarity (0 = negative, 1 = positive).

MEMORY SIZING

Standard I/O addressing Install E8 (standard)
Short I/O addressing Install E7

OUTPUT POLARITY

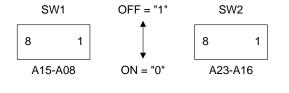
Unipolar: Install E2

Bipolar: Install E1 (standard)

MEMORY BASE ADDRESS SELECTION

The 24-bit base address consists of three bytes. The top two most significant bytes are decoded by two DIP switches, SW1 and SW2. Address bits 7 through 3 should be set to zero. Address bits 2 and 1 are decoded for the DAC data registers. The standard factory setting is FA0000 hex.

Upper byte:


Address bit A23 A22 A21 A20 A19 A18 A17 A16 DIP Switch SW2 8 7 6 5 4 3 2 1

Lower byte:

Address bit A15 A14 A13 A12 A11 A10 A09 A08 DIP Switch SW1 8 7 6 5 4 3 2 1

Example: For a Base address of 10 0000h, turn off switch SW2-8 and leave all others on.

Switch location and orientation

VME P1 Conn.

OUTPUT RANGE SELECTION

Important: Connect only the jumpers shown. Leave all other jumpers open.

Output Range*	DAC0	DAC1	DAC2	DAC3
±11V	J3 2-3	J8 2-3	J13-2-3	J18 2-3
Bipolar	J4 2-3	J9 2-3	J14 2-3	J19 2-3
	J2 2-3	J7 2-3	J12 2-3	J17 2-3
	J1 2-3	J6 2-3	J11 2-3	J16 2-3
	J5 1-2	J10 1-2	J15 1-2	J20 1-2
±160mA	J3 2-3	J8 2-3	J13 2-3	J18 2-3
Current Loop	J4 2-3	J9 2-3	J14 2-3	J19 2-3
Bipolar	J2 2-1	J7 2-1	J12 2-1	J17 2-1
	J1 2-1	J6 2-1	J11 2-1	J16 2-1
	J5 3-2	J10 3-2	J15 3-2	J20 3-2
0 to + 11V	J3 2-1	J8 2-1	J13 2-1	J18 2-1
Unipolar	J4 2-1	J9 2-1	J14 2-1	J19 2-1
	J2 2-3	J7 2-3	J12 2-3	J17 2-3
	J1 2-3	J6 2-3	J11 2-3	J16 2-3
	J5 1-2	J10 1-2	J15 1-2	J20 1-2
0 to + 160mA	J3 2-1	J8 2-1	J13 2-1	J18 2-1
Current Loop	J4 2-1	J9 2-1	J14 2-1	J19 2-1
Unipolar	J2 2-1	J7 2-1	J12 2-1	J17 2-1
(source only)	J5 3-2	J10 3-2	J15 3-2	J20 3-2

*±10V and 0 to +10V ranges are available on each channel by removing J5, J10, and J20 respectively. Alternate output ranges are available on special order.

ANALOG OUTPUT CONNECTOR (P2)

(connector is shown as viewed from front panel)

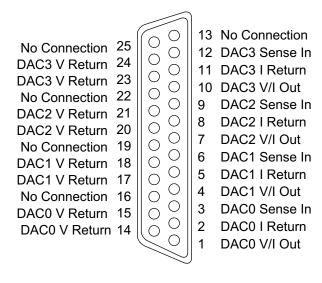
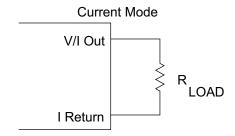
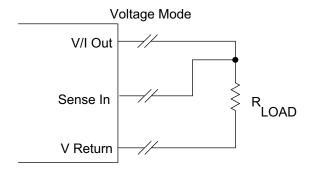




Figure 2. Isolated Analog Output

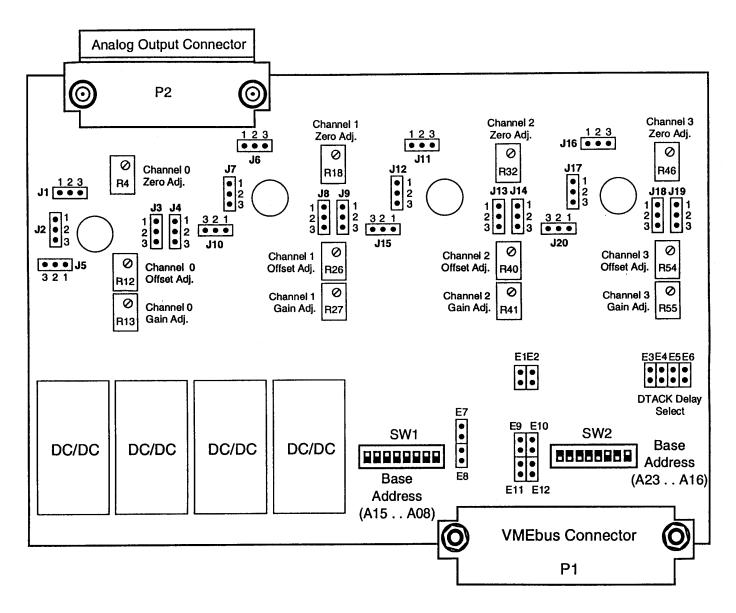
Important: Connect sense at the load.

Figure 3. Output Connections

PROGRAMMING EXAMPLE

The DVME-621 requires simple memory reference instructions in any language. 16-bit word operations should be used. Certain systems may require modification using a function which allows accesses to real physical memory from virtual memory. The following example in the "C" language loads the data channels:

```
/* 28ian93 ldc */
#include <stdio.h>
#define BASE 0xFA0000 /* change this for your system!! */
/* set up pointers to data registers. basptr is the base address
of the board. */
unsigned short
                  *basptr. /*BASE address */
                  *chan0, /* DAC channel 0 */
                  *chan1, /* DAC channel 1 */
                  *chan2, /* DAC channel 2 */
                  *chan3, /* DAC channel 3 */
/* Initialize pointers */
   basptr = ( unsigned short *) BASE;
   chan0 = basptr + 0;
   chan1 = basptr + 2;
   chan2 = basptr + 4;
   chan3 = basptr + 6;
/* Now load -full scale, half scale, + 1 count and +full scale
values into 4 channels. */
   *chan0 = 0x0000; /*-FS */
   *chan1 = 0x0800; /* half scale */
   *chan2 = 0x801; /* +1 LSB */
   *chan3 = 0x0FFF; /* +FS -1 LSB */
} / * end of program */
```


ADDRESS MODIFIER SELECTION

ADDITION HOLD IN INC.				
Address Modifier	Function	Jumper		
2D hex	Short I/O supervisory access	E9		
29h or 2Dh	Short I/O non-privileged or	E10		
	supervisor access			
3D hex	Standard I/O supervisor access	E11		
39h or 3Dh	Standard I/O non-privileged or	E12		
	supervisor access			

ORDERING INFORMATION

MODEL	DESCRIPTION
DVME-621	4-channel VMEbus power output analog board.
DVME-691D	19" rack mount screw terminal adapter and cabling
Alternate outp	ut ranges are available on special order.

DVME-621 Board Layout