
TIBCO SmartSockets™

User’s Guide
Software Release 6.8
July 2006

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY
(OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE.
THE EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY
ANY OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND
CONDITIONS OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED
SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT,
THE CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING
DOWNLOAD OR INSTALLATION OF THE SOFTWARE (AND WHICH IS DUPLICATED IN THE
TIBCO SMARTSOCKETS INSTALLATION GUIDE). USE OF THIS DOCUMENT IS SUBJECT TO
THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE
ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document contains confidential information that is subject to U.S. and international copyright
laws and treaties. No part of this document may be reproduced in any form without the written
authorization of TIBCO Software Inc.

TIB, TIBCO, Information Bus, The Power of Now, TIBCO Adapter, RTclient, RTserver, RTworks,
SmartSockets, and Talarian are either registered trademarks or trademarks of TIBCO Software Inc.
in the United States and/or other countries.

EJB, J2EE, JMS and all Java-based trademarks and logos are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system
platforms for a specific software version are released at the same time. Please see the readme.txt file
for the availability of this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO
SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.

Copyright © 1991–2006 TIBCO Software Inc. ALL RIGHTS RESERVED.

TIBCO Software Inc. Confidential Information

| iii
Contents

Figures . xvii

Tables . xix

Preface . xxi

Related Documentation . xxii
TIBCO Product Documentation . xxii
Using the Online Documentation . xxii

Conventions Used in This Manual . xxiii
Typeface Conventions . xxiii
Notational Conventions. xxiv
Identifiers . xxiv
Case . xxv

How to Contact TIBCO Support. xxvi

Chapter 1 Messages . 1

Message Composition . 2

Message Properties . 4
Arrival Timestamp. 4
Compression . 5
Correlation ID . 6
Data . 7
Delivery Mode. 9
Delivery Timeout. 11
Destination . 12
Expiration . 13
Header String Encode . 14
Load Balancing Mode. 15
Message ID . 16
Num Fields . 17
Priority . 18
Read Only. 19
Reference Count . 20
Reply To . 21
Sender . 22
Sender Timestamp . 23
 TIBCO SmartSockets User’s Guide

iv | Contents
Sequence Number . 24
Type . 25
User-Defined Property . 26

Message Types. 27

Message Type Properties . 28
Compression . 28
Delivery Mode . 30
Delivery Timeout . 31
Grammar . 32
Header String Encode . 34
Load Balancing Mode . 35
Name . 36
Number . 37
Priority . 38
User-Defined Property . 39

Standard Message Types . 40

User-Defined Message Types. 43

Working With Messages . 44
Compiling, Linking, and Running . 47
Include Files. 48
Constructing a Message . 49
Accessing the Fields of a Message . 52
Accessing Fields by Name. 55
Destroying a Message . 56
Reusing a Message . 57

Advanced Uses of Messages . 58
Checking the Type of the Current Field . 58
Cloning a Message . 59
Array Fields . 59
Constructing a Message Within a Message. 60
Pointer Fields . 61
Unknown Field Values . 63
High Performance Guidelines . 63

Message Files . 64
Text Message Files . 64
Binary Message Files. 65
Using Message Files . 65
Advanced Use of Message Files . 66
TIBCO SmartSockets User’s Guide

Contents | v
Chapter 2 Connections . 69

Features of Connections . 70

Connection Composition . 71
Socket. 72
Read Buffer. 73
Write Buffer. 73
Message Queue . 74
Block Mode. 74
Auto Flush Size . 76
Read Timeout . 77
Write Timeout . 77
Keep Alive Timeout. 78
Delivery Timeout. 79
GMD Area. 80
Thread Synchronization . 81
Peer Information . 82
Callbacks . 84

Sockets . 85
Protocols: TCP/IP and Local . 85
What is a Socket?. 86
How Sockets Work . 87
Advantages of Connections Over Sockets . 88

Working With Connections. 89
Compiling, Linking, and Running . 98
Include Files . 100
Logical Connection Names. 101
Multiple IP Addresses. 102
Creating Connections . 103
Destroying a Connection . 106
Callbacks . 107
Receiving and Processing Messages. 115
Sending Messages . 120
Sending Messages in a Heterogeneous Environment . 123

Using Threads With Connections . 125
Adding Multiple Threads for a Client. 134
Compiling, Linking, and Running . 136
Working With Threads and Connections . 139
 TIBCO SmartSockets User’s Guide

vi | Contents
Advanced Uses of Connections . 141
Mixing Connections and Xt Intrinsics (Motif) . 141
Mixing Connections and the Select Function. 143
Mixing Connections and the Windows Message Loop . 145
Remote Procedure Calls . 147
Time Resolution . 147
File Descriptor Upper Limit . 148

Handling Network Failures . 149
What is Fault Tolerance? . 149
Potential Network Failures. 150
Keep Alives . 151
Blocking and Non-Blocking Read/Write Operations . 152

Chapter 3 Publish-Subscribe . 153

Publish-Subscribe Overview . 154

RTserver and RTclient Composition . 156
Projects . 156
Subjects . 158
What is RTserver? . 163
What is RTclient? . 166
Ease of Use . 169

TIBCO SmartSockets Multicast. 170
When Should I Use Multicast?. 170

Essential API Functions . 172
Message Type Functions: . 172
Message Functions:. 173
Communication Functions: . 174
Utility Functions:. 174

Working With RTclient . 175
Compiling, Linking, and Running . 183
Include Files. 186
Differences Between the TipcConn* and TipcSrv* API . 186
Setting Options . 189
Creating a Connection to RTserver . 189
Creating a Connection to RTgms. 190
Belonging to a Project . 191
Logical Connection Names for RT Processes . 192
RTservers with Multiple IP Addresses . 197
Finding and Starting RTserver . 197
Automatically Reconnecting to RTserver . 201
Destroying the Connection to RTserver . 202
Using Subjects . 203
Callbacks . 205
TIBCO SmartSockets User’s Guide

Contents | vii
Receiving and Processing Messages. 207
Sending Messages . 208

Message File Logging . 210
Message File Logging Categories . 211
Logging Messages . 213
Changing Logging Categories . 214

Load Balancing . 215
Overriding Load Balancing . 217
Load Balancing Modes . 218
Load Balancing and GMD . 219
Load Balancing Example . 220
Compiling, Linking, and Running . 223

Using Threads with the RTclient API . 226

Advanced RTclient Usage . 227
Advanced Example With Warm Connections and Server Callbacks . 227
Warm Connection to RTserver . 235
RTclient-Specific Callbacks. 237
Remote Procedure Calls. 246
Changing RTclient Options . 247
Connecting to Multiple RTservers . 248

Using a Dispatcher. 249
Types of Dispatchers . 249
Single Threaded RTclients . 251
Events. 254
Multiple Thread Example with Timer and Message Events . 264

Message Compression . 271
Compressing by Message Type . 272
Compressing at the Connection Level . 273

Security . 275
Basic Security . 276

Starting and Stopping RTserver . 284
Starting RTserver . 288
Stopping RTserver . 289

Working with RTserver . 290
Setting Options . 290
Creating Connections . 290
Logical Connection Names. 290
Finding Other RTserver Processes. 293
Reconnecting to Other RTserver Processes. 293
Receiving and Processing Messages from RTclient. 293
Message File Logging . 295
 TIBCO SmartSockets User’s Guide

viii | Contents
Dynamic Message Routing . 296
Why is Dynamic Message Routing Needed?. 297
Multiple RTserver Processes . 298
Distributed Publish-Subscribe Database . 300
Lowest Cost Message Routing . 301
RTserver Subscribes . 303

Network Considerations . 305
Controlling Network Bandwidth and Usage . 305
Handling Network Failures In Publish Subscribe. 307

Chapter 4 Guaranteed Message Delivery. 309

Features of GMD. 311

Why is GMD Needed? . 312
Loss of Data When Sockets Fail . 312
Acknowledgment of Delivery . 312
Alternatives to Stream Sockets . 313

File-Based and Memory-Based GMD . 314

GMD Composition. 315
Sequence Number . 315
GMD Area . 316
Delivery Mode . 318
GMD Message Types . 320
Delivery Timeout . 321

Working With GMD . 322
Compiling, Linking, and Running . 329

Configuring GMD . 331
Reverting to Memory-Based GMD. 333
Deleting Files From an Old GMD Area . 333
Creating a GMD Area . 334
Limiting GMD Resources. 335

Sending Messages . 336

Receiving Messages. 337

Acknowledging Messages. 338
Waiting for Completion of GMD . 338

Resending Messages . 339
Receiving Duplicate Messages . 340
TIBCO SmartSockets User’s Guide

Contents | ix
Handling GMD Failures . 341
GMD_FAILURE Messages. 341
Delivery Timeout Failures . 342
Default Processing of GMD_FAILURE Messages . 342
Resending a Message . 342
Deleting a Message . 343

Limitations of GMD . 343

Publish-Subscribe and GMD . 344
Delivery Mode in Publish-Subscribe Model . 345
Warm RTclient in RTserver . 346
GMD Message Types . 347

RTclient GMD Considerations . 350
Configuring RTclient for GMD. 350
DISCONNECT Message Type . 351
GMD Area. 352
File-based GMD and Connections to Multiple RTservers . 353

RTserver GMD Considerations . 354
How GMD Works in RTserver. 354
Configuring RTserver for GMD . 355

Combining GMD and Monitoring . 356

Handling GMD Failures with RTclients and RTservers. 357

Chapter 5 Project Monitoring . 359

Monitoring Overview . 360

Monitoring Composition . 361
Where Monitoring Information Resides . 362
Specifying Items to be Monitored . 363
Monitor Scope and T_IPC_MON_ALL . 365
Watching or Polling: When to Use . 366
Monitoring Message Types. 367

Polling . 382
Processing Poll Results . 386
Polling Message Types. 389
Polling Example . 400
Compiling, Linking, and Running . 405

Watching . 408
Processing Watch Results . 411
Printing Watch Categories . 412
Watching Message Types. 413
Watching Example . 418
Compiling, Linking, and Running . 423
 TIBCO SmartSockets User’s Guide

x | Contents
Advanced Monitoring . 426
Monitoring With SNMP. 426
Deriving Information. 426
Process Identification. 427
Naming (Directory) Services . 428
Running an RTclient With a Hot Backup . 429
Compiling, Linking, and Running . 439

Chapter 6 Using RTmon. 445

The RTmon Process . 446

RTmon Graphical Development Interface. 447
Starting a Graphical Development Interface Session . 448

Monitoring Your Project with RTmon GDI . 453
Selecting a Project to Monitor . 453
Selecting a Command File. 453
Monitoring RTclients. 454
Monitoring Subjects . 455
Monitoring Messages Being Received. 456
Monitoring Messages Being Sent . 460
Monitoring Server Connections . 463
Monitoring RTservers . 464

Sending Messages with RTmon GDI . 471

Stopping RTmon GDI Processes . 474

RTmon Command Interface . 475
Starting a Command Interface Session . 475

Chapter 7 Diagnosing Problems. 477

Using RTmon . 478

Debugging Messages . 478
Debugging Message Types and Message Files . 478

Diagnosing Connection Problems. 479
Receiving Unwanted Messages. 479

Diagnosing Memory Problems . 480

Diagnosing RTclient Problems . 481
Connections and Messages. 481
Why RTclient Is Not Receiving Data . 481
Tracing Lost Messages . 482
Useful Options . 482
Useful Commands . 483
TIBCO SmartSockets User’s Guide

Contents | xi
Diagnosing RTserver Problems . 484
Files Created by RTserver . 484
Useful Command-Line Arguments . 486
Useful Options . 486

Multicast Troubleshooting . 487
Verify Your Configuration . 487
Verify Your PGM Option Settings . 487
Tracing Problems to Their Source . 489
Troubleshooting Multicast Problems with Cisco Systems Routers. 490
Multicast Testing Tools . 491

Summary . 491

Chapter 8 Options Reference . 493

Setting Option Values . 494
RTclient Options . 494
RTserver Options . 495
RTmon Options. 496
Specifying Options . 497

Startup Command Files . 498
RTclient . 498
RTserver . 498
RTmon . 499

RTclient Options Summary . 501

RTserver Options Summary. 505

RTmon Options Summary . 509

Multi-Thread Mode. 512

Option Reference. 514
Auth_Data_File . 514
Authorize_Publish. 514
Backup_Name . 515
Catalog_File . 515
Catalog_Flags. 516
Client_Burst_Interval . 516
Client_Connect_Timeout . 517
Client_Drain_Subjects . 517
Client_Drain_Timeout . 518
Client_Keep_Alive_Timeout . 519
Client_Max_Buffer . 519
Client_Max_Tokens . 520
Client_Read_Timeout . 520
Client_Reconnect_Timeout . 521
Client_Threads . 522
 TIBCO SmartSockets User’s Guide

xii | Contents
Client_Token_Rate . 523
Command_Feedback. 523
Compression . 524
Compression_Args . 524
Compression_Name . 525
Compression_Stats . 525
Conn_Max_Restarts . 526
Conn_Names. 526
Default_Connect_Prefix . 528
Default_Msg_Priority . 529
Default_Protocols . 529
Default_Subject_Prefix . 530
Disable_Mon_Watch_Types . 531
Editor . 532
Enable_Control_Msgs . 533
Enable_Stop_Msgs . 534
Gmd_Publish_Timeout . 534
Group_Burst_Interval. 535
Group_Max_Buffer. 536
Group_Max_Tokens. 536
Group_Names . 537
Group_Token_Rate . 538
Ipc_Gmd_Auto_Ack. 538
Ipc_Gmd_Auto_Ack_Policy . 539
Ipc_Gmd_Directory . 539
Ipc_Gmd_Type . 540
Log_In_Client. 540
Log_In_Data . 541
Log_In_Group . 541
Log_In_Internal . 542
Log_In_Msgs . 542
Log_In_Server . 543
Log_In_Status . 543
Log_Out_Client . 544
Log_Out_Data . 544
Log_Out_Group . 544
Log_Out_Internal . 545
Log_Out_Msgs . 545
Log_Out_Server . 545
Log_Out_Status . 546
Max_Client_Conns. 546
Max_Server_Accept_Conns . 547
Max_Server_Connect_Conns . 547
Max_Server_Conns . 548
Monitor_Ident . 549
TIBCO SmartSockets User’s Guide

Contents | xiii
Monitor_Level . 549
Monitor_Scope . 550
Multi_Threaded_Mode . 551
Project . 552
Prompt . 552
Proxy_Password. 553
Proxy_Username . 553
Real_Number_Format . 554
Sd_Basic_Acl . 554
Sd_Basic_Acl_Timeout. 555
Sd_Basic_Admin_Msg_Types . 555
Sd_Basic_Trace_File . 556
Sd_Basic_Trace_Flags. 556
Sd_Basic_Trace_Level. 557
Sender_Get_Reply . 557
Server_Async_Subscribe . 558
Server_Auto_Connect . 559
Server_Auto_Flush_Size . 559
Server_Burst_Interval . 560
Server_Connect_Timeout. 560
Server_Connection_Names . 561
Server_Delivery_Timeout . 562
Server_Disconnect_Mode . 563
Server_Gmd_Dir_Name . 564
Server_Keep_Alive_Timeout . 565
Server_Max_Reconnect_Delay . 566
Server_Max_Tokens. 566
Server_Msg_Send . 567
Server_Names . 567
Server_Num_Threads . 569
Server_Read_Timeout . 571
Server_Reconnect_Interval . 572
Server_Start_Delay. 572
Server_Start_Max_Tries . 573
Server_Start_Timeout. 573
Server_Threads . 574
Server_Token_Rate . 574
Server_Write_Timeout . 575
Sm_Security_Driver . 575
Socket_Connect_Timeout . 576
Srv_Client_Names_Min_Msgs . 576
Srv_Subj_Names_Min_Msgs . 577
Subjects . 577
Time_Format . 578
Trace_File. 578
 TIBCO SmartSockets User’s Guide

xiv | Contents
Trace_File_Size . 579
Trace_Flags . 579
Trace_Level . 580
Udp_Broadcast_Timeout . 580
Unique_Subject . 581
Verbose . 581
Zero_Recv_Gmd_Failure. 582

Chapter 9 Command Reference . 583

RTserver Commands . 584
Supported RTserver Commands . 584

RTclient Commands . 585
Supported RTclient Commands . 585

RTmon Commands . 587
Supported RTmon Commands . 587

RTacl Commands . 589
Supported RTacl Commands . 589

Command Reference . 590

alias . 591

cd . 593

connect . 595

create . 597

credentials . 599

disconnect . 600

echo . 602

edit . 603

evaluate . 604

groups . 605

help . 606

helpopt . 607

history . 608

load . 609

permissions . 610

poll . 611

quit . 615

run . 616

send . 617

setopt . 619
TIBCO SmartSockets User’s Guide

Contents | xv
setnopt . 620

sh . 622

source . 623

stats . 625

subscribe . 626

unalias . 628

unsetopt . 629

unsubscribe . 630

unwatch . 631

users . 633

watch . 634

Chapter 10 Using Multicast . 637

Multicast Requirements . 639

One-to-Many Communications Solution . 640

Features. 641

Architecture . 642

Multicast Deployment Guidelines. 643

RTgms Overview . 644

Bandwidth Management . 647
Tuning Rate Control . 647
Rate Control and Loss . 648
Congestion Control . 649

RTgms Options . 650
RTgms Startup Command Files . 652

RTgms Options Summary . 653

Option Reference. 656
Group_Threshold . 656

Setting PGM Options . 657
mcast_cm_file. 658
PGM Option Summary . 658
Pgm_Port . 659
Pgm_Receive_Nak_Ttl . 660
Pgm_Receive_Pgmcc . 661
Pgm_Receive_Pgmcc_Acker_Interval . 661
Pgm_Receive_Pgmcc_Loss_Constant . 662
Pgm_Source_Admit_High . 662
Pgm_Source_Admit_Low . 663
Pgm_Source_Group_Ttl . 663
 TIBCO SmartSockets User’s Guide

xvi | Contents
Pgm_Source_Max_Trans_Rate . 664
Pgm_Source_Min_Trans_Rate . 665
Pgm_Source_Pgmcc . 665
Pgm_Source_Pgmcc_Acker_Selection_Constant. 666
Pgm_Source_Pgmcc_Init_Acker . 666
Pgm_Udp_Encapsulation . 667

Starting and Stopping RTgms . 668
Starting RTgms on UNIX . 670
Starting RTgms as a Service on Windows. 670
Stopping RTgms . 671

Interrupting RTgms . 671

Sending a Message using Multicast . 671

RTgms Commands . 672

Tailoring Your Multicast Deployment . 673
How Multicast Deployment Compares with Unicast Deployment . 673
Bandwidth Sharing. 674
Client Failovers in Multicast . 675
How Network Devices Forward Multicast . 676
Multicast and GMD . 678
UDP Encapsulation of PGM. 678
Multicast Deployment with Frame Relay Networks . 679
Example Cisco Systems Router Configuration . 679

Index . 681
TIBCO SmartSockets User’s Guide

| xvii
Figures

Figure 1 Composition of a Typical Message . 3

Figure 2 The Flow of Messages Through a Connection. 71

Figure 3 Socket Data Buffering . 87

Figure 6 Server Creates a Connection. 103

Figure 7 Client Creates Connection and Rendezvous With Server Connection . 103

Figure 8 Server and Client Connection . 103

Figure 11 RTserver and RTclient Architecture . 157

Figure 12 RTserver Publish-Subscribe Message Routing . 164

Figure 13 The Layers of the SmartSockets API . 167

Figure 18 Messages Delivered With and Without Load Balancing. 216

Figure 25 Process Connectivity With RTserver Cloud . 298

Figure 26 RTserver Groups Connected Using Gateways over a WAN . 299

Figure 27 RTserver Cloud with Default Connection Costs . 301

Figure 28 RTserver Cloud with Non-Default Connection Costs . 302

Figure 29 Benefits of RTserver Subscribes . 304

Figure 34 Steps Involved in GMD Successful Delivery . 344

Figure 35 RTmon Main Window. 448

Figure 36 RTmon Main Window Main Functional Regions . 450

Figure 37 Watch Client Time Window . 454

Figure 38 Watched Messages Received Window . 456

Figure 39 Features of the Watch Messages Received Window. 457

Figure 40 Watch Messages Sent Window . 460

Figure 41 Features of the Watch Messages Sent Window . 461

Figure 42 Watch Server Connections Graphical Chart . 463

Figure 43 Server Information Window . 464

Figure 44 Server Information Window (Server Name) . 465

Figure 45 RTserver Buffer Windows . 467

Figure 46 Send Message Window . 471
 TIBCO SmartSockets User’s Guide

xviii | Figures
Figure 47 Multicast Messaging . 645
TIBCO SmartSockets User’s Guide

| xix
Tables

Table 1 Valid Field Types . 7

Table 2 Pseudo Field Types for Message Type Grammar . 33

Table 3 Relationship Between Connection Block Mode and Timeout Properties . 75

Table 4 Connection Callback Types . 114

Table 5 Wildcard Subject Examples . 160

Table 6 TipcSrv* Functions With Different Behavior . 186

Table 7 TipcConn* Functions Without TipcSrv* Equivalents. 187

Table 8 TipcSrv* Functions Without TipcConn* Equivalents. 188

Table 9 TipcSrv* Functions That do not Automatically Create a Connection to RTserver 200

Table 10 Load Balancing Modes. 218

Table 11 RTclient Callback Types . 237

Table 12 Subject Callback Execution . 242

Table 13 Message Types that RTserver Processes from RTclient . 293

Table 14 GMD Failure Error Numbers . 347

Table 15 RTclient Options. 501

Table 16 RTserver Options . 505

Table 17 RTmon Options . 509

Table 18 Tuning the Number of I/O Threads . 513

Table 19 Server_num_threads . 570

Table 20 RTgms Options . 653

Table 21 RTclient and RTgms PGM Options . 658
 TIBCO SmartSockets User’s Guide

xx | Tables
TIBCO SmartSockets User’s Guide

| xxi
Preface

TIBCO SmartSockets is a message-oriented middleware product that enables
programs to communicate quickly, reliably, and securely across:

• local area networks (LANs)

• wide area networks (WANs)

• the Internet

TIBCO SmartSockets takes care of network interfaces, guarantees delivery of
messages, handles communications protocols, and directs recovery after system
or network problems. This enables you to focus on higher-level requirements
rather than the underlying complexities of the network.

This reference provides the detailed information you need to understand and use
the TIBCO SmartSockets system. Before using this reference, it is helpful to read
the TIBCO SmartSockets Tutorial and work through the lessons in that book. The
TIBCO SmartSockets Tutorial begins at a more basic level and is an excellent
introduction to SmartSockets.

For an overview of the new features, changes, and enhancements in this Version
6.8 release, see the TIBCO SmartSockets Installation Guide.

Topics

• Related Documentation, page xxii

• Conventions Used in This Manual, page xxiii

• How to Contact TIBCO Support, page xxvi
 TIBCO SmartSockets User’s Guide

xxii | Related Documentation
Related Documentation

This section lists documentation resources you may find useful.

TIBCO Product Documentation
The following documents form the TIBCO SmartSockets documentation set:

• TIBCO SmartSockets API Quick Reference

• TIBCO SmartSockets Application Programming Interface

• TIBCO SmartSockets C++ User’s Guide

• TIBCO SmartSockets cxxipc Class Library

• TIBCO SmartSockets Installation Guide

• TIBCO SmartSockets Java Library User’s Guide and Tutorial

• TIBCO SmartSockets .NET User’s Guide and Tutorial

• TIBCO SmartSockets Tutorial

• TIBCO SmartSockets User’s Guide

• TIBCO SmartSockets Utilities

• TIBCO SmartSockets C++ and Java Class Libraries

C++ class library and Java application programming interface (API) materials
are available in HTML format only. Access the references through the TIBCO
HTML documentation interface.

Using the Online Documentation
The SmartSockets documentation files are available for you to download
separately, or you can request a copy of the TIBCO Documentation CD.
TIBCO SmartSockets User’s Guide

Conventions Used in This Manual | xxiii
Conventions Used in This Manual

This manual uses the following conventions.

Typeface Conventions
This manual uses the following typeface conventions

Example Use

monospace This monospace font is used for program output and code example listing and
for file names, commands, configuration file parameters, and literal
programming elements in running text.

monospace bold This bold monospace font indicates characters in a command line that you
must type exactly as shown. This font is also used for emphasis in code
examples.

Italic Italic text is used as follows:

• In code examples, file names, etc., for text that should be replaced with an
actual value. For example: "Select install-dir/runexample.bat."

• For document titles.

• For emphasis.

Bold Bold text indicates actions you take when using a GUI, for example, click OK,
or choose Edit from the menu. It is intended to help you skim through
procedures when you are familiar with them and just want a reminder.

Submenus and options of a menu item are indicated with an angle bracket, for
example, Menu > Submenu.

Warning. The accompanying text describes a condition that severely affects the
functioning of the software.

Note. Be sure you read the accompanying text for important information.

Tip. The accompanying text may be especially helpful.
 TIBCO SmartSockets User’s Guide

xxiv | Conventions Used in This Manual
Notational Conventions
The notational conventions in the table below are used for describing command
syntax. When used in this context, do not type the brackets listed in the table as
part of a command line.

Identifiers
The term identifier is used to refer to a valid character string that names entities
created in a SmartSockets application. The string starts with an underscore (_) or
alphabetic character and is followed by zero or more letters, digits, percent signs
(%), or underscores. No other special characters are valid. The maximum length
of the string is 63 characters. Identifiers are not case-sensitive.

These are examples of valid identifiers:

EPS
battery_11
K11
__
_all

These are invalid identifiers:

20
battery-11
@com
$amount

Notation Description Use

[] Brackets Used to enclose an optional item in the command syntax.

< > Angle Brackets Used to enclose a name (usually in Italic) that represents an
argument for which you substitute a value when you use the
command. This convention is not used for XML or HTML
examples or other situations where the angle brackets are part
of the code.

{ } Curly Brackets Used to enclose two or more items among which you can
choose only one at a time.

Vertical bars (|) separate the choices within the curly brackets.

... Ellipsis Indicates that you can repeat an item any number of times in
the command line.
TIBCO SmartSockets User’s Guide

Conventions Used in This Manual | xxv
Case
Function names are case-sensitive, and must use the mixed-case format you see in
the text. For example, TipcMsgCreate, TipcSrvStop, and
TipcMonClientMsgTrafficPoll are SmartSockets functions and must use the case
as shown.

Monitoring messages are also case-sensitive, and should be all upper case, such as
T_MT_MON_SERVER_NAMES_POLL_CALL. This makes it easy to distinguish
them from option or function names.

Although option names are not case-sensitive, they are usually presented in text
with mixed case, to help distinguish them from commands or other items. For
example, Server_Names, Unique_Subject, and Project are all SmartSockets
options.

Identifiers used with the products in the SmartSockets family are not
case-sensitive. For example, the identifiers thermal and THERMAL are equivalent
in all processes.

In UNIX, shell commands and filenames are case-sensitive, though they might
not be in other operating systems, such as Windows. To make it easier to port
applications between operating systems, always specify filenames in lower case.
 TIBCO SmartSockets User’s Guide

xxvi | How to Contact TIBCO Support
How to Contact TIBCO Support

For comments or problems with this manual or the software it addresses, please
contact TIBCO Support as follows.

• For an overview of TIBCO Support, and information about getting started
with TIBCO Support, visit this site:

http://www.tibco.com/services/support

• If you already have a valid maintenance or support contract, visit this site:

http://support.tibco.com

Entry to this site requires a user name and password. If you do not have a user
name, you can request one.
TIBCO SmartSockets User’s Guide

| 1
Chapter 1 Messages

Within a TIBCO SmartSockets application, interprocess communication occurs
through messages. A message is a packet of information sent from one process to
one or more other processes providing instructions or data for the receiving
process. Messages can carry many different kinds of information, including:

• variable data in the form of a series of variable names and their values, the
most common use of a message

• commands to a process’s command interface

• user-defined binary data, such as images or multi-byte strings

• monitoring information about RTserver and RTclient processes

• guaranteed message delivery (GMD) information about other messages

This chapter describes message composition, message types, how to create
message types, and how to work with messages. Also discussed are message files
that are used during the development phase for testing and debugging purposes.

Topics

• Message Composition, page 2

• Message Properties, page 4

• Message Types, page 27

• Message Type Properties, page 28

• Standard Message Types, page 40

• User-Defined Message Types, page 43

• Working With Messages, page 44

• Advanced Uses of Messages, page 58

• Message Files, page 64
 TIBCO SmartSockets User’s Guide

2 | Chapter 1 Messages
Message Composition

All of the different kinds of messages are classified by message types. For
example, numeric variable data is typically sent in a NUMERIC_DATA type of
message, and an operator warning is typically sent in a WARNING type of
message. A SmartSockets application can use both the standard message types
provided with SmartSockets, as well as user-defined message types.

A message (C type T_IPC_MSG) is composed of several parts or properties. The
most important property is the message data. The other message properties are
collectively referred to as the message header.

A message is composed of these properties:
Arrival Timestamp indicates the time the message was opened for reading.

Compression is used to enable or disable compression for a message.

Correlation ID is used for a message ID or an application-specific string.

Data are the instructions or value part of a message.

Delivery Mode is the level of guarantee when a message is sent through
a connection.

Delivery Timeout is the number of seconds specifying how long to wait for
acknowledgment of delivery of a message sent through a
connection.

Destination is the name of where a message is going.

Expiration indicates how long, in seconds, the message should be in
existence.

Header String Encode controls whether or not header strings are converted to
four-byte integers when a message is sent through a
connection.

Load Balancing Mode is the method of delivery for publish-subscribe
operations, which allows a message to be delivered to
one or to all subscribing RTclients.

Message ID uniquely identifies a SmartSockets message.

Num Fields identifies how many fields are in a particular message.

Priority is the level of importance of a message.

Read Only controls whether or not a message can be modified.

Reference Count is the number of independent references to a message.

Reply To is the destination or subject where a reply to the
messages should be sent.

Sender is the name of the originator of a message.
TIBCO SmartSockets User’s Guide

Message Composition | 3
Figure 1 shows an example of a standard NUMERIC_DATA message. The data
part of this example message is a series of variable name-value pairs (voltage =
33.4534, switch_pos = 0).

Figure 1 Composition of a Typical Message

Sender Timestamp indicates the time the message was sent.

Sequence Number uniquely identifies a message for guaranteed message
delivery.

Type is the kind of message being manipulated.

User-Defined Property is a user-defined value that can be used for any purpose.

Data

Message Composition

Type NUMERIC_DATA

Sender /_workstation1_5415

Destination /system/thermal

Priority 10

Delivery Mode T_IPC_DELIVERY_ALL

Reference Count 1

Sequence Number 3892675

User-Defined Property 42

Read Only FALSE

33.4534Value
Field

real8Type

switch_posValue
Field

strType

0.0Value
Field

real8Type

voltageValue
Field

strType

Delivery Timeout 20.0

Load Balancing Mode T_IPC_LB_WEIGHTED

Header String Encode TRUE
 TIBCO SmartSockets User’s Guide

4 | Chapter 1 Messages
Message Properties

Arrival Timestamp

The arrival timestamp property indicates the time a message arrived and was
read. As messages are read, their arrival timestamp property is automatically set.
A value of 0.0 indicates that the arrival timestamp property was not set.

Function to set value:

TipcMsgSetArrivalTimestamp. For example:

if (!TipcMsgSetArrivalTimestamp(msg, TutGetWallTime())) {
 /* error */
}

Function to get value:

TipcMsgGetArrivalTimestamp. For example:

T_REAL8 arrival_timestamp;
if (!TipcMsgGetArrivalTimestamp(msg, &arrival_timestamp)) {
 /* error */
}

Type: Eight-byte real number of C type T_REAL8

Default Value: 0.0

Valid Values: Any valid timestamp
TIBCO SmartSockets User’s Guide

Compression | 5
Compression

The compression property identifies whether compression is enabled. When the
compression property is set to TRUE, the fields in the message are automatically
compressed when the message is sent. The message is automatically
decompressed when a receiver of the message attempts to access any of the
message’s fields. For a discussion of compression, see Message Compression on
page 271.

Function to set value:

TipcMsgSetCompression. For example:

if (!TipcMsgSetCompression(msg, T_TRUE)) {
 /* error */
}

Function to get value:

TipcMsgGetCompression. For example:

T_BOOL compress;
if (!TipcMsgGetCompression(msg, &compress)) {
 /* error */
}

Type: Boolean of C type T_BOOL

Default Value: The message type compression property is used. The message
type compression default is FALSE.

Valid Values: TRUE or FALSE
 TIBCO SmartSockets User’s Guide

6 | Chapter 1 Messages
Correlation ID

The correlation ID property is typically used for a message ID or for any
application-specific string. You can use this property for any purpose.

Function to set value:

TipcMsgSetCorrelationID. For example:

T_STR id;
if (!TipcMsgGetMessageId(request_msg, &id)) {
 /* error */
}
if (!TipcMsgSetCorrelationId(reply_msg, id)) {
 /* error */
}

Function to get value:

TipcMsgGetMessageId. For example:

T_STR id;
if (!TipcMsgGetCorrelationId(msg, &id)) {
 /* error */
}
TutOut("msg had identifier %s\n", id ? id : "<NULL>");

Type: Identifier of C type T_STR

Default Value: ""

Valid Values: Any character string
TIBCO SmartSockets User’s Guide

Data | 7
Data

The message data is the property of the message that provides instructions or
values for the receiving process. The message data consists of fields that carry a
unit of information. Message data can contain any number of fields, although
most messages have a well-defined layout for their fields. Each field has the
properties type and value.

Type

Type identifies the format of the field value, such as integer, character, or string.
The valid field types are:

Type: String

Default Value: None

Valid Values: Any combination of fields, each containing a type property and
a value property

Table 1 Valid Field Types

Field Type Meaning

CHAR One-byte integer

BINARY Non-restrictive array of characters, such as an entire C
data structure or the entire contents of a file

STR A C string (NULL-terminated array of characters)

STR_ARRAY Array of STR

INT2 Two-byte integer

INT2_ARRAY Array of INT2

INT4 Four-byte integer

INT4_ARRAY Array of INT4

INT8 Eight-byte integer

INT8_ARRAY Array of INT8

REAL4 Four-byte real number

REAL4_ARRAY Array of REAL4
 TIBCO SmartSockets User’s Guide

8 | Chapter 1 Messages
Value

Value identifies the value of the field based on the field type, as well as a value of
unknown. See Unknown Field Values on page 63.

REAL8 Eight-byte real number

REAL8_ARRAY Array of REAL8

REAL16 Sixteen-byte real number (not all platforms fully
support this type)

REAL16_ARRAY Array of REAL16

MSG A message

MSG_ARRAY Array of MSG

TIMESTAMP Eight-byte real number representing time as a
number of seconds

TIMESTAMP_ARRA
Y

Array of TIMESTAMP

UTF8 A UTF8 field

UTF8_ARRAY Array of UTF8

BOOL A Boolean field

BOOL_ARRAY Array of BOOL

BYTE A byte field

XML XML object

Table 1 Valid Field Types

Field Type Meaning
TIBCO SmartSockets User’s Guide

Delivery Mode | 9
Delivery Mode

The delivery mode property identifies the level of guarantee when a message is
sent through a connection. The possible delivery modes are:

The two modes T_IPC_DELIVERY_SOME and T_IPC_DELIVERY_ALL are called
guaranteed message delivery (GMD), where the sender saves a copy of the
message until delivery is successful. For a detailed discussion of GMD, see
Chapter 4, Guaranteed Message Delivery.

For applications where the order in which messages are published is critical, or
where certain types of clients cannot handle out-of-order messages, use the
delivery mode T_IPC_DELIVERY_ORDERED. For example, if you have C-based
clients sending messages to Java Message Service (JMS) clients, set your delivery
mode to T_IPC_DELIVERY_ORDERED. GMD delivery modes also ensure that

Type: Enumerated value of C type T_IPC_DELIVERY_MODE

Default Value: The message type delivery mode is used. The message type
delivery mode default is T_IPC_DELIVERY_BEST_EFFORT.

Valid Values: • T_IPC_DELIVERY_BEST_EFFORT

• T_IPC_DELIVERY_ORDERED

• T_IPC_DELIVERY_SOME

• T_IPC_DELIVERY_ALL

T_IPC_DELIVERY_BEST_EFFORT No special action, such as acknowledgement,
is taken to ensure delivery. If a network or
process failure occurs, messages can be lost,
and messages might be delivered out of
order.

T_IPC_DELIVERY_ORDERED No special action, such as acknowledgement,
is taken to ensure delivery. If a network or
process failure occurs, messages can be lost.
However, messages are delivered in the
order in which they were published.

T_IPC_DELIVERY_SOME Acknowledgements are used to verify
successful delivery. Delivery is treated as
successful when at least one receiver
acknowledges delivery.

T_IPC_DELIVERY_ALL Acknowledgements are used to verify
successful delivery. Delivery is treated as
successful when all receivers acknowledge
delivery.
 TIBCO SmartSockets User’s Guide

10 | Chapter 1 Messages
messages are received in the order in which they were published, even during
recovery from network failures. However, GMD uses more system resources,
because a copy of every message is kept (in memory or on disk) until the
acknowledgements are received. T_IPC_DELIVERY_ORDERED does not
guarantee message delivery, but results in faster performance than
T_IPC_DELIVERY_SOME and T_IPC_DELIVERY_ALL.

In documentation involving delivery modes, the T_IPC_DELIVERY_ prefix is
sometimes dropped outside of code examples (for example,
T_IPC_DELIVERY_ALL is discussed as ALL) for the purpose of brevity.

Function to set value:

TipcMsgSetDeliveryMode. For example:

if (!TipcMsgSetDeliveryMode(msg, T_IPC_DELIVERY_ALL)) {
 /* error */
}

Function to get value:

TipcMsgGetDeliveryMode. For example:

if (!TipcMsgGetDeliveryMode(msg, &delivery_mode)) {
 /* error */
}

TIBCO SmartSockets User’s Guide

Delivery Timeout | 11
Delivery Timeout

The delivery timeout property identifies how long to wait for guaranteed delivery
of a message sent from this process through a connection. The message delivery
timeout property is used to override a connection delivery timeout property. To
always be used, the message delivery timeout must be greater or equal to the
server read timeout, set with the Server_Read_Timeout option.

Delivery timeouts are discussed in more detail in Chapter 4, Guaranteed Message
Delivery.

Function to set value:

TipcMsgSetDeliveryTimeout. For example:

if (!TipcMsgSetDeliveryTimeout(msg, 20.0)) {
 /* error */
}

Function to get value:

TipcMsgGetDeliveryTimeout. For example:

if (!TipcMsgGetDeliveryTimeout(msg, &delivery_timeout)) {
 /* error */
}

Type: Eight-byte real number of C type T_REAL8

Default Value: The message type delivery timeout is used. The message type
delivery timeout default is unknown (no delivery timeout).

Valid Values: Any real number 0 or greater, or unknown
 TIBCO SmartSockets User’s Guide

12 | Chapter 1 Messages
Destination

The destination property identifies where a message is going. The meaning of this
property depends on how the message is used. When the message is sent using
publish-subscribe between RTserver and RTclient, the value is a subject. For a
discussion of subjects, see Subjects on page 158. Other applications of messages
can use the property for other purposes.

Function to set value:

TipcMsgSetDest. For example:

if (!TipcMsgSetDest(msg, "/system/thermal")) {
 /* error */
}

Function to get value:

TipcMsgGetDest. For example:

if (!TipcMsgGetDest(msg, &dest)) {
 /* error */
}

Type: Identifier of C type T_STR

Default Value: NULL

Valid Values: Any character string
TIBCO SmartSockets User’s Guide

Expiration | 13
Expiration

The expiration property controls how long, in seconds, the message should be in
existence. Applications of messages are free to use the expiration for any purpose.
A value of 0.0 indicates that the message does not expire.

Function to set value:

TipcMsgSetExpiration. For example:

if (!TipcMsgSetExpiration(msg, 30.0)) {
 /* error */
}

Function to get value:

TipcMsgGetExpiration. For example:

T_REAL8 time_to_live;
if (!TipcMsgGetExpiration(msg, &time_to_live)) {
 /* error */
}

Type: Eight-byte real number of C type T_REAL8

Default Value: 0.0

Valid Values: Any real number 0.0 or greater
 TIBCO SmartSockets User’s Guide

14 | Chapter 1 Messages
Header String Encode

The header string encode property controls whether the message string properties
are converted into four-byte integers when sent through connections. Enabling
this property compresses the message header so that less network bandwidth is
used. Note that more CPU utilization is required to do the compression.

Function to set value:

TipcMsgSetHeaderStrEncode. For example:

if (!TipcMsgSetHeaderStrEncode(msg, TRUE)) {
 /* error */
}

Function to get value:

TipcMsgGetHeaderStrEncode. For example:

if (!TipcMsgGetHeaderStrEncode(msg, &header_str_encode)) {
 /* error */
}

Type: Boolean of C type T_BOOL

Default Value: The message type header string encode property is used. The
message type header string encode default is FALSE.

Valid Values: TRUE or FALSE
TIBCO SmartSockets User’s Guide

Load Balancing Mode | 15
Load Balancing Mode

In normal publish-subscribe operation, a message is sent to all RTclients that have
subscribed to the subject the message is being published to. However, in some
situations you may wish to have messages sent to only one subscribing RTclient.
Load balancing can only be used for RTclient publish-subscribe connections, not
peer-to-peer connections. By default, messages are not load balanced and are
distributed to all subscribers. For a detailed discussion of load balancing, see
Load Balancing on page 215. The four possible load balancing modes are:

Function to set value:

TipcMsgSetLbMode. For example:

if (!TipcMsgSetLbMode(msg, T_IPC_LB_ROUND_ROBIN)) {
 /* error */
}

Function to get value:

TipcMsgGetLbMode. For example:

if (!TipcMsgGetLbMode(msg, &lb_mode)) {
 /* error */
}

Type: Enumerated value of C type T_IPC_LB_MODE

Default Value: The message type load balancing mode is used. The message
type load balancing mode default is T_IPC_LB_NONE.

Valid Values: • T_IPC_LB_NONE

• T_IPC_LB_ROUND_ROBIN

• T_IPC_LB_SORTED

• T_IPC_LB_WEIGHTED

T_IPC_LB_NONE No load balancing (this is the default).

T_IPC_LB_ROUND_ROBIN Go to each subscriber in turn.

T_IPC_LB_SORTED Go to the subscriber in lowest lexicographical order
(sorted by unique subject).

T_IPC_LB_WEIGHTED Go to the subscriber with the lightest load (fewest
number of unacknowledged messages).
 TIBCO SmartSockets User’s Guide

16 | Chapter 1 Messages
Message ID

The message ID property uniquely identifies a SmartSockets message. No two
messages ever have the same message ID. An application can use the message ID
property to uniquely identify a message.

Function to set value:

This property is not set, but is generated, using TipcMsgGenerateMessageId. For
example:

if (!TipcMsgGenerateMessageId(msg)) {
 /* error */
}

Function to get value:

TipcMsgGetMessageId. For example:

T_STR id;
if (!TipcMsgGetMessageId(msg, &id)) {
 /* error */
}
TutOut("msg had identifier %s\n", id ? id : "<NULL>");

Type: Identifier of C type T_STR

Default Value: ""

Valid Values: Any character string
TIBCO SmartSockets User’s Guide

Num Fields | 17
Num Fields

The num fields property identifies how many fields are in a particular message.
Assigning this property truncates the message to desired number of fields. A
value of 0 empties the data buffer completely.

Function to set value:

TipcMsgSetNumFields. This example empties the data buffer:

if (!TipcMsgSetNumFields(msg, 0)) {
 /* error */
}

Function to get value:

TipcMsgGetNumFields. For example:

if (!TipcMsgGetNumFields(msg, &num_fields)) {
 /* error */
}

Type: Four-byte integer of C type T_INT4

Default Value: 0

Valid Values: Any integer greater than 0
 TIBCO SmartSockets User’s Guide

18 | Chapter 1 Messages
Priority

The priority property identifies the level of importance of a message. The greater
the number, the higher the importance. Priority determines the order in which a
message is processed after it has been received. It does not affect the order in
which messages are published. When a message is sent to a process through a
connection, it is placed in the connection message queue of the receiving process
in priority order. For a discussion of connection message queues, see Message
Queue on page 74.

Function to set value:

TipcMsgSetPriority. For example:

if (!TipcMsgSetPriority(msg, 10)) {
 /* error */
}

Function to get value:

TipcMsgGetPriority. For example:

if (!TipcMsgGetPriority(msg, &priority)) {
 /* error */
}

Type: Two-byte integer of C type T_INT2

Default Value: The message type priority, if set, is used. If the message type
priority is unknown, then the message default is
Default_Msg_Priority.

Valid Values: Any integer from 0 to 65535 inclusive
TIBCO SmartSockets User’s Guide

Read Only | 19
Read Only

The read only property identifies whether or not a message can be modified
during processing. Messages included within other messages cannot be modified,
while messages that are separate can be modified. For a discussion of messages
within messages, see Constructing a Message Within a Message on page 60.

Function to set value:

This property is set automatically and cannot be set manually.

Function to get value:

TipcMsgGetReadOnly. For example:

if (!TipcMsgGetReadOnly(msg, &read_only)) {
 /* error */
}

Type: Boolean of C type T_BOOL

Default Value: • TRUE if the message is a field within another message

• FALSE if the message is separate

Valid Values: TRUE or FALSE
 TIBCO SmartSockets User’s Guide

20 | Chapter 1 Messages
Reference Count

The reference count property identifies the number of independent references to a
message. This property can be used to prevent a message from being destroyed
while it is still in use. This is useful when using functions that destroy a message
(see Destroying a Message on page 56). Incrementing the reference count of a
message is faster and uses less memory than making a complete copy of the
message with TipcMsgClone.

Function to set value:

TipcMsgIncrRefCount increments the message reference count. TipcMsgDestroy
decrements the message reference count and destroys the message if the reference
count drops to zero. For example:

if (!TipcMsgIncrRefCount(msg)) {
 /* error */
}

Function to get value:

TipcMsgGetRefCount. For example:

if (!TipcMsgGetRefCount(msg, &ref_count)) {
 /* error */
}

Type: Two-byte integer of C type T_INT2

Default Value: 1

Valid Values: Any integer greater than 0
TIBCO SmartSockets User’s Guide

Reply To | 21
Reply To

The reply to property identifies where a reply to a message should be sent. This is
used if the reply should be sent to a destination or subject other than the sender.
For example, some RT processes, like the gateway, change the sender property
when they re-route a message. If you want a reply to be sent to the original
sender, you need to set the reply to property to the destination or subject of the
sender. For a discussion of subjects, see Subjects on page 158.

Function to set value:

TipcMsgSetReplyTo. For example:

if (!TipcMsgSetReplyTo(msg, "reply_subject")) {
 /* error */
}

Function to get value:

TipcMsgGetReplyTo. For example:

T_STR reply_to_dest;
if (!TipcMsgGetReplyTo(msg, &reply_to_dest)) {
 /* error */
}

Type: Identifier of C type T_STR

Default Value: NULL

Valid Values: Any character string
 TIBCO SmartSockets User’s Guide

22 | Chapter 1 Messages
Sender

The sender property identifies the originator of a message. The meaning of this
property depends on how the message is used. When the message is sent using
publish-subscribe between RTserver and RTclient, the value is the unique subject
of the sending process. For a discussion of subjects, see Subjects on page 158.
Other applications of messages can use the sender property for other purposes.

Function to set value:

TipcMsgSetSender. For example:

if (!TipcMsgSetSender(msg, "/_conan_5415")) {
 /* error */
}

Function to get value:

TipcMsgGetSender. For example:

if (!TipcMsgGetSender(msg, &sender)) {
 /* error */
}

Type: Identifier of C type T_STR

Default Value: NULL

Valid Values: Any character string
TIBCO SmartSockets User’s Guide

Sender Timestamp | 23
Sender Timestamp

The sender timestamp property indicates the time a message was sent. A value of
0.0 indicates that the sender timestamp property was not set.

Function to set value:

TipcMsgSetSenderTimestamp. For example:

if (!TipcMsgSetSenderTimestamp(msg, TutGetWallTime())) {
 /* error */
}

Function to get value:

TipcMsgGetSenderTimestamp. For example:

T_REAL8 sender_timestamp;
if (!TipcMsgGetSenderTimestamp(msg, &sender_timestamp)) {
 /* error */
}

Type: Eight-byte real number of C type T_REAL8

Default Value: 0.0

Valid Values: Any real number 0.0 or greater
 TIBCO SmartSockets User’s Guide

24 | Chapter 1 Messages
Sequence Number

The sequence number property uniquely identifies the message for guaranteed
message delivery so that duplicate messages can be detected by the receiver(s).
When a message with a delivery mode of T_IPC_DELIVERY_SOME or
T_IPC_DELIVERY_ALL is sent through a connection, the message sequence
number is set to a unique incremented number. The receiving process(es) also
records the highest sequence number it has processed. If the message is later
resent because of a GMD failure, the receiver can detect the duplicated message
by its reused sequence number. A sequence number of zero indicates that a
message has not been sent with GMD. For a detailed discussion of GMD, see
Chapter 4, Guaranteed Message Delivery.

Function to set value:

This property is set automatically and cannot be set manually.

Function to get value:

 TipcMsgGetSeqNum. For example:

if (!TipcMsgGetSeqNum(msg, &seq_num)) {
 /* error */
}
TutOut("msg had reply to %s\n", reply_to_dest ? reply_to_dest :

"<NULL>");

Type: Four-byte integer of C type T_INT4

Default Value: 0

Valid Values: Any integer 0 or greater
TIBCO SmartSockets User’s Guide

Type | 25
Type

The type property identifies the kind of message being manipulated. For
example, a message containing numeric variable values is typically constructed as
a NUMERIC_DATA type of message. For a discussion of message types, see
Message Types on page 27. For a complete list of standard message types, see
Standard Message Types on page 40.

Function to set value:

TipcMsgSetType. For example:

mt = TipcMtLookupByNum(T_MT_NUMERIC_DATA);
if (mt == NULL) {
 /* error */
}
if (!TipcMsgSetType(msg, mt)) {
 /* error */
}

Function to get value:

TipcMsgGetType. For example:

if (!TipcMsgGetType(msg, &mt)) {
 /* error */
}

Type: Message type data structure of C type T_IPC_MT

Default Value: None. This value must be supplied when creating a message.

Valid Values: Any valid message type
 TIBCO SmartSockets User’s Guide

26 | Chapter 1 Messages
User-Defined Property

The user-defined property can be used for any purpose, such as attaching a
version number to messages. This property is not used internally by
SmartSockets. When a message is sent through a connection, the user-defined
property is sent along with all the other properties.

Function to set value:

TipcMsgSetUserProp. For example:

if (!TipcMsgSetUserProp(msg, 42)) {
 /* error */
}

Function to get value:

TipcMsgGetUserProp. For example:

if (!TipcMsgGetUserProp(msg, &user_prop)) {
 /* error */
}

Type: Four-byte integer of C type T_INT4

Default Value: The message type user-defined property is used. The message
type user-defined property default is 0.

Valid Values: Any integer 0 or greater
TIBCO SmartSockets User’s Guide

Message Types | 27
Message Types

Each message has a type property that defines the purpose of the message. A
message type can be thought of as a template (such as class) for a specific kind of
message, and each message can be considered an instance of a message type. For
example, NUMERIC_DATA is a message type with a predefined layout requiring
a series of name-value pairs, with each string name followed immediately by a
numeric value. To send numeric data to a process, the sending process constructs
a message that uses the NUMERIC_DATA message type. A message type is
created once and available for use as the type for any number of messages.

SmartSockets provides a large number of standard message types that you can
use and that are also used internally by SmartSockets. When a standard message
type does not satisfy a specific need, you can create a user-defined message type.
Both standard and user-defined message types are handled in the same manner.
Once the message type is created, messages can be constructed, sent, received,
and processed through a variety of methods. Standard Message Types on page 40
lists all of the standard message types.

Unlike the properties of a message, which can be changed dynamically, the
properties of a message type are only set when the message type is created.

These properties are available for message types:
Compression identifies the default compression setting for messages of

this type.

Delivery Mode identifies the default delivery mode for messages of this
type.

Delivery Timeout identifies how long to wait for a guaranteed delivery of a
message sent from a process through a connection.

Grammar identifies the layout of fields in messages that use this
type.

Header String Encode controls whether the message string properties are
converted into four-byte integers when sent through
connections.

Load Balancing Mode is the method of delivery for publish-subscribe
operations, which allows a message to be delivered to one
or to all subscribing RTclients.

Name identifies a unique message type.

Number identifies the message type by number instead of name.

Priority identifies the default priority for messages of this type.

User-Defined Property is a user-defined value that can be used for any purpose.
 TIBCO SmartSockets User’s Guide

28 | Chapter 1 Messages
Message Type Properties

Compression

The compression property identifies the default compression setting for messages
of this type. When the compression property is set to TRUE, the fields in the
message are automatically compressed when the message is sent. The message is
automatically decompressed when a receiver of the message attempts to access
any of the message’s fields. For a discussion of compression, see Message
Compression on page 271.

The compression setting for an outgoing message can always be set on a
per-message basis, but using the message type compression setting makes it
easier to change the default setting for all outgoing messages of a specific type.

Function to set value:

TipcMtSetCompression. For example:

T_IPC_MT mt;
mt = TipcMtLookup("info");
if (mt == NULL) {
 /* error */
}
if (!TipcMtSetCompression(mt, T_TRUE)) {
 /* error */
}

Type: Boolean of C type T_BOOL

Default Value: FALSE

Valid Values: TRUE or FALSE
TIBCO SmartSockets User’s Guide

Compression | 29
Function to get value:

TipcMtGetCompression. For example:

T_IPC_MT mt;
T_BOOL compress;
mt = TipcMtLookup("info");
if (mt == NULL) {
 /* error */
}
if (!TipcMtGetCompression(mt, &compress)) {
 /* error */
}

 TIBCO SmartSockets User’s Guide

30 | Chapter 1 Messages
Delivery Mode

The delivery mode property identifies the default delivery mode for messages of
this type. The message delivery mode property controls the level of guarantee
when a message is sent through a connection. When a message is created, its
delivery mode is initialized to the message type delivery mode. See Delivery
Mode on page 9.

The delivery mode of an outgoing message can always be set on a per-message
basis, but using the message type delivery mode makes it easier to change the
default delivery mode for all outgoing messages of a specific type.

Function to set value:

TipcMtSetDeliveryMode. For example:

if (!TipcMtSetDeliveryMode(mt, T_IPC_DELIVERY_ALL)) {
 /* error */
}

Function to get value:

TipcMtGetDeliveryMode. For example:

if (!TipcMtGetDeliveryMode(mt, &delivery_mode)) {
 /* error */
}

Type: Enumerated value of C type T_IPC_DELIVERY_MODE

Default Value: T_IPC_DELIVERY_BEST_EFFORT

Valid Values: • T_IPC_DELIVERY_BEST_EFFORT

• T_IPC_DELIVERY_ORDERED

• T_IPC_DELIVERY_SOME

• T_IPC_DELIVERY_ALL
TIBCO SmartSockets User’s Guide

Delivery Timeout | 31
Delivery Timeout

The delivery timeout property identifies how long to wait for a guaranteed
delivery of a message sent from a process through a connection. This timeout is
used to check for possible network failures, although at a slightly different level
from the read timeout, write timeout, and keep alive timeout (those three are not
directly involved with GMD).

The delivery timeout of an outgoing message can always be set on a per-message
basis, but using the message type delivery timeout makes it easier to change the
default delivery timeout for all outgoing messages of a specific type.

The message type delivery timeout can be set to a specific value or it can be
unknown. Note that each message has its own delivery timeout. If the message
delivery timeout is not set when the message is sent through a connection, the
connection’s delivery timeout is used.

If the delivery timeout property of a message is set to zero (0.0), then checking for
delivery timeouts is disabled. See Chapter 4, Guaranteed Message Delivery for
more information on GMD.

Function to set value:

TipcMtSetDeliveryTimeout. For example:

if (!TipcMtSetDeliveryTimeout(mt, 20.0)) {
 /* error */
}

Function to get value:

TipcMtGetDeliveryTimeout. For example:

if (!TipcMtGetDeliveryTimeout(mt, &delivery_timeout)) {
 /* error */
}

Type: Eight-byte real number of C type T_REAL8

Default Value: None. This value is unknown when creating a message type.

Valid Values: Any real number greater than 0, or unknown
 TIBCO SmartSockets User’s Guide

32 | Chapter 1 Messages
Grammar

The grammar property identifies the layout of fields in messages that use this
type. The grammar consists of a list of field types. Each field type in the grammar
corresponds to one field in the message. For example, the standard message type
TIME has a grammar real8, which defines the first and only field as being an
eight-byte real number. Standard Message Types on page 40 lists the grammars of
all standard message types. Comments (delimited by /* */ or (* *)) are also allowed
in the grammar.

Function to set value:

This property cannot be changed.

Function to get value:

TipcMtGetGrammar. For example:

if (!TipcMtGetGrammar(mt, &grammar)) {
 /* error */
}

The main purpose of the grammar is to allow messages to be written to text files
in a more compact format (see Message Files on page 64 for information on
message files). Without a message type grammar, it is difficult to know if the
number 45 in a text message file was an INT2, INT4, INT8, REAL4, REAL8, or
REAL16 field. Message type grammars also provide some self-documentation for
message types. The grammar is not enforced, however, when a message is
constructed. A message type with a grammar STR REAL8, for example, does not
stop a message from being constructed with ten INT4 fields.

Message type grammars do not have any relationship to the data conversion
capabilities of connections described in Sending Messages in a Heterogeneous
Environment on page 123. SmartSockets messages have strongly-typed fields.
The field types, not the grammar, enable connections to perform byte swapping
and floating-point conversions.

Type: String of C type T_STR

Default Value: None. This value must be supplied when creating a message
type.

Valid Values: Any valid field type or types (as shown in Table 1 on page 7 and
Table 2 on page 33)
TIBCO SmartSockets User’s Guide

Grammar | 33
In addition to the field types shown in Table 1, the field types in Table 2 can be
used when defining a message type grammar. They allow values to print in a
more readable form when written to a message file.

There are two common uses for the pseudo field type verbose in message type
grammars. The most common usage is when the layout of the fields varies (for
example, the type of the second field in the message depends on the value of the
first field). The verbose type can also be used when you don’t want to use a
well-defined grammar. If verbose is used in a message type grammar, it has to be
the only field type in the grammar (for example, "str verbose" and "verbose
real8 str" are not valid grammars).

Occasionally, message types use a repetitive group of fields. For example, the
NUMERIC_DATA message type allows zero or more name-value pairs. Curly
braces ({}) may be used in the message type grammar to indicate such a group.
The grammar for the NUMERIC_DATA message type is "{ id real8 }" and the
grammar for HISTORY_STRING_DATA is "real8 { id str }". Groups must be
at the end of the message type grammar, and only one group is allowed for each
grammar.

Table 2 Pseudo Field Types for Message Type Grammar

Field Type Purpose

ID Use for the STR field type when the value should be printed
without quotes. This is useful for identifiers.

VERBOSE Use for any field type when both the field type and value should
be printed. For example, instead of values printing as voltage
33.4534, they would be printed as str "voltage" real8
33.4534.
 TIBCO SmartSockets User’s Guide

34 | Chapter 1 Messages
Header String Encode

The header string encode property controls whether the message string properties
are converted into four-byte integers when sent through connections. Enabling
this property compresses the message header so that less network bandwidth is
used. Note that more CPU utilization is required to do the compression.

The header string encode property of an outgoing message can always be set on a
per-message basis, but using the message type header string encode property
makes it easier to change the default header string encode property for all
outgoing messages of a specific type.

Function to set value:

TipcMtSetHeaderStrEncode. For example:

if (!TipcMtSetHeaderStrEncode(mt, TRUE)) {
 /* error */
}

Function to get value:

TipcMtGetHeaderStrEncode. For example:

if (!TipcMtGetHeaderStrEncode(mt, &header_str_encode)) {
 /* error */
}

Type: Boolean of C type T_BOOL

Default Value: FALSE

Valid Values: TRUE or FALSE
TIBCO SmartSockets User’s Guide

Load Balancing Mode | 35
Load Balancing Mode

In normal publish-subscribe operation, a message is sent to all subscribers.
However, in some situations you may wish to have messages sent to one
subscribing RTclient. Load balancing can only be used for publish-subscribe
connections, not peer-to-peer connections. The message load balancing mode
overrides the message type load balancing mode. By default, messages are not
load balanced and are distributed to all subscribers. For more information, see
Load Balancing Mode on page 15 earlier in this chapter. Detailed information is
presented in Load Balancing on page 215.

The load balancing mode of an outgoing message can always be set on a
per-message basis, but using the message type load balancing mode makes it
easier to change the default mode for all outgoing messages of a specific type.

Function to set value:

TipcMtSetLbMode. For example:

if (!TipcMtSetLbMode(mt, T_IPC_LB_ROUND_ROBIN)) {
 /* error */
}

Function to get value:

TipcMtGetLbMode. For example:

if (!TipcMtGetLbMode(mt, &lb_mode)) {
 /* error */
}

Type: Enumerated value of C type T_IPC_LB_MODE

Default Value: T_IPC_LB_NONE

Valid Values: • T_IPC_LB_NONE

• T_IPC_LB_ROUND_ROBIN

• T_IPC_LB_SORTED

• T_IPC_LB_WEIGHTED
 TIBCO SmartSockets User’s Guide

36 | Chapter 1 Messages
Name

The name property identifies the message type. Each message type name must be
unique. Message type names that start with an underscore are reserved for
internal SmartSockets message types.

Function to set value:

This property cannot be changed.

Function to get value:

TipcMtGetName. For example:

if (!TipcMtGetName(mt, &name)) {
 /* error */
}

Type: Identifier of C type T_STR

Default Value: None. This value must be supplied when creating a message
type.

Valid Values: Any valid unique message name not starting with an
underscore (_)
TIBCO SmartSockets User’s Guide

Number | 37
Number

The number property also identifies the message type. Each message type
number must be unique. The message type number is normally used only when a
message is sent between two processes. The message type number is sent instead
of the message type name because the message type number almost always uses
less storage. The standard SmartSockets message types have message type
numbers less than zero. User-defined message types should use numbers greater
than zero.

Function to set value:

This property cannot be changed.

Function to get value:

TipcMtGetNum. For example:

if (!TipcMtGetNum(mt, &num)) {
 /* error */
}

Type: Four-byte integer of C type T_INT4

Default Value: None. This value must be supplied when creating a message
type.

Valid Values: Any integer greater than 0 that is unique to this message type
 TIBCO SmartSockets User’s Guide

38 | Chapter 1 Messages
Priority

The priority property identifies the default priority for messages of this type. The
message priority property controls where an incoming message is inserted into a
connection’s message queue. The message type priority can either be set to a
specific value or it can be unknown. When a message is created, its priority is
initialized to the message type priority (if set) or to the value of the option
Default_Msg_Priority (if the message type priority is unknown). Message
priorities are discussed in Priority on page 18.

The priority of an outgoing message can always be set on a per-message basis, but
using message type priorities makes it easier to raise or lower the default priority
for all outgoing messages of a specific type. Note that if set, the message type
priority always overrides the value in the option Default_Msg_Priority. The
standard SmartSockets message types, by default, all have a priority of unknown,
but these can be changed if desired. User-defined message types can use
whatever priority you choose.

Function to set value:

TipcMtSetPriority and TipcMtSetPriorityUnknown. For example:

if (!TipcMtSetPriority(mt, 100)) {
 /* error */
}

Function to get value:

TipcMtGetPriority. For example:

if (!TipcMtGetPriority(mt, &priority)) {
 /* error */
}

Type: Two-byte integer of C type T_INT2

Default Value: None. This value is unknown when creating a message type.

Valid Values: Any integer 0 or greater
TIBCO SmartSockets User’s Guide

User-Defined Property | 39
User-Defined Property

The user-defined property identifies the default user-defined property for
messages of this type. The message user-defined property can be used for any
purpose, such as attaching a version number to messages. When a message is
created, its user-defined property is initialized to the message type user-defined
property. Message user-defined properties are discussed in User-Defined
Property on page 26.

The user-defined property of an outgoing message can always be set on a
per-message basis, but using the message type user-defined property makes it
easier to change the default user-defined property for all outgoing messages of a
specific type. The standard SmartSockets message types by default all have a
user-defined property of zero (0), but these may be changed if desired.
User-defined message types can also use whatever user-defined property is
appropriate.

Function to set value:

TipcMtSetUserProp. For example:

if (!TipcMtSetUserProp(mt, 42)) {
 /* error */
}

Function to get value:

TipcMtGetUserProp. For example:

if (!TipcMtGetUserProp(mt, &user_prop)) {
 /* error */
}

Type: Four-byte integer of C type T_INT4

Default Value: 0

Valid Values: Any integer 0 or greater
 TIBCO SmartSockets User’s Guide

40 | Chapter 1 Messages
Standard Message Types

The standard message types are listed in the C header file msgmt.h. This file is
located in:

UNIX:
$RTHOME/include/$RTARCH/rtworks

OpenVMS:
rthome:[include.rtworks]

Windows:
%RTHOME%\include\rtworks

A standard message type is written differently depending on the context in which
it is used. For example, consider the NUMERIC_DATA message type. When
written to a message file, the message type name is printed as numeric_data and
is not case sensitive. For a complete discussion of message files, see Message Files
on page 64. When referred to in C code, the message type number is written as
T_MT_NUMERIC_DATA and is case sensitive.

When messages between RTserver and RTclient are being logged to a message file,
the standard message types are divided into three categories: data, status, and
internal. For more information on these logging types, see Message File Logging
Categories on page 211.

This table lists all the standard message types. Each grammar element shows the
field type followed by a comment that gives a brief description of the field. The
monitoring message types (named MON_*) are considered standard message
types, but are discussed in detail in Chapter 5, Project Monitoring.

Message Type Grammar Description

ADMIN_SET str /*connection or group
name*/

int4 /*value*/

int4 /*value*/

real8 /*value*/

Values to dynamically set for options
applying to the connection or group
channel.

For more information, see the
ADMIN_SET message types used for
RTserver Options and RTgms Options.

BOOLEAN_DATA { id /*name*/

bool /*value*/ }

Boolean slot values

CONTROL str /*command*/ Command for command interface
TIBCO SmartSockets User’s Guide

Standard Message Types | 41
ENUM_DATA { id /*name*/

id /*value*/ }

Enumerated slot values

GMD_ACK int4 /*seq_num*/ Internal GMD acknowledgment (used by
all connections)

GMD_DELETE int4 /*seq_num*/ Delete a message in RTserver after a
GMD failure (used only from RTclient to
RTserver)

GMD_FAILURE msg /*undelivered_msg*/

str /*failed_process*/

int4 /*err_num*/

real8 /*send_time*/

Unified GMD failure notification built
and processed by sender

GMD_INIT_CALL str /*subject*/ Initialize GMD or load balancing
accounting in RTserver for a subject to
which messages will be published

GMD_INIT_RESULT str /*subject*/ GMD or load balancing initialization
result from RTserver

GMD_STATUS_CALL int4 /*seq_num*/ Poll RTserver for GMD status

GMD_STATUS_RESUL
T

int4 /*seq_num*/

str_array /*success_clients*/

str_array /*failure_clients*/

str_array /*pending_clients*/

GMD status result from RTserver

JMS_BYTES binary /*byte_array*/ Type of JMS message containing a
stream of uninterpreted bytes

JMS_MAP {str str} /*name_value_pairs*/ Type of JMS message whose body
contains a set of name/value pairs where
names are strings, and values are
primitive types. The entries can be
accessed sequentially or randomly by
name. The order is undefined.

JMS_OBJECT binary /*serialized_Java_object*/ Type of JMS message containing a
serialized Java object

Message Type Grammar Description
 TIBCO SmartSockets User’s Guide

42 | Chapter 1 Messages
For most standard SmartSockets message types, the delivery mode is set to
T_IPC_DELIVERY_BEST_EFFORT. Note that for JMS message types, such as
JMS_MAP, the delivery mode is set to T_IPC_DELIVERY_ORDERED.

Any message type can be looked up by name with the function TipcMtLookup or
looked up by number with the function TipcMtLookupByNum. For example:

mt = TipcMtLookup("numeric_data");
mt = TipcMtLookupByNum(T_MT_STRING_DATA);

JMS_STREAM verbose /*primitives*/ Type of JMS message containing a
stream of primitive values, such as INT
or DOUBLE

JMS_TEXT str /*arbitrary_string*/ Type of JMS message containing a string

NUMERIC_DATA { id /*name*/

real8 /*value*/ }

Numeric slot values

STRING_DATA { id /*name*/

str /*value*/ }

String slot values

Message Type Grammar Description
TIBCO SmartSockets User’s Guide

User-Defined Message Types | 43
User-Defined Message Types

When a standard message type does not satisfy a requirement of the application, a
new message type can be created. Once created, the user-defined message type is
handled in the same manner as a standard message type. To create a user-defined
message type, use the function TipcMtCreate. This example creates a message
type named XYZ_COORD_DATA, where messages of type XYZ_COORD_DATA have
three fields (X, Y, and Z coordinates) that are four-byte integers.

#define XYZ_COORD_DATA 1001

mt = TipcMtCreate("xyz_coord_data", XYZ_COORD_DATA, "int4 int4
int4");
if (mt == NULL) {
 /* error */
}

If a user-defined message type is going to be used in several programs, it must be
created with TipcMtCreate in all of those programs. The recommended way of
coordinating this in a multi-program project is to place all calls to TipcMtCreate in
a C/C++ function that all programs then call during initialization. The common
function is then placed in a common object library that all programs are linked
with. For example of how this can be done, see Working With RTclient on
page 175.

RTserver does not need to call TipcMtCreate for user-defined message types to
route the user-defined messages.
 TIBCO SmartSockets User’s Guide

44 | Chapter 1 Messages
Working With Messages

This section discusses how to construct, access, and destroy a message. To learn
about sending a message, see Chapter 2, Connections. The following example
program constructs the NUMERIC_DATA message shown in Figure 1 (except for
the sequence number property, which is set automatically when a message is sent
through a connection). It also shows how to access the message’s values and how
to destroy the message. The example code is discussed in detail in the next
section.

The source code files for this example are located in these directories:

UNIX:
$RTHOME/examples/smrtsock/manual

OpenVMS:
RTHOME:[EXAMPLES.SMRTSOCK.MANUAL]

Windows:
%RTHOME%\examples\smrtsock\manual

The online source files have additional #ifdefs to provide C++ support. These
#ifdefs are not shown to simplify the example.

/* msg.c -- messages example */
#include <rtworks/ipc.h>

/* === */
/*..main -- main program */
int main()
{
 T_IPC_MT mt;
 T_IPC_MSG msg;
 T_STR str_val;
 T_REAL8 real8_val;

 TutOut("Create the message.\n");
 mt = TipcMtLookupByNum(T_MT_NUMERIC_DATA);
 if (mt == NULL) {
 TutOut("Could not look up NUMERIC_DATA msg type: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
TIBCO SmartSockets User’s Guide

Working With Messages | 45
 msg = TipcMsgCreate(mt);
 if (msg == NULL) {
 TutOut("Could not create message: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 TutOut("Set the message properties.\n");
 if (!TipcMsgSetSender(msg, "/_conan_5415")) {
 TutOut("Could not set message sender: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (!TipcMsgSetDest(msg, "/system/thermal")) {
 TutOut("Could not set message dest: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (!TipcMsgSetPriority(msg, 2)) {
 TutOut("Could not set message priority: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (!TipcMsgSetDeliveryMode(msg, T_IPC_DELIVERY_ALL)) {
 TutOut("Could not set message delivery mode: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (!TipcMsgSetDeliveryTimeout(msg, 20.0)) {
 TutOut("Could not set message delivery timeout: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (!TipcMsgSetLbMode(msg, T_IPC_LB_WEIGHTED)) {
 TutOut("Could not set message load balancing mode: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (!TipcMsgSetHeaderStrEncode(msg, TRUE)) {
 TutOut("Could not set message header str encode: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (!TipcMsgSetUserProp(msg, 42)) {
 TutOut("Could not set message user-defined prop: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 TutOut("Append fields.\n");
 if (!TipcMsgAppendStr(msg, "voltage")) {
 TutOut("Could not append first field: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 TIBCO SmartSockets User’s Guide

46 | Chapter 1 Messages
 if (!TipcMsgAppendReal8(msg, 33.4534)) {
 TutOut("Could not append second field: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (!TipcMsgAppendStr(msg, "switch_pos")) {
 TutOut("Could not append third field: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (!TipcMsgAppendReal8(msg, 0.0)) {
 TutOut("Could not append fourth field: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 TutOut("Access fields.\n");
 if (!TipcMsgSetCurrent(msg, 0)) {
 TutOut("Could not set current field: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (!TipcMsgNextStr(msg, &str_val)) {
 TutOut("Could not read first field: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (!TipcMsgNextReal8(msg, &real8_val)) {
 TutOut("Could not read second field: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 TutOut("%s = %s\n", str_val, TutRealToStr(real8_val));
 if (!TipcMsgNextStr(msg, &str_val)) {
 TutOut("Could not read third field: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (!TipcMsgNextReal8(msg, &real8_val)) {
 TutOut("Could not read fourth field: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 TutOut("%s = %s\n", str_val, TutRealToStr(real8_val));
 TutOut("Destroy the message.\n");
 if (!TipcMsgDestroy(msg)) {
 TutOut("Could not destroy message: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 return T_EXIT_SUCCESS; /* all done */
 } /* main */
TIBCO SmartSockets User’s Guide

Working With Messages | 47
Compiling, Linking, and Running
To compile, link, and run the example program, first you must either copy the
program to your own directory or have write permission in these directories:

UNIX:
$RTHOME/examples/smrtsock/manual

OpenVMS:
RTHOME:[EXAMPLES.SMRTSOCK.MANUAL]

Windows:
%RTHOME%\examples\smrtsock\manual

Use these commands to compile and link the program:

UNIX:
$ rtlink -o msg.x msg.c

OpenVMS:
$ cc msg.c
$ rtlink /exec=msg.exe msg.obj

Windows:
$ nmake /f msgw32m.mak

On UNIX the rtlink command by default uses the cc command to compile and
link. To use a C++ compiler or a C compiler with a name other than cc, set the
environment variable CC to the name of the compiler, and then rtlink uses this
compiler. For example, this can be used to compile and link on UNIX with the
GNU C++ compiler g++:

UNIX:
$ env CC=g++ rtlink -o msg.x msg.c

Use these commands to run the program:

UNIX:
$ msg.x

OpenVMS:
$ run msg.exe
 TIBCO SmartSockets User’s Guide

48 | Chapter 1 Messages
Windows:
$ msg.exe

The output from the program is:

Create the message.
Set the message properties.
Append fields.
Access fields.
voltage = 33.4534
switch_pos = 0
Destroy the message.

Include Files
Code written in C or C++ that uses the IPC Application Programming Interface
(API) must include the header file <rtworks/ipc.h>. This file is located in these
directories:

UNIX:
$RTHOME/include/$RTARCH/rtworks

OpenVMS:
RTHOME:[INCLUDE.RTWORKS]

Windows:
%RTHOME%\include\rtworks

The SmartSockets IPC API includes all the functions used for interprocess
communication.
TIBCO SmartSockets User’s Guide

Working With Messages | 49
Constructing a Message
These three steps are required when constructing a message:

1. Create a message of a particular type.

2. Set the header properties of the message.

3. Append fields to the message data.

Step 1 Create a message

A message is created using the TipcMsgCreate function with the message type.
This returns a message that is filled in later. For example:

mt = TipcMtLookupByNum(T_MT_NUMERIC_DATA);
if (mt == NULL) {
 TutOut("Could not look up NUMERIC_DATA msg type: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}
msg = TipcMsgCreate(mt);
if (msg == NULL) {
 TutOut("Could not create message: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}

Step 2 Set header properties of a message

The header (non-data) properties are set using the TipcMsgSetProperty function
where Property is replaced by the property being set, such as sender or priority. For
example:

if (!TipcMsgSetSender(msg, "/_conan_5415")) {
 TutOut("Could not set message sender: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}
if (!TipcMsgSetDest(msg, "/system/thermal")) {
 TutOut("Could not set message dest: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}
if (!TipcMsgSetPriority(msg, 2)) {
 TutOut("Could not set message priority: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}
if (!TipcMsgSetDeliveryMode(msg, T_IPC_DELIVERY_ALL)) {
 TutOut("Could not set message delivery mode: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}

 TIBCO SmartSockets User’s Guide

50 | Chapter 1 Messages
if (!TipcMsgSetDeliveryTimeout(msg, 20.0)) {
 TutOut("Could not set message delivery timeout: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}
if (!TipcMsgSetLbMode(msg, T_IPC_LB_WEIGHTED)) {
 TutOut("Could not set message load balancing mode: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}
if (!TipcMsgSetHeaderStrEncode(msg, TRUE)) {
 TutOut("Could not set message header str encode: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}
if (!TipcMsgSetUserProp(msg, 42)) {
 TutOut("Could not set message user-defined prop: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

Step 3 Append fields to message data

Fields are appended to the message using one of a number of append functions.
These begin with TipcMsgAppendType where Type is replaced by the field type,
such as TipcMsgAppendStr. For example:

if (!TipcMsgAppendStr(msg, "voltage")) {
 TutOut("Could not append first field: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}
if (!TipcMsgAppendReal8(msg, 33.4534)) {
 TutOut("Could not append second field: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}
if (!TipcMsgAppendStr(msg, "switch_pos")) {
 TutOut("Could not append third field: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}
if (!TipcMsgAppendReal8(msg, 0.0)) {
 TutOut("Could not append fourth field: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}

Fields are always appended to the end of the message.
TIBCO SmartSockets User’s Guide

Working With Messages | 51
Using the TipcMsgWrite Convenience Function

The TipcMsgWrite convenience function handles a variable number of arguments
and allows you to append one or more fields to a message. The function takes
enumerated values that begin with T_IPC_FT_TYPE, where TYPE is replaced by a
field type as shown in Table 1, such as T_IPC_FT_STR. A final parameter of NULL
is used to terminate the variable number of arguments. Using this function, the
above values could be added to the message.

For example:

if (!TipcMsgWrite(msg,
 T_IPC_FT_STR, "voltage",
 T_IPC_FT_REAL8, 33.4534,
 T_IPC_FT_STR, "switch_pos",
 T_IPC_FT_REAL8, 0.0,
 NULL)) {
 TutOut("Could not append all fields: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}

As an added convenience, TipcMsgWrite also allows enumerated values that
begin with T_IPC_PROP_NAME, where NAME is replaced by a message property
name, such as T_IPC_PROP_DELIVERY_MODE. For example, the entire message
shown above could have been constructed with one call to TipcMsgWrite:

if (!TipcMsgWrite(msg,
 T_IPC_PROP_TYPE, TipcMtLookup("numeric_data"),
 T_IPC_PROP_SENDER, "/_conan_5415",
 T_IPC_PROP_DEST, "/system/thermal",
 T_IPC_PROP_PRIORITY, 2,
 T_IPC_PROP_DELIVERY_MODE, T_IPC_DELIVERY_ALL,
 T_IPC_PROP_DELIVERY_TIMEOUT, 20.0,
 T_IPC_PROP_LB_MODE, T_IPC_LB_WEIGHTED,
 T_IPC_PROP_HEADER_STR_ENCODE, TRUE,
 T_IPC_PROP_USER_PROP, 42,
 T_IPC_FT_STR, "voltage",
 T_IPC_FT_REAL8, 33.4534,
 T_IPC_FT_STR, "switch_pos",
 T_IPC_FT_REAL8, 0.0,
 NULL)) {
 TutOut("Could not construct message: error <%s>.\n"
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}

C/C++ functions that use a variable number of arguments often require fewer
lines of code to use, but there is no type checking done by the C/C++ compiler on
the variable arguments.
 TIBCO SmartSockets User’s Guide

52 | Chapter 1 Messages
Adding Fields by Name

As an alternative to appending fields to a message, you can also add fields to a
message and give each field a name. This allows you to access the field using that
name. To add fields by name, use the TipcMsgAddNamed* functions, such as
TipcMsgAddNamedStr. A single message may contain both fields with names
and fields without names. There is no conflict.

For example, the following lines of code operate on the same message. One
appends an INT4 and the next adds a string by name, in this case, string one:

/* Add a non-named int4 field, and a named string field */
 TipcMsgAppendInt4(msg, 5);
 TipcMsgAddNamedStr(msg, "string one", "hello");

A named field is like any other field in the message, except that it also has a name.

Accessing the Fields of a Message
There are two steps involved in accessing the fields of a message. First, the current
field in the message must be set, and then it can be accessed.

Setting the Current Field

By default the fields of a message are accessed in the order they are appended.
The first field accessed in the previous example is STR with the value of voltage,
the second field accessed is REAL8 with a value of 33.4534, and so on.

The field being accessed is considered the current field. When a field has been
accessed, the next field becomes the current field. The order in which the fields are
accessed is changed using the TipcMsgSetCurrent function. For example:

if (!TipcMsgSetCurrent(msg, 2)) {
 /* error */
}

With the current field set to two (2), the field accessed in the previous example
would be str with a value of switch_pos, the next accessed value would be
REAL8 with a value of zero (0.0). Because this is the last field in the message,
unless the current field is reset, no other fields would be accessed. Changing the
current field does not change the order of the fields or the number of fields in the
message.

The first field in a message is considered field 0.
TIBCO SmartSockets User’s Guide

Working With Messages | 53
The number of fields in a message is found using the TipcMsgGetNumFields
function. For example:

if (!TipcMsgGetNumFields(msg, &num_fields)) {
 /* error */
}

When beginning to access the fields of a message, the current field should always
be set first so that the desired field is the current field. In the above example, the
current field is set to the first field as follows:

if (!TipcMsgSetCurrent(msg, 0)) {
 /* error */
}

Accessing the Current Field

The fields of a message are accessed by making calls to the TipcMsgNextType
function where Type is replaced by the field type, such as TipcMsgNextStr. To
access the first two fields of the message in Figure 1, a call is made to
TipcMsgNextStr and TipcMsgNextReal8. Something could be done with these
values, such as printing them with TutOut, and then the next two fields could be
accessed. For example:

if (!TipcMsgNextStr(msg, &str_val)) {
 TutOut("Could not read first field: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}
if (!TipcMsgNextReal8(msg, &real8_val)) {
 TutOut("Could not read second field: error <%s>.\n"
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}
TutOut("%s = %s\n", str_val, TutRealToStr(real8_val));
 if (!TipcMsgNextStr(msg, &str_val)) {
 TutOut("Could not read third field: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}
if (!TipcMsgNextReal8(msg, &real8_val)) {
 TutOut("Could not read fourth field: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}
TutOut("%s = %s\n", str_val, TutRealToStr(real8_val));
 TIBCO SmartSockets User’s Guide

54 | Chapter 1 Messages
All pointer-sized field information, such as BINARY, STR, INT4_ARRAY, and
MSG values, is accessed with pointers directly into the message data so that no
potentially-large memory copies are needed. The data stored in these pointers
should not be modified or deallocated (TipcMsgDestroy automatically deallocates
the entire message data). All non-pointer field information, such as INT4 and the
size of a REAL8_ARRAY, is copied into the appropriate parameter to
TipcMsgNextType.

Using the TipcMsgRead Convenience Function

The TipcMsgRead convenience function handles a variable number of arguments
and allows you to access one or more fields in a message (and also advance the
current field). The function takes enumerated values that begin with T_IPC_FT_
TYPE, where TYPE is replaced by a field type as shown in Table 1 on page 7, such
as T_IPC_FT_STR. A final parameter of NULL is used to terminate the variable
number of arguments. Using this function, the first two values could be accessed
as follows:

if (!TipcMsgRead(msg,
 T_IPC_FT_STR, &str_val,
 T_IPC_FT_REAL8, &real8_val,
 NULL)) {
 TutOut("Could not read first two fields: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}
TutOut("%s = %s\n", str_val, TutRealToStr(real8_val));

As an added convenience, TipcMsgRead also allows enumerated values that
begin with T_IPC_PROP_NAME, where NAME is replaced by a message property
name, such as T_IPC_PROP_DELIVERY_MODE.
TIBCO SmartSockets User’s Guide

Working With Messages | 55
Accessing Fields by Name
If a message has fields that were added by name, you can access those fields using
that name. This is a different approach from the sequential access described in the
previous sections. A field that has a name may be accessed either by that name or
sequentially.

This example shows accessing fields from a message that contains both named
and unnamed fields. It also shows how to get the name of the current field:

#include <rtworks/ipc.h>

/*==*/
/*..main -- named fields example */
void main(int argc, char **argv)
{
 T_IPC_MSG msg;
 T_STR str;
 T_INT4 i;

 /* Create the message */
 msg = TipcMsgCreate(TipcMtLookupByNum(T_MT_INFO));

 /* Add a non-named int4 field, and a named string field */
 TipcMsgAppendInt4(msg, 5);
 TipcMsgAddNamedStr(msg, "string one", "hello");

 /* Now get the string field */
 TipcMsgGetNamedStr(msg, "string one", &str);
 TutOut("named string field is %s\n", str);

 /* Rewind the index back to the first field, and get the int4 field */
 TipcMsgSetCurrent(msg, 0);
 TipcMsgNextInt4(msg, &i);
 TutOut("first field is %d\n", i);
/*
 * Get the string field again. Note that we don't have to use the
 * name to get it, it's still just an indexed field, like any other.
 */
 TipcMsgNextStr(msg, &str);
 TutOut("second field is %s\n", str);
/*
 * Rewind the index pointer again, and we can "name" the int4 field.

*/
 TipcMsgSetCurrent(msg, 0);
 TipcMsgSetNameCurrent(msg, "int4 zero");
/*
 * We can also get the name of the current field.
 */
 TipcMsgGetNameCurrent(msg, &str);
 TutOut("name of first field is %s\n", str);
} /* main */
 TIBCO SmartSockets User’s Guide

56 | Chapter 1 Messages
Destroying a Message
When a process finishes with a message, the message can be destroyed to free up
the memory it occupies. This is accomplished using the TipcMsgDestroy function.
For example:

if (!TipcMsgDestroy(msg)) {
 /* error */
}

TipcMsgDestroy decrements the message reference count and destroys the
message if the reference count is zero. TipcMsgDestroy can also call TipcMsgAck
to acknowledge the message for GMD. For a detailed discussion of GMD, see
Chapter 4, Guaranteed Message Delivery.

Sometimes it is difficult to know when TipcMsgDestroy should be used and when
it shouldn’t. Many of the API functions discussed in Chapter 2, Connections, give
access to messages at various points of operation, and TipcMsgDestroy must be
used with care with these functions. The following simple model can be used to
clarify message memory management: most functions do not change who owns
the message and who is responsible for destroying it, but some functions give
away destroy responsibility and a few functions take away destroy responsibility.
In other words, some functions require the caller to call TipcMsgDestroy later, and
some functions require the caller not to call TipcMsgDestroy.

These functions give destroy responsibility to the caller:

• TipcMsgCreate

• TipcMsgIncrRefCount

• TipcMsgClone

• TipcMsgFileRead

• TipcConnMsgNext

• TipcConnMsgSearch

• TipcConnMsgSearchType

• TipcConnMsgSendRpc

• TipcSrvMsgNext

• TipcSrvMsgSearch

• TipcSrvMsgSearchType

• TipcSrvMsgSendRpc
TIBCO SmartSockets User’s Guide

Working With Messages | 57
These functions take destroy responsibility from the caller:

• TipcMsgDestroy

• TipcConnMsgInsert

• TipcSrvMsgInsert

Reusing a Message
If a process is finished with a message, but will be constructing other messages in
the near future, the message can simply be reused. All of the non-data properties
can be set to other values if necessary, and the function TipcMsgSetNumFields
can be used to remove all existing fields from the messages. For example:

if (!TipcMsgSetNumFields(msg, 0)) {
 /* error */
}

 TIBCO SmartSockets User’s Guide

58 | Chapter 1 Messages
Advanced Uses of Messages

What we covered so far are the most common ways of working with messages.
There are many other ways, and some of these advanced uses include:

• Checking the Type of the Current Field

• Cloning a Message

• Array Fields

• Array Fields

• Constructing a Message Within a Message

• Pointer Fields

• Unknown Field Values

• High Performance Guidelines

Checking the Type of the Current Field
The function TipcMsgNextType can be used to look at the type of the current field
without advancing the current field. This is useful when the type of the current
field can vary.

For example, if the current field is either a STR or REAL8 field, this code is used to
access the field:

T_IPC_FT ft;
T_STR str;
T_REAL8 real8;

if (!TipcMsgNextType(msg, &ft)) {
 /* error */
}
switch (ft) {
case T_IPC_FT_STR:
 if (!TipcMsgNextStr(msg, &str)) {
 /* error */
 }
 break;
case T_IPC_FT_REAL8:
 if (!TipcMsgNextReal8(msg, &real8)) {
 /* error */
 }
 break;
default:
 /* error */
}

TIBCO SmartSockets User’s Guide

Advanced Uses of Messages | 59
Cloning a Message
Before destroying a message, you may want to make a copy of the message to use
for other purposes. The clone is an identical copy of the original message, but
does not share the memory of the original message. A message is cloned using the
TipcMsgClone function. For example:

clone_msg = TipcMsgClone(msg);
if (clone_msg == NULL) {
 /* error */
}

Array Fields
Arrays can also be fields in a message. Array fields are appended to a message
with the functions TipcMsgAppendTypeArray, where Type is the type of the array.
These append functions also require the number of elements in the array as a
parameter. For example:

T_REAL8 real8_array[10]; /* can hold up to 10 values */

real8_array[0] = 3.0;
real8_array[1] = 4.0;
real8_array[2] = 55.75;
if (!TipcMsgAppendReal8Array(msg, real8_array, 3)) {
 /* error */
}

When using array fields with TipcMsgWrite, both the array and the number of
elements must be supplied. For example, the above array field could be appended
as follows:

if (!TipcMsgWrite(msg,
 T_IPC_FT_REAL8_ARRAY, real8_array, 3, NULL)) {
 /* error */
}

Array fields are accessed from a message with the functions
TipcMsgNextTypeArray, where Type is the type of the array. These append
functions also require a parameter where they store the number of elements in the
array. For example:

T_REAL8 *real8_array;
T_INT4 array_size;

if (!TipcMsgNextReal8Array(msg, &real8_array, &array_size)) {
 /* error */
}

Empty arrays, where the number of array elements is zero, are allowed.
 TIBCO SmartSockets User’s Guide

60 | Chapter 1 Messages
When using array fields with TipcMsgRead, storage for both the array and the
number of elements must be supplied. For example, the above array field could
be accessed as follows:

if (!TipcMsgRead(msg,
 T_IPC_FT_REAL8_ARRAY, &real8_array, &array_size,
 NULL)) {
 /* error */
}

Constructing a Message Within a Message
Messages can also be fields in a message. This is useful for batching several
messages into one large transaction or when using a message as a container for
another message, such as the GMD_FAILURE message type. Messages are
appended as fields with the function TipcMsgAppendMsg. When a message is
appended as a field to another message, a complete copy of the field message is
made. For example:

if (!TipcMsgAppendMsg(msg, field_msg)) {
 /* error */
}
if (!TipcMsgDestroy(field_msg)) {
 /* error */
}

Once TipcMsgAppendMsg returns, changing (or even destroying) the message
used as a field does not affect the other message. Message fields are accessed from
a message with the function TipcMsgNextMsg. For example:

T_IPC_MSG field_msg;
if (!TipcMsgNextMsg(msg, &field_msg)) {
 /* error */
}

TIBCO SmartSockets User’s Guide

Advanced Uses of Messages | 61
Pointer Fields
Normally, when a field is appended to a message the field data is copied into the
message. For large fields, such as a 10-megabyte binary image, this memory copy
can decrease performance measurably. To avoid this, all array-oriented fields,
including string, message, and binary fields, can be appended to a message as a
pointer field. A pointer field does not make a copy of the data. Instead, the
supplied pointer is entered directly into the new message field’s internal data
structure. When using pointer fields, the field data must not be deallocated or
changed while the message field is still valid.

Pointer fields are appended to a message with the functions
TipcMsgAppendTypePtr, where Type is the field type. These pointer field
construction functions are available:

• TipcMsgAppendBinaryPtr

• TipcMsgAppendInt2ArrayPtr

• TipcMsgAppendInt4ArrayPtr

• TipcMsgAppendInt8ArrayPtr

• TipcMsgAppendMsgPtr

• TipcMsgAppendMsgArrayPtr

• TipcMsgAppendReal4ArrayPtr

• TipcMsgAppendReal8ArrayPtr

• TipcMsgAppendReal16ArrayPtr

• TipcMsgAppendStrPtr

• TipcMsgAppendStrArrayPtr

• TipcMsgAppendXmlPtr

The TipcMsgAppendTypePtr functions have one extra parameter in addition to
the parameters for the TipcMsgAppendType functions. This extra parameter, an
optional T_IPC_MSG_FIELD message field, is filled in if non-null. For example:

T_REAL8 real8_array[10]; /* can hold up to 10 values */
T_IPC_MSG_FIELD msg_field;

real8_array[0] = 3.0;
real8_array[1] = 4.0;
real8_array[2] = 55.75;
if (!TipcMsgAppendReal8ArrayPtr(msg, real8_array, 3, &msg_field))
{
 /* can be NULL */
 /* error */
}

 TIBCO SmartSockets User’s Guide

62 | Chapter 1 Messages
Another advantage of pointer fields is that they can be easily resized with the
function TipcMsgFieldSetSize after the field is created. This allows message fields
to be efficiently and easily resized. For example:

/* add an array element and resize the pointer field size */
real8_array[3] = 318.9;
if (!TipcMsgFieldSetSize(msg_field, 4)) {
 /* error */
}

Once a pointer field is appended to a message and the message is sent through a
connection, the pointer field data is copied into the connection just like a
non-pointer field. Pointer fields can also be added by name. Pointer fields are
added by name to a message with the functions TipcMsgAddNamedTypePtr,
where Type is the field type. These pointer field construction functions are
available:

• TipcMsgAddNamedBinaryPtr

• TipcMsgAddNamedGuidArrayPtr

• TipcMsgAddNamedInt2ArrayPtr

• TipcMsgAddNamedInt4ArrayPtr

• TipcMsgAddNamedInt8ArrayPtr

• TipcMsgAddNamedMsgPtr

• TipcMsgAppendMsgArrayPtr

• TipcMsgAddNamedReal4ArrayPtr

• TipcMsgAddNamedReal8ArrayPtr

• TipcMsgAddNamedReal16ArrayPtr

• TipcMsgAddNamedStrPtr

• TipcMsgAddNamedStrArrayPtr

• TipcMsgAddNamedXmlPtr
TIBCO SmartSockets User’s Guide

Advanced Uses of Messages | 63
Unknown Field Values
In some cases, it is necessary to designate a field value “unknown” or “invalid”.
This may be used in cases where data is missing, say in a sequence of time series
data. For some data types, like T_STR, this can be accomplished using an invalid
value as a marker (such as NULL). However, some data types, such as numeric
values, do not allow any invalid values, even for use as a marker. For these cases,
there are a few special message field functions:

• TipcMsgAppendUnknown

• TipcMsgNextUnknown

• TipcMsgGetCurrentFieldKnown

These functions allow any field to be marked uniquely as holding an unknown
value. Fields with unknown values still have a type, so
TipcMsgAppendUnknown takes a field type parameter:

TipcMsgAppendUnknown(msg, T_IPC_FT_INT4);

If the type of the unknown field is significant, it can be accessed with
TipcMsgNextType, like any other field. Using a normal TipcMsgNext* function to
access a field with an unknown value will fail. If TipcMsgNextInt4 were used on
the above field, it would return FALSE, and no value would be returned. Instead,
TipcMsgNextUnknown can be used to access unknown fields, or the field pointer
could simply be set to skip the field, using TipcMsgSetCurrent. To determine if
the current field value is unknown, use TipcMsgGetCurrentFieldKnown.

High Performance Guidelines
There are two simple recommended strategies to use when sending large
amounts of data with messages:

• When constructing messages with many values of the same type, use array
fields instead of non-array fields. For example, a single INT4_ARRAY field
with 10,000 elements uses much less memory than 10,000 INT4 fields.

• When constructing large fields, use pointer fields instead of non-pointer fields
to avoid a memory copy. For example, a 10,000 element INT4_ARRAY pointer
field uses less CPU time than a normal 10,000 element INT4_ARRAY field.

• When sending messages with very large payloads or text, such as XML, use
message compression. For more information on compression, see Message
Compression on page 271.
 TIBCO SmartSockets User’s Guide

64 | Chapter 1 Messages
Message Files

A message file is a file (in either text format or binary format) containing one or
more messages. It provides a means to capture real or simulated data and is
typically used as a testing and debugging tool by any process in a SmartSockets
application. A message file serves these purposes:

• It simulates real data, allowing project development to proceed without tying
into real-time data.

• It allows a process to be tested as a stand-alone component before beginning
integrated testing of the project.

• It captures real data that can be used to debug a process.

• It provides a method for testing and training operators in response to events.

A message file typically has a .msg file extension (although SmartSockets does
not enforce this extension).

Text Message Files
Messages are printed in a text message file in the following format:

message_type destination data

The sender, priority, delivery mode, reference count, sequence number, and
user-defined property of a message are not included. To be written to a message
file, the message data must be written according to the message type grammar (see
Grammar on page 32 for more information on message type grammars). Groups
of fields must be delimited by curly braces ({}), unless the group is not repeated,
in which case the curly braces can be omitted. Array fields, binary fields, and
messages whose type has a grammar of verbose must also be delimited by curly
braces ({}). Comments (delimited by /* */, (* *), or // and end-of-line) are allowed
anywhere in the file. If you are creating a text message file manually, with a text
editor, an easy way to check how to format the file is to use TipcMsgFileWrite in a
small program to see how it formats a similar message.

This is an example of a text message file holding four messages:

numeric_data thermal {
voltage 33.4534
switch_pos 0

}
numeric_data eps temperature 200.4 // note: no curly braces needed
/* sent to the operator’s display */
info _hci "Satellite has entered science mode."
string_data thermal relay1 "off"
TIBCO SmartSockets User’s Guide

Message Files | 65
Binary Message Files
A binary message file has both advantages and disadvantages when compared to
text message files. The advantages include:

• All message properties except reference count and delivery timeout are
included.

• Reading and writing are faster than with text message files (no text
formatting).

• Binary messages are encoded so that they can be properly read on platforms
other than the ones on which they were written.

Binary message files, however, are not easily editable with a text editor.

Using Message Files
Message files are created with the function TipcMsgFileCreate and can be created
for reading (an existing file is opened), for writing in text format, for writing in
binary format, or for appending. TipcMsgFileCreate automatically detects the
proper format (text or binary) when used for reading and appending. For
example:

msg_file = TipcMsgFileCreate("output.msg",
T_IPC_MSG_FILE_CREATE_WRITE);
if (msg_file == NULL) {
 /* error */
}

Messages are written to a message file using the TipcMsgFileWrite function. For
example:

if (!TipcMsgFileWrite(msg_file, msg)) {
 /* error */
}

Any process can read messages from the message file using the TipcMsgFileRead
function. The message file must be created for reading. For example:

msg_file = TipcMsgFileCreate("input.msg",
T_IPC_MSG_FILE_CREATE_READ);
if (msg_file == NULL) {
 /* error */
}
if (!TipcMsgFileRead(msg_file, &msg)) {
 /* error */
}

Because T_IPC_MSG_FILE_CREATE_READ was used in this example, the actual file
must already exist. The structure needed for the message file is created in an
existing file. If no file exists, you get a null pointer error message.
 TIBCO SmartSockets User’s Guide

66 | Chapter 1 Messages
Messages can also be logged into a message file from an RTclient process. See
Message File Logging Categories on page 211 for more information.

When a process finishes with a message file, the message file can be destroyed to
free up the memory it uses. For example:

if (!TipcMsgFileDestroy(msg_file)) {
 /* error */
}

TipcMsgFileDestroy does not remove the file on disk, only the in-memory record
of the file.

Advanced Use of Message Files
It is possible to serialize messages into a binary buffer, and retrieve them from the
buffer. Here is a sample program that illustrates this technique:

#include <rtworks/ipc.h>

char *filename = "file";

void SerializeMsgToDisk(T_IPC_MSG msg)
{
 T_BUF buf;
 T_PTR data;
 T_INT4 size;
 FILE *fp;

 buf = TutBufCreate(128);
 TipcBufMsgAppend(buf, msg);
 TutBufGetSize(buf, &size);

 data = TutBufNextAligned(buf, size, 1);
 if (data == NULL) {
 /* error */
 }

 fp = fopen(filename, "w");
 if (fp == NULL) {
 /* error */
 }

 fwrite(data, sizeof(T_UCHAR), size, fp);
 fclose(fp);
 TutBufDestroy(buf);
}

TIBCO SmartSockets User’s Guide

Message Files | 67
T_IPC_MSG ReadFromDisk(void)
{
 T_BUF buf;
 T_PTR data;
 T_INT4 size;
 T_BOOL status;
 FILE *fp;
 T_IPC_MSG msg;

 status = TutFileGetSize(filename, &size);
 if (status == FALSE) {
 /* error */
 }

 fp = fopen(filename, "r");
 if (fp == NULL) {
 /* error */
 }

 T_MALLOC(data, size, T_PTR);
 fread(data, sizeof(T_UINT1), size, fp);

 /* create static buffer, set max size */
 buf = TutBufCreateStatic(data, size);

 /* set write pointer size */
 status = TutBufSetSize(buf, size);

 msg = TipcBufMsgNext(buf);
 if (msg == NULL) {
 /* error */
 }

 TutBufDestroy(buf);
 T_FREE(data);

 return msg;
}

int main(int argc, char *argv[])
{
 T_IPC_MSG msg_in, msg_out;

 msg_in = TipcMsgCreate(TipcMtLookupByNum(T_MT_INFO));
 TipcMsgAppendStr(msg_in, "hello world");

 SerializeMsgToDisk(msg_in);
 TipcMsgDestroy(msg_in);

 msg_out = ReadFromDisk();
 TipcMsgPrint(msg_out, TutOut);
 TipcMsgDestroy(msg_out);
}

 TIBCO SmartSockets User’s Guide

68 | Chapter 1 Messages
TIBCO SmartSockets User’s Guide

| 69
Chapter 2 Connections

Messages are packets of information that are the basis for all interprocess
communication in SmartSockets. All messages are transmitted between processes
through connections. A connection is an endpoint of a direct communication link
used to send and receive messages between two processes. The two processes,
called peer processes, share the link. However, each process has a unique
endpoint that it can manipulate independently. Connections can operate on
messages in many different ways.

Topics

• Features of Connections, page 70

• Connection Composition, page 71

• Sockets, page 85

• Working With Connections, page 89

• Using Threads With Connections, page 125

• Advanced Uses of Connections, page 141

• Handling Network Failures, page 149
 TIBCO SmartSockets User’s Guide

70 | Chapter 2 Connections
Features of Connections

Connections offer these features:

• Connections can use one of several different interprocess communications
(IPC) protocols to transfer messages: TCP/IP or local (non-network).

• Connections can execute callback functions at various points while operating
on messages to perform user-defined actions.

• Connections can detect many kinds of network failures and take steps to
recover from these failures.

• Connections can be used for request-reply communication by sending and
receiving messages.

• Connections can send messages with or without guaranteed message delivery
(GMD). GMD stores copies of messages in files to enable total recovery from
network failures.

• Connections are safe to use in multithreaded programs.

Many advanced features of SmartSockets are message-based services available
through connections. Connections and messages are flexible, and SmartSockets
uses this flexibility to transmit not only user application messages but also many
internal SmartSockets messages. The largest example of a message-based service
is monitoring, described in Chapter 5, Project Monitoring. GMD is also
implemented using internal messages extensively.
TIBCO SmartSockets User’s Guide

Connection Composition | 71
Connection Composition

A connection (C type T_IPC_CONN) is composed of several parts, or properties.
Not all properties are directly accessible, but all are important.

Figure 2 shows the flow of messages through the relevant properties of a
connection.

Figure 2 The Flow of Messages Through a Connection

A connection has these properties:
Socket operating system device that provides the

communication link

Read Buffer where incoming messages are first stored when they are
read in

Write Buffer where outgoing messages are stored before they are
written

Message Queue where incoming messages are stored before being
processed

Messages sent with GMD
are also copied into the
GMD area (and are
removed when GMD
completes or fails).

M

M

= A message packed into
a buffer

= A message

Messages are read from the
socket onto the end of the read
buffer.

Messages are inserted
from the read buffer into
the message queue in
priority order.

M M M

Read Buffer

M M M

Write Buffer

Flushing writes the data from
the write buffer to the socket.

Communication
link to another
process.

MM M
Socket

The next message
is available to the
process from the
front of the
message queue.

Messages being sent
are copied onto the
end of the write
buffer.

M

GMD Area

MM M

M

 TIBCO SmartSockets User’s Guide

72 | Chapter 2 Connections
Socket
The socket property identifies the operating system device that provides the
communication link to another process. All messages that are sent and received
through the connection are transmitted using the socket. The socket property is an
operating system file descriptor of type C type T_INT4. The property is set
automatically when a client or server connection is created with
TipcConnCreateClient, TipcConnCreateServer, or TipcConnAccept. To change the
value of the property, you can use TipcConnSetSocket:

if (!TipcConnSetSocket(conn, fd)) {
 /* error */
}

To get the existing value of the socket property, use TipcConnGetSocket:

if (!TipcConnGetSocket(conn, &fd)) {
 /* error */
}

For an in-depth discussion of sockets, see Sockets on page 85.

A concept related to the connection socket is the connection Xt-compatible source.
See Mixing Connections and Xt Intrinsics (Motif) on page 141 for more
information on how to use connections in a Motif program.

Block Mode whether or not to wait for read and write operations to
complete

Auto Flush Size how many bytes of outgoing messages to allow to
accumulate

Read Timeout how often messages are expected to be available for
reading

Write Timeout how often messages are expected to be able to be
written

Keep Alive Timeout how long to wait for a keep alive query to complete

Delivery Timeout how long to wait for GMD to complete

GMD Area holds GMD information for both incoming and
outgoing messages

Thread Synchronization protection for multithreaded access using read, write,
process, GMD, and queue mutexes

Peer Information information about peer process, such as architecture,
node, process ID, unique subject, and user
TIBCO SmartSockets User’s Guide

Connection Composition | 73
Read Buffer
The read buffer of a connection is where incoming messages are first stored when
they are read from the connection’s socket. The incoming messages arrive as a
stream of bytes, which are unpacked into messages and inserted into the
connection’s message queue (for a discussion of connection message queues, see
Message Queue on page 74) in priority order. Each time data is read from the
connection’s socket, only a piece of a message may arrive. The read buffer is used
to reassemble all the pieces of an incoming message.

The read buffer is not directly accessible. The read buffer is sized dynamically to
hold all incoming data and is limited only by the amount of available virtual
memory. Each time data is read from the connection’s socket, all complete
messages in the read buffer are unpacked and moved from the read buffer to the
message queue. Thus the read buffer does not use a large amount of memory
unless large messages are used.

The function TipcConnRead reads data from the connection’s socket into the read
buffer and converts the data into messages, which are then inserted into the
connection’s message queue with the function TipcConnMsgInsert.

Write Buffer
The write buffer of a connection is where outgoing messages are stored before
they are written to the connection’s socket. By accumulating several messages in
the write buffer before actually writing them to the socket, better performance can
be achieved.

The write buffer is not directly accessible. The write buffer is sized dynamically to
hold all buffered outgoing data and is limited only by the amount of available
virtual memory. The connection property auto flush size helps to limit the amount
of memory used by the write buffer. For a discussion of the connection auto flush
size, see Auto Flush Size on page 76.

The function TipcConnMsgSend copies a message to the end of the write buffer,
and the function TipcConnFlush writes the write buffer to the connection’s socket.
 TIBCO SmartSockets User’s Guide

74 | Chapter 2 Connections
Message Queue
The message queue of a connection is where incoming messages are stored
waiting to be processed. Messages are normally stored in the message queue
ordered by message priority, although they can be inserted anywhere into the
message queue.

The message queue is not directly accessible. The function TipcConnMsgInsert
inserts a message into a connection’s message queue. The function
TipcConnMsgNext gets the first message from a connection’s message queue. The
function TipcConnMsgSearch searches a connection’s message queue for a
specific message. The function TipcConnGetNumQueued gets the number of
messages in a connection’s message queue.

Block Mode
The block mode property is a boolean that identifies whether or not a process
waits for a read, write, or accept operation to complete on a connection’s socket.
Read, write, and accept operations are treated slightly differently. Read operations
are always given a certain period of time to complete, while write operations are
not. A write or accept operation either completes immediately or the process
waits until the operation completes.

To change the value of the block mode property, use TipcConnSetBlockMode:

if (!TipcConnSetBlockMode(conn, TRUE)) {
 /* error */
}

To get the existing value of the property, use TipcConnGetBlockMode:

if (!TipcConnGetBlockMode(conn, &block_mode)) {
 /* error */
}

If the block mode property is TRUE, which is the default, the function
TipcConnRead does not return until it has read some data from the connection’s
socket into the connection’s read buffer, an error has occurred, or the specified
period of time has elapsed. The function TipcConnFlush does not return until it
has written all data from the connection’s write buffer to the connection’s socket
or an error has occurred. The function TipcConnAccept does not return until it
has accepted a client connection or an error has occurred.

If the block mode property is FALSE, then non-blocking read, write, and accept
operations are enabled. It is unusual to use non-blocking accept operations; they
are provided for completeness only. The behavior of non-blocking read and write
operations depends on the settings of the connection timeout properties (see Read
Timeout on page 77, Write Timeout on page 77, and Keep Alive Timeout on
page 78 for more information on these timeout properties). A connection’s block
TIBCO SmartSockets User’s Guide

Connection Composition | 75
mode must be FALSE for the timeout properties to have any effect. Table 3 shows
the relationship between the block mode and timeout properties. If the block
mode property is FALSE and the write timeout property is 0.0, then
TipcConnFlush returns immediately if not all data can be written. If the block
mode property is FALSE and the write timeout property is greater than 0.0, then
TipcConnFlush does not return until all data has been written or a period of time
equal to the write timeout property has elapsed.

Table 3 Relationship Between Connection Block Mode and Timeout Properties

Block
Mode
Property

Timeout
Properties Effect on Read and Write Operations

TRUE 0.0 Read operations can block for a certain period of
time, specified by the timeout parameter to
TipcConnRead. Write operations can block
indefinitely.

TRUE greater
than 0.0

Read operations can block for a certain period of
time, specified by the timeout parameter to
TipcConnRead. Write operations can block
indefinitely. Timeouts greater than 0.0 have no
effect when block mode is TRUE.

FALSE 0.0 Read operations can block for a certain period of
time, specified by the timeout parameter to
TipcConnRead. Write operations can never block.

FALSE greater
than 0.0

Read operations can block for a certain period of
time, specified by the timeout parameter to
TipcConnRead, but are limited to the value of the
connection read timeout property. Write operations
can block for a certain period of time, but are
limited to value of the write timeout connection
property.
 TIBCO SmartSockets User’s Guide

76 | Chapter 2 Connections
Auto Flush Size
The auto flush size property is defined as a four-byte integer that identifies how
many bytes of data are allowed to accumulate in a connection’s write buffer
before it is automatically written (flushed) to the connection’s socket. When a
message is copied to the end of the connection’s write buffer with the function
TipcConnMsgSend, the auto flush size is checked, and TipcConnMsgSend calls
the function TipcConnFlush if the number of bytes of data in the write buffer is
greater than the auto flush size. In addition, both TipcConnRead and
TipcConnCheck automatically flush the write buffer to the socket when reading
and checking for reading.

If the auto flush size property of a connection is set to 0, then each outgoing
message is immediately written to the connection’s socket. To enable infinite
buffering, an auto flush size of T_IPC_NO_AUTO_FLUSH can be used, and
outgoing messages are never automatically flushed (they have to be explictly
flushed). The default size is 8192 bytes.

To change the value of the auto flush size property, use
TipcConnSetAutoFlushSize:

if (!TipcConnSetAutoFlushSize(conn, 0)) {
 /* error */
}

To get the existing value for the property, use TipcConnGetAutoFlushSize:

if (!TipcConnGetAutoFlushSize(conn, &auto_flush_size)) {
 /* error */
}

TIBCO SmartSockets User’s Guide

Connection Composition | 77
Read Timeout
The read timeout property is defined as an eight-byte real number that identifies
how often, in seconds, data is expected to be available for reading on a
connection’s socket. This timeout is used to check for possible network failures.

Whenever a process is waiting for a read operation on a connection’s socket to
complete, it does not wait longer than read timeout seconds past the time of the last
successful read. If a period of time longer than the read timeout has elapsed, then
a hardware or software failure may have occurred; a query then is sent to the
other end of the connection to determine if the connection is still alive. This query
is called a keep alive. See Handling Network Failures on page 149 for more
information on keep alives.

If the read timeout property of a connection is set to 0.0, which is the default,
then checking for read timeouts is disabled. Setting the block mode property of a
connection to TRUE also disables checking for read timeouts.

To change the value of the read timeout property, use TipcConnSetTimeout:

if (!TipcConnSetTimeout(conn, T_IPC_TIMEOUT_READ, 10.0)) {
 /* error */
}

To get the existing value for the property, use TipcConnGetTimeout:

if (!TipcConnGetTimeout(conn, T_IPC_TIMEOUT_READ, &read_timeout))
{
 /* error */
}

Write Timeout
The write timeout property is defined as an eight-byte real number that identifies
how often, in seconds, data is expected to be able to be written to a connection’s
socket. This timeout is used to check for possible network failures.

Whenever a process is waiting for a write operation on a connection’s socket to
complete, it does not wait longer than write timeout seconds past the time of the last
successful write. If a period of time longer than the write timeout has elapsed,
then a hardware or software failure may have occurred, and the error callbacks
for the connection will be called to recover from the error. See Error Callbacks on
page 110 for more information on error callbacks. Unlike the read timeouts, where
a keep alive is initiated, no keep alive is initiated for write timeouts. See Handling
Network Failures on page 149 for more information on keep alives.

If the write timeout property of a connection is set to 0.0, which is the default,
checking for write timeouts is disabled. Setting the block mode property of a
connection to TRUE also disables checking for write timeouts.
 TIBCO SmartSockets User’s Guide

78 | Chapter 2 Connections
To change the value for the write timeout property, use TipcConnSetTimeout:

if (!TipcConnSetTimeout(conn, T_IPC_TIMEOUT_WRITE, 10.0)) {
 /* error */
}

To get the existing value for the property, use TipcConnGetTimeout:

if (!TipcConnGetTimeout(conn, T_IPC_TIMEOUT_WRITE,
&write_timeout)) {
 /* error */
}

Keep Alive Timeout
The keep alive timeout property is defined as an eight-byte real number that
identifies how long, in seconds, to wait for a keep alive query to complete. A keep
alive query consists of sending a KEEP_ALIVE_CALL through a connection and
waiting for the process at the other end to send back a KEEP_ALIVE_RESULT
message to indicate that the connection is still alive. See Handling Network
Failures on page 149 for more information on the keep alive timeout and keep
alives.

If the keep alive timeout property of a connection is set to 0.0, which is the
default, then keep alive queries are disabled. To change the value, use
TipcConnSetTimeout:

if (!TipcConnSetTimeout(conn, T_IPC_TIMEOUT_KEEP_ALIVE, 10.0)) {
 /* error */
}

To get the existing value for the property, use TipcConnGetTimeout:

if (!TipcConnGetTimeout(conn, T_IPC_TIMEOUT_KEEP_ALIVE,
 &keep_alive_timeout)) {
 /* error */
}

TIBCO SmartSockets User’s Guide

Connection Composition | 79
Delivery Timeout
The delivery timeout property is defined as an eight-byte real number that
identifies how long, in seconds, to wait for guaranteed delivery of a message sent
from this process through a connection. This timeout is used to check for possible
network failures, although at a slightly different level from the read timeout, write
timeout, and keep alive timeout (those three are not directly involved with GMD).

Whenever a process sends a message with a delivery mode of
T_IPC_DELIVERY_SOME or T_IPC_DELIVERY_ALL, a copy of the message and
the current wall clock time are saved in the connection GMD area. See GMD Area
on page 80 for more information on GMD areas. The message copy is removed
when acknowledgment of delivery is received by the sender from the receiving
process(es). Delivery timeouts are checked each time the sending process reads
data or checks if data can be read from the connection. If delivery timeout seconds
have elapsed since the message was sent with GMD, then a GMD failure has
occurred, and a GMD_FAILURE message will be processed by the sender. See
Chapter 4, Guaranteed Message Delivery for more information on GMD. Note
that each message can also have its own delivery timeout, which defaults to the
connection’s delivery timeout if it is not set before the message is sent.

If the delivery timeout property of a message is set to 0.0, which is the default,
checking for delivery timeouts is disabled. To change the value, use
TipcConnSetTimeout:

if (!TipcConnSetTimeout(conn, T_IPC_TIMEOUT_DELIVERY, 10.0)) {
 /* error */
}

To get the existing value of the property, use TipcConnGetTimeout:

if (!TipcConnGetTimeout(conn, T_IPC_TIMEOUT_DELIVERY,
 &delivery_timeout)) {
 /* error */
}

 TIBCO SmartSockets User’s Guide

80 | Chapter 2 Connections
GMD Area
The GMD area for a connection holds guaranteed message delivery information
for both incoming and outgoing messages. There are two types of GMD:

• file-based GMD

File-based GMD stores GMD information in files to enable recovery if the
program crashes and is restarted. For file-based GMD, the GMD area is in a
directory on disk. File-based GMD is the default and provides the most
reliable GMD in the event of a system failure. However, because it writes the
GMD messages to disk, it is slower than memory-based GMD.

• memory-based GMD

Memory-based GMD stores GMD information in a GMD area that is held in
memory and is faster than file-based GMD. It protects your messages against
network failures and lost connections. However, if a system failure wipes out
memory, such as when a program crashes and restarts, the GMD messages
stored in memory in the GMD area are lost.

The GMD area is not directly accessible. Using the RTclient option
Ipc_Gmd_Directory, you can specify where you want the file-based GMD area
created. Once the GMD area is created, it cannot be changed or destroyed except
by destroying the connection. The function TipcConnSetGmdMaxSize can be
used to set the maximum size of the GMD area.

See Chapter 4, Guaranteed Message Delivery for more information on GMD.
TIBCO SmartSockets User’s Guide

Connection Composition | 81
Thread Synchronization
The set of connection properties used for thread synchronization protect
connections for multithreaded access. There are no functions that get or set the
values for these properties:

• Read Mutex

The read mutex property protects operations that access the connection’s
message queue, read buffer, or GMD high sequence number table, or read
data from the connection’s socket.

• Write Mutex

The write mutex property protects operations that access the connection’s
write buffer or write data to the connection’s socket.

• Process Mutex

The process mutex property protects operations that access the connection’s
process and default callback lists. A read/write mutex is used here so that
multiple threads may execute a connection’s process and default callbacks
concurrently.

• GMD Mutex

The gmd mutex property is a temporary mutex that protects operations that
access the connection’s GMD area. A temporary mutex means that this mutex
is never held for an indefinite period of time.

• Queue Mutex

The queue mutex property is a temporary mutex that protects operations that
access the connection’s queue such as a message insert or a message delete. A
temporary mutex means this mutex is never held for an indefinite period.

For more information on using connections in multithreaded programs, see Using
Threads With Connections on page 125. For more information on these mutex
properties, see Working With Threads and Connections on page 139.
 TIBCO SmartSockets User’s Guide

82 | Chapter 2 Connections
Peer Information
These connection properties are all pieces of information about the process at the
other end of the connection. These properties are all simple types of monitoring
and can be useful for diagnostic purposes. For more information on monitoring,
see Chapter 5, Project Monitoring.

Architecture

The architecture property is defined as an identifier string that identifies the
SmartSockets architecture of the peer process. The architecture is in the form
Machine_OperatingSystem (for example, sun4_solaris).

This value is stored in:

This property is set automatically by TipcConnCreateClient and TipcConnAccept,
and cannot be set manually. To find out the value set for this property, use
TipcConnGetArch:

if (!TipcConnGetArch(conn, &arch)) {
 /* error */
}

Node

The node property is defined as a string that identifies the node name of the peer
process. This property is set automatically by TipcConnCreateClient and
TipcConnAccept, and cannot be set manually. To find out the value set for this
property, use TipcConnGetNode:

if (!TipcConnGetNode(conn, &node)) {
 /* error */
}

Process ID

The process ID property is defined as a four-byte integer that provides the process
identifier of the peer process. This property is set automatically by
TipcConnCreateClient and TipcConnAccept, and cannot be set manually. To find
out the value set for this property, use TipcConnGetPid:

if (!TipcConnGetPid(conn, &pid)) {
 /* error */
}

UNIX the environment variable RTARCH

OpenVMS the logical RTARCH

Windows the environment variable RTARCH
TIBCO SmartSockets User’s Guide

Connection Composition | 83
Unique Subject

The unique subject property is defined as a string that identifies the unique
subject of the peer process. The unique subject, which is used to uniquely identify
all SmartSockets processes, is stored in the option Unique_Subject. See
Configuring GMD on page 331 for a discussion of how Unique_Subject is used by
connections.

This property is set automatically by TipcConnCreateClient and TipcConnAccept,
and cannot be changed. To find out the value for this property, use
TipcConnGetUniqueSubject:

if (!TipcConnGetUniqueSubject(conn, &unique_subject)) {
 /* error */
}

User

The user property is defined as a string that identifies the user name of the peer
process. This property is set automatically by TipcConnCreateClient and
TipcConnAccept, and cannot be set manually. To find out the value set for this
property, use TipcConnGetUser:

if (!TipcConnGetUser(conn, &user)) {
 /* error */
}

 TIBCO SmartSockets User’s Guide

84 | Chapter 2 Connections
Callbacks
Callbacks are functions that are executed when certain operations occur.
Callbacks are conceptually equivalent to dynamically adding a line of code to a
program.

These are the types of callbacks available to you:

• process callbacks — executed while processing a message

• default callbacks — executed if no process callbacks exist

• read callbacks — executed when an incoming message is read in

• write callbacks — executed when an outgoing message is sent

• queue callbacks — executed when a message is inserted into or deleted from
the message queue

• error callbacks — executed when an unrecoverable error occurs

When a message is sent out by calling TipcSrvMsgSend, the callbacks are called in
this order:

1. Write callbacks

2. Encode callbacks

For more discussion about callback functions, see Callbacks on page 107.
TIBCO SmartSockets User’s Guide

Sockets | 85
Sockets

As described earlier, all messages sent through connections are transmitted using
sockets. When you use connections you do not have to fully understand the
nuances of sockets, but a general understanding of sockets helps to illustrate the
advantages of using connections instead of just sockets. This section gives a brief
tutorial on sockets.

Protocols: TCP/IP and Local
A computer network can be viewed as having several layers:

1. Highest Layer: User Applications (RTserver, connection programs, and so on)

2. Middle Layers: Software Protocols (TCP/IP, and so on)

3. Lowest Layer: Hardware Protocols (Ethernet, Token Ring, and so on)

Most computers support Ethernet, some Token ring, and almost all support the
widely available Transmission Control Protocol/Internet Protocol (TCP/IP).
TCP/IP was developed at the University of California at Berkeley for BSD UNIX.
There are several commercial TCP/IP packages available for OpenVMS, such as
MultiNet. To support heterogeneous networks using Ethernet or Token Ring, such
as Solaris, Windows, or OpenVMS, SmartSockets supports TCP/IP. In fact, within
a single application, a process can communicate with different processes using
different protocols.

In addition to the above IPC protocols that send data over a network, it is often
useful to perform IPC between two processes on the same computer. This can be
thought of as a local IPC protocol. SmartSockets IPC also supports this local
protocol.
 TIBCO SmartSockets User’s Guide

86 | Chapter 2 Connections
What is a Socket?
A socket is a software interface to an IPC protocol. Each socket uses one specific
IPC protocol. A good analogy for the socket is the telephone. A socket allows one
process to speak to another process, much like a telephone allows one person to
talk to another. There are rules for how the two processes must make the
connection (similar to how one must pick up a telephone, dial a number, and have
someone answer at the other end).

There are several different types of sockets. The most common type is called a
stream socket, and it is the type used by SmartSockets IPC. Other kinds of sockets
include datagram sockets and raw sockets. From this point on, the term socket is
used to mean a stream socket. Unlike a telephone, sockets are truly bidirectional:
both processes can write (talk) and read (listen) at the same time.

Most current operating systems support sockets. Sockets are very portable,
though there are differences between the various implementations of sockets.
None of the OpenVMS implementations of sockets, however, support the TCP/IP
and local IPC protocols that SmartSockets can use. On OpenVMS, SmartSockets
supplies its own socket functions (which are implemented using native
OpenVMS system calls like SYS$QIO) to allow TCP/IP and local sockets to be
used by the same program. See the TIBCO SmartSockets Utilities reference for more
information on how to use these socket functions.
TIBCO SmartSockets User’s Guide

Sockets | 87
How Sockets Work
Each socket has four buffers (one for each process for each direction) associated
with it. These buffers are usually at least 8192 bytes each, but the size of each
buffer can be changed dynamically. Figure 3 shows these buffers.

Figure 3 Socket Data Buffering

When one process writes data to a socket, the data is copied into the appropriate
outgoing buffer, and then the operating system takes care of transmitting the data
to the incoming buffer for the receiving process. If the incoming buffer fills up or
if there is a hardware or software failure, then the outgoing buffer starts to fill up.
If the outgoing buffer is full, the process either waits for space in the buffer or gets
an error condition. When the process at the other end of the socket reads data
from the socket, the data comes out of the socket’s incoming buffer. If the
incoming buffer is empty, the process either waits for data to appear or gets an
error condition. When a processes waits, it blocks (does not use CPU time) until
the socket is ready again.

Sockets handle several types of simple network failures, such as reordering data
that arrives out of order and resending data that doesn’t arrive. They do not take
care of recovery from more fatal types of errors, however, such as processes or
nodes crashing. See Chapter 4, Guaranteed Message Delivery for details on how
connections overcome these more serious failures.

Sockets are first in, first out (FIFO) byte streams, just like UNIX files. A byte
stream does not distinguish between message boundaries. If one process writes 64
bytes to a socket, a process at the other end could decide to read 32 bytes twice, or
8 bytes 8 times, or even 1 byte 64 times. It is more efficient, however, for the
reading process to read 64 bytes one time. Sockets are fairly fast on Ethernet,
where data transfer rates of 500 kilobytes/second and up are possible.

In Buffer

Process

Socket

Operating System Operating System

In Buffer

Out Buffer

Out Buffer

Process

Socket

Data crossing this line is transmitted over
the network (if applicable).
 TIBCO SmartSockets User’s Guide

88 | Chapter 2 Connections
Because sockets are byte streams, it is up to the two communicating processes to
agree on what the bytes mean: some sort of protocol is necessary. If the two
processes are on computers that don't use the same formats for integers,
floating-point numbers, or character strings, then it becomes more difficult to pass
binary data between the processes.

Sockets have several advantages over other UNIX IPC mechanisms. STREAMS
and TLI also provide an interface to IPC protocols, but are not as portable as
sockets. Pipes are similar to sockets, but they are unidirectional (data can only be
transferred one way) and can only be used between related processes (usually
where one process is a child of the other process). They cannot be used between
unrelated processes. Shared memory allows unrelated processes on the same
machine to communicate, but it is somewhat clumsier to use and does not
provide a byte stream. Neither shared memory nor pipes allow processes on
different computers to communicate.

Advantages of Connections Over Sockets
Connections are implemented using sockets and take advantage of all the features
that sockets have to offer. Connections also have many features that make them
easier to use and more powerful than sockets:

• Connections have additional data buffers that can expand to hold large
numbers of messages.

• Connections have prioritized message queues.

• Connections handle differences between different socket implementations.
For example, the Windows and Solaris Version 2.5.1 socket APIs are not 100%
compatible.

• Connections automatically unpack messages read from the byte stream of a
socket.

• Connections have callbacks to execute user-defined functions when certain
operations occur.

• Connections automatically convert the data within messages that are sent
between different types of computers.

• Connections can detect and recover from network failures.

• Connections can perform remote procedure calls by sending and receiving
messages.

• Connections have guaranteed message delivery, which enables total recovery
from network failures.

• Connections can be used safely in multithreaded programs.
TIBCO SmartSockets User’s Guide

Working With Connections | 89
Working With Connections

This section discusses how to create, access, and destroy a connection. To learn
more about working with messages, see Chapter 1, Messages. The following
example programs show the code used to send messages between two processes
through a connection. The programs also show how to use all connection callback
types. There are two parts to the example: a server process and a client process.
These example programs do not use guaranteed message delivery (refer to
Working With GMD on page 322 for complete GMD examples).

The source code files for this example are located in these directories:

UNIX:
$RTHOME/examples/smrtsock/manual

OpenVMS:
RTHOME:[EXAMPLES.SMRTSOCK.MANUAL]

Windows:
%RTHOME%\examples\smrtsock\manual

The online source files have additional #ifdefs to provide C++ support. These
#ifdefs are not shown to simplify the example.

Example 4 Server Source Code

* connserv.c -- connections example server */

/*
This server process waits for a client to connect to it, creates some
callbacks, and then loops receiving and processing messages.
*/

#include <rtworks/ipc.h>

/* === */
/*..cb_process_numeric_data -- process callback for NUMERIC_DATA */
static void T_ENTRY cb_process_numeric_data(

T_IPC_CONN conn,
T_IPC_CONN_PROCESS_CB_DATA data,
T_CB_ARG arg)

{
 T_STR name;
 T_REAL8 value;

 TutOut("Entering cb_process_numeric_data.\n");
 TIBCO SmartSockets User’s Guide

90 | Chapter 2 Connections
 /* set current field to first field in message */
 if (!TipcMsgSetCurrent(data->msg, 0)) {
 TutOut("Could not set current field of message: error <%s>.\n",
 TutErrStrGet());
 return;
 }

 /* access and print fields */
 while (TipcMsgNextStrReal8(data->msg, &name, &value)) {
 TutOut("%s = %s\n", name, TutRealToStr(value));
 }

 /* make sure we reached the end of the message */
 if (TutErrNumGet() != T_ERR_MSG_EOM) {
 TutOut("Did not reach end of message: error <%s>.\n",
 TutErrStrGet());
 }
} /* cb_process_numeric_data */

/* === */
/*..cb_default -- default callback */
static void T_ENTRY cb_default(

T_IPC_CONN conn,
T_IPC_CONN_DEFAULT_CB_DATA data,
T_CB_ARG arg)

{
 T_IPC_MT mt;
 T_STR name;

 TutOut("Entering cb_default.\n");

 /* print out the name of the type of the message */
 if (!TipcMsgGetType(data->msg, &mt)) {
 TutOut("Could not get message type from message: error
<%s>.\n",
 TutErrStrGet());
 return;
 }
 if (!TipcMtGetName(mt, &name)) {
 TutOut("Could not get name from message type: error <%s>.\n",
 TutErrStrGet());
 return;
 }
 TutOut("Message type name is %s.\n", name);
} /* cb_default */

/* === */
/*..cb_read -- read callback */
static void T_ENTRY cb_read(

T_IPC_CONN conn,
T_IPC_CONN_READ_CB_DATA data,
T_CB_ARG arg) /* really (T_IPC_MSG_FILE) */

{
 TutOut("Entering cb_read.\n");
TIBCO SmartSockets User’s Guide

Working With Connections | 91
 /* print out the message to the message file */
 if (!TipcMsgFileWrite((T_IPC_MSG_FILE)arg, data->msg)) {
 TutOut("Could not write to message file: error <%s>.\n",
 TutErrStrGet());
 }
} /* cb_read */

/* === */
/*..cb_queue -- queue callback */
static void T_ENTRY cb_queue(

T_IPC_CONN conn,
T_IPC_CONN_QUEUE_CB_DATA data,
T_CB_ARG arg)

{
 T_IPC_MT mt;
 T_STR name;

 TutOut("Entering cb_queue.\n");

 /* get the name of the type of the message */
 if (!TipcMsgGetType(data->msg, &mt)) {
 TutOut("Could not get message type from message: error
<%s>.\n",
 TutErrStrGet());
 return;
 }
 if (!TipcMtGetName(mt, &name)) {
 TutOut("Could not get name from message type: error <%s>.\n",
 TutErrStrGet());
 return;
 }

 /* print out the position of the message being inserted/deleted */
 TutOut("A message of type %s is being %s at position %d.\n",
 name, data->insert_flag ? "inserted" : "deleted",
 data->position);
} /* cb_queue */

/* === */
/*..cb_error -- error callback */
static void T_ENTRY cb_error(

T_IPC_CONN conn,
T_IPC_CONN_ERROR_CB_DATA data,
T_CB_ARG arg)

{
 TutOut("Entering cb_error.\n");
 TutOut("The error number is %d.\n", data->err_num);
} /* cb_error */
 TIBCO SmartSockets User’s Guide

92 | Chapter 2 Connections
/* === */
/*..main -- main program */
int main()
{
 T_IPC_CONN server_conn; /* used to accept client */
 T_IPC_CONN client_conn; /* connection to client */
 T_IPC_MT mt; /* message type for creating callbacks */
 T_IPC_MSG_FILE msg_file; /* message file for printing messages */
 T_IPC_MSG msg; /* message received and processed */

 TutOut("Creating server connection to accept clients on.\n");
 server_conn = TipcConnCreateServer("tcp:_node:5252");
 if (server_conn == NULL) {
 TutOut("Could not create server connection: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* accept one client */
 TutOut("Waiting for client to connect.\n");
 client_conn = TipcConnAccept(server_conn);
 if (client_conn == NULL) {
 TutOut("Could not accept client: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* destroy server conn: it’s not needed anymore */
 TutOut("Destroying server connection.\n");
 if (!TipcConnDestroy(server_conn)) {
 TutOut("Could not destroy server connection: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* create callbacks to be executed when certain operations occur */
 TutOut("Create callbacks.\n");

 /* process callback */
 mt = TipcMtLookupByNum(T_MT_NUMERIC_DATA);
 if (mt == NULL) {
 TutOut("Could not look up NUMERIC_DATA msg type: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (TipcConnProcessCbCreate(client_conn, mt,
 cb_process_numeric_data,
 NULL) == NULL) {
 TutOut("Could not create NUMERIC_DATA process cb: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
TIBCO SmartSockets User’s Guide

Working With Connections | 93
 /* default callback */
 if (TipcConnDefaultCbCreate(client_conn,
 cb_default, NULL) == NULL) {
 TutOut("Could not create default cb: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* create a message file to use in read callback */
 msg_file = TipcMsgFileCreateFromFile(stdout,
 T_IPC_MSG_FILE_CREATE_WRITE);
 if (msg_file == NULL) {
 TutOut("Could not create message file from stdout: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 /* read callback */
 if (TipcConnReadCbCreate(client_conn,
 NULL, /* global callback */
 cb_read,
 msg_file) == NULL) {
 TutOut("Could not create read cb: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* queue callback */
 if (TipcConnQueueCbCreate(client_conn,
 NULL, /* global callback */
 cb_queue,
 NULL) == NULL) {
 TutOut("Could not create queue cb: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 TIBCO SmartSockets User’s Guide

94 | Chapter 2 Connections
 /* error callback */
 if (TipcConnErrorCbCreate(client_conn,
 cb_error,
 NULL) == NULL) {
 TutOut("Could not create error cb: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 TutOut("Read and process all messages.\n");
 while ((msg = TipcConnMsgNext(client_conn, T_TIMEOUT_FOREVER))
 != NULL) {
 if (!TipcConnMsgProcess(client_conn, msg)) {
 TutOut("Could not process message: error <%s>.\n",
 TutErrStrGet());
 }
 if (!TipcMsgDestroy(msg)) {
 TutOut("Could not destroy message: error <%s>.\n",
 TutErrStrGet());
 }
 }

 /* make sure we reached the end of the data */
 if (TutErrNumGet() != T_ERR_EOF) {
 TutOut("Did not reach end of data: error <%s>.\n",
 TutErrStrGet());
 }
 if (!TipcConnDestroy(client_conn)) {
 TutOut("Could not destroy client connection: error <%s>.\n",
 TutErrStrGet());
 }

 if (!TipcMsgFileDestroy(msg_file)) {
 TutOut("Could not destroy message file: error <%s>.\n",
 TutErrStrGet());
 }

 TutOut("Server process exiting successfully.\n");
 return T_EXIT_SUCCESS; /* all done */
} /* main */

Example 5 Client Source Code

/* connclnt.c -- connections example client */

/*
The client process connects to the server process and sends two
messages to the server.
*/

#include <rtworks/ipc.h>
TIBCO SmartSockets User’s Guide

Working With Connections | 95
/* === */
/*..cb_write -- write callback */
static void T_ENTRY cb_write(
T_IPC_CONN conn,
T_IPC_CONN_WRITE_CB_DATA data,
T_CB_ARG arg) /* really (T_IPC_MSG_FILE) */

{
 TutOut("Entering cb_write.\n");

 /* print out the message to the message file */
 if (!TipcMsgFileWrite((T_IPC_MSG_FILE)arg, data->msg)) {
 TutOut("Could not write to message file: error <%s>.\n",
 TutErrStrGet());
 }
} /* cb_write */

/* === */
/*..main -- main program */
int main()
{
 T_IPC_CONN conn; /* connection to server */
 T_IPC_MT mt; /* message type for creating callbacks and messages */
 T_IPC_MSG_FILE msg_file; /* message file for printing messages */
 T_IPC_MSG msg; /* message to send */

 TutOut("Creating connection to server process.\n");
 conn = TipcConnCreateClient("tcp:_node:5252");
 if (conn == NULL) {
 TutOut("Could not create connection to server: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* create callbacks to be executed when certain operations occur */
 TutOut("Create callbacks.\n");

 /* create a message file to use in write callback */
 msg_file = TipcMsgFileCreateFromFile(stdout,
 T_IPC_MSG_FILE_CREATE_WRITE);
 if (msg_file == NULL) {
 TutOut("Could not create message file from stdout: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 TIBCO SmartSockets User’s Guide

96 | Chapter 2 Connections
 /* write callback */
 if (TipcConnWriteCbCreate(conn,
 NULL, /* global callback */
 cb_write,
 msg_file) == NULL) {
 TutOut("Could not create write cb: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 TutOut("Constructing and sending a NUMERIC_DATA message.\n");
 mt = TipcMtLookupByNum(T_MT_NUMERIC_DATA);
 if (mt == NULL) {
 TutOut("Could not look up NUMERIC_DATA msg type: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 msg = TipcMsgCreate(mt);
 if (msg == NULL) {
 TutOut("Could not create NUMERIC_DATA message: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 if (!TipcMsgWrite(msg,
 T_IPC_FT_STR, "voltage",
 T_IPC_FT_REAL8, 33.4534,
 T_IPC_FT_STR, "switch_pos",
 T_IPC_FT_REAL8, 0.0,
 NULL)) {
 TutOut("Could not append to NUMERIC_DATA msg: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 if (!TipcConnMsgSend(conn, msg)) {
 TutOut("Could not send NUMERIC_DATA message: error <%s>.\n",
 TutErrStrGet());
 }

 TutOut("Constructing and sending an INFO message.\n");
 mt = TipcMtLookupByNum(T_MT_INFO);
 if (mt == NULL) {
 TutOut("Could not look up INFO message type: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
TIBCO SmartSockets User’s Guide

Working With Connections | 97
 /* just reuse previous message */
 if (!TipcMsgSetType(msg, mt)) {
 TutOut("Could not set message type: error <%s>.\n",
 TutErrStrGet());
 }
 if (!TipcMsgSetNumFields(msg, 0)) {
 TutOut("Could not set message num fields: error <%s>.\n",
 TutErrStrGet());
 }

 if (!TipcMsgAppendStr(msg, "Now is the time")) {
 TutOut("Could not append fields to INFO message: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 if (!TipcConnMsgSend(conn, msg)) {
 TutOut("Could not send INFO message: error <%s>.\n",
 TutErrStrGet());
 }

 if (!TipcConnFlush(conn)) {
 TutOut("Could not flush buffered outgoing msgs: error <%s>.\n",
 TutErrStrGet());
 }

 if (!TipcMsgDestroy(msg)) {
 TutOut("Could not destroy message: error <%s>.\n",
 TutErrStrGet());
 }

 if (!TipcConnDestroy(conn)) {
 TutOut("Could not destroy connection: error <%s>.\n",
 TutErrStrGet());
 }

 if (!TipcMsgFileDestroy(msg_file)) {
 TutOut("Could not destroy message file: error <%s>.\n",
 TutErrStrGet());
 }

 TutOut("Client process exiting successfully.\n");
 return T_EXIT_SUCCESS; /* all done */
} /* main */
 TIBCO SmartSockets User’s Guide

98 | Chapter 2 Connections
Compiling, Linking, and Running
To compile, link, and run the example programs, first you must either copy the
programs to your own directory or have write permission in these directories:

UNIX:
$RTHOME/examples/smrtsock/manual

OpenVMS:
RTHOME:[EXAMPLES.SMRTSOCK.MANUAL]

Windows:
%RTHOME%\examples\smrtsock\manual

Step 1 Compile and link the programs

UNIX:
$ rtlink -o connserv.x connserv.c
$ rtlink -o connclnt.x connclnt.c

OpenVMS:
$ cc connserv.c
$ rtlink /exec=connserv.exe connserv.obj
$ cc connclnt.c
$ rtlink /exec=connclnt.exe connclnt.obj

Windows:
$ nmake /f consw32m.mak
$ nmake /f concw32m.mak

On UNIX the rtlink command by default uses the cc command to compile and
link. To use a C++ compiler or a C compiler with a name other than cc, set the
environment variable CC to the name of the compiler, and rtlink then uses this
compiler. Use these commands to compile and link on UNIX with the GNU C++
compiler g++:

$ env CC=g++ rtlink -o connserv.x connserv.c
$ env CC=g++ rtlink -o connclnt.x connclnt.c

To run the programs, start the server process first in one terminal emulator
window and then the client process in another terminal emulator window.
TIBCO SmartSockets User’s Guide

Working With Connections | 99
Step 2 Start the server program in the first window

UNIX:
$ connserv.x

OpenVMS:
$ run connserv.exe

Windows:
$ connserv.exe

Step 3 Start the client program in the second window

UNIX:
$ connclnt.x

OpenVMS:
$ run connclnt.exe

Windows:
$ connclnt.exe

The output from the server program is:

Creating server connection to accept clients on.
Waiting for client to connect.
Destroying server connection.
Create callbacks.
Read and process all messages.
Entering cb_read.
numeric_data _null {
 voltage 33.4534
 switch_pos 0
}
Entering cb_queue.
A message of type numeric_data is being inserted at position 0.
Entering cb_read.
info _null "Now is the time"
Entering cb_queue.
A message of type info is being inserted at position 1.
Entering cb_queue.
A message of type numeric_data is being deleted at position 0.
Entering cb_process_numeric_data.
voltage = 33.4534
switch_pos = 0
Entering cb_queue.
 TIBCO SmartSockets User’s Guide

100 | Chapter 2 Connections
A message of type info is being deleted at position 0.
Entering cb_default.
Message type name is info.
Entering cb_error.
The error number is 10.
Server process exiting successfully.

The output from the client program is:

Creating connection to server process.
Create callbacks.
Constructing and sending a NUMERIC_DATA message.
Entering cb_write.
numeric_data _null {
 voltage 33.4534
 switch_pos 0
}
Constructing and sending an INFO messages.
Entering cb_write.
info _null "Now is the time"
Client process exiting successfully.

Include Files
Code written in C or C++ that uses the SmartSockets Application Programming
Interface (API) must include the header file <rtworks/ipc.h>. This file is located
in these directories:

UNIX:
$RTHOME/include/$RTARCH/rtworks

OpenVMS:
RTHOME:[INCLUDE.RTWORKS]

Windows:
%RTHOME%\include\rtworks

The SmartSockets IPC API includes all the functions used for interprocess
communication.
TIBCO SmartSockets User’s Guide

Working With Connections | 101
Logical Connection Names
SmartSockets simplifies the creation of connections with logical connection names
that are specified consistently for all protocols. A server process uses a logical
connection name to create a server connection, and a client process uses the same
logical connection name to create a client connection to the server process. Each
logical connection name has the form:

protocol:node:address

which can be shortened to protocol:node, protocol, or simply node for normal
connections. For the client process to find the server process, the logical
connection name used by the client must exactly match the logical connection
name used by the server (for example, the name tcp:moe:1234 does not match
the name tcp:conan:1234). The exception to this is when the server that the
client process is trying to find has more than one IP address. For more
information on this case, see Multiple IP Addresses on page 102.

This section describes the features of logical connection names in peer-to-peer
connections. For a discussion of how RTserver and RTclient add more function to
logical connection names, such as search lists and abbreviated names, see Logical
Connection Names for RT Processes on page 192.

Protocol Portion

The protocol part of the connection name refers to an IPC protocol type. The valid
values for protocol are local and tcp. RTclient and RTserver can also use the
udp_broadcast protocol to find an RTserver. See The Udp_Broadcast Protocol on
page 193 for more details on the udp_broadcast protocol.

Node Portion

The node part of the connection name refers to a computer node name. The special
value _node can be used for node to indicate the name of the current node; this is
useful for generalizing a connection name to work on any computer. See the
TutSocketCreate* functions in the TIBCO SmartSockets Utilities reference for more
details on the node name formats.
 TIBCO SmartSockets User’s Guide

102 | Chapter 2 Connections
Address Portion

The address part of the connection name refers to a protocol-specific IPC location,
such as a TCP port number. The addresses for all protocols are:

For the tcp and udp_broadcast protocols, the address can be either an integer
port number or a service name accessible with the getservbyname socket
function (internally SmartSockets always uses "tcp" for the proto second
argument to getservbyname, even for udp_broadcast logical connection names).

Multiple IP Addresses
Generally, for the client process to find a server process, the logical connection
name used by the client must exactly match the logical connection name used by
the server. For example, the name tcp:moe:1234 does not match the name
tcp:conan:1234. However, this perfect match is not necessarily needed when the
client is trying to find a server that has more than one IP address. A server or host
with more than one IP address is called a multi-homed host. If the server uses
_any as its node in the logical connection name, the server listens on all IP
addresses. Using _node causes the server to listen only on the default IP address.

Protocol Name Description of Address

local file name in the directory specified by the
function TutGetSocketDir

tcp TCP port number or service name

udp_broadcast UDP port number or service name

Using the keyword _any in the logical connection name is discouraged for server
to server connections. When a server connects to another server whose logical
connection name uses _any, the server might attempt to reconnect every
Server_Reconnect_Interval seconds. This is a known problem and will be fixed in
a future release.
TIBCO SmartSockets User’s Guide

Working With Connections | 103
Creating Connections
The standard client-server model for network applications is used when creating
connections. The server starts first and waits to be contacted by the client. Once
the server and client make contact, they become equal partners, and the model
switches to a peer-to-peer model. Three steps (as shown in Figure 6, Figure 7, and
Figure 8) are required when two processes create connections to each other.

1. The server process creates a server connection that is used to accept client
processes. After creating this connection, the server process waits for client
processes to connect.

Figure 6 Server Creates a Connection

2. A client process creates a client connection and rendezvous with the server
connection.

Figure 7 Client Creates Connection and Rendezvous With Server Connection

3. The server process accepts the client connection and creates a new connection
for that client, thereby establishing a communication link, and keeps its
original connection open for accepting connections from other client
processes.

Figure 8 Server and Client Connection

Connection open to
accept clients.Server

Connection

Client ProcessServer Process

Client
Connection

Client ProcessServer Process

Server
Connection

Connection open to
accept clients.

Client
Connection

Client Process

Server
Connection

Server Process

Accepted
Connection
 TIBCO SmartSockets User’s Guide

104 | Chapter 2 Connections
The concepts of servers and clients only apply when the two processes are
creating connections. Once the server has accepted the client, both processes have
equivalent connections to each other. Both processes can send and receive
messages using their connections, and there is no conceptual difference between
the server and the client process. The model switches from client-server to
peer-to-peer. A single process can have any number of server connections, client
connections, and connections accepted from clients.

Creating a Server Connection

The server connection, which can use any one of the supported protocols, is
created by calling the function TipcConnCreateServer with a logical connection
name parameter used to identify the server connection. For example:

server_conn = TipcConnCreateServer("tcp:_node:5252");
 if (server_conn == NULL) {
 TutOut("Could not create server connection: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

The only purpose of a server connection is to accept client connections. Messages
cannot be sent or received on a server connection. Two server connections on the
same node using the same IPC protocol cannot use the same logical connection
name address portion.

Creating a Client Connection

In a fashion similar to server connections, a client connection is created by calling
the function TipcConnCreateClient with a logical connection name parameter that
must match the name used with TipcConnCreateServer. For example:

conn = TipcConnCreateClient("tcp:_node:5252");
 if (conn == NULL) {
 TutOut("Could not create connection to server: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

The client connection must use the same IPC protocol as the server. The client
connection must be created after the server connection, as the client needs
something to contact.
TIBCO SmartSockets User’s Guide

Working With Connections | 105
The Server Accepts the Client

Once the client has called TipcConnCreateClient to create its connection, the
server process must accept the client by calling the function TipcConnAccept. For
example:

client_conn = TipcConnAccept(server_conn);
 if (client_conn == NULL) {
 TutOut("Could not accept client: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

When the server process accepts the client, a new connection is created and
returned by TipcConnAccept. This new connection is the peer-to-peer link for the
server process to communicate with the client process. The client process gets its
peer-to-peer link directly from TipcConnCreateClient. After each call to
TipcConnAccept, the original server connection is unchanged and can be used to
accept more clients later.

A server process can accept any number of clients by calling TipcConnAccept
once for each client. Each connection does use an operating system file descriptor,
though, and most operating systems have a limit on how many open file
descriptors a process can have. See File Descriptor Upper Limit on page 148 for
information on how to increase the open file descriptor limit.

While TipcConnCreateServer can execute and return immediately, both
TipcConnCreateClient and TipcConnAccept do not return until both sides of the
peer-to-peer link are established. During the transition from client-server to
peer-to-peer, the client and server simultaneously exchange some initial
handshaking information, such as the SmartSockets IPC protocol version (which
is defined in <rtworks/ipc.h> as T_IPC_PROTOCOL_VERSION), integer
number format (C type T_INT_FORMAT), and real number format (C type
T_REAL_FORMAT). One process cannot be both the server and client ends of the
same connection due to this simultaneous handshaking. The protocol version
exchange prevents incompatible clients and servers from contacting each other,
and also allows newer protocol versions to communicate with older protocol
versions. Future versions of SmartSockets will be protocol compatible with the
current version, and new message and connection features will be added in a
compatible way to allow old and new versions to interoperate. The integer and
real number formats are used to convert fields in messages when messages are
sent between heterogeneous nodes (see Sending Messages in a Heterogeneous
Environment on page 123 for information on the handling of messages in a
heterogeneous environment).
 TIBCO SmartSockets User’s Guide

106 | Chapter 2 Connections
If there are no clients waiting to be accepted, TipcConnAccept does not return
until a client does connect (unless non-blocking operations are enabled with
TipcConnSetBlockMode). The server process can use the function TipcConnCheck
to check if a client has connected:

if (TipcConnCheck(server_conn, T_IPC_SOCKET_CHECK_READ)) {
 TutOut("A client is waiting to be accepted.\n");
}

Destroying a Connection
When a process is finished with a connection, the connection should be destroyed
to free up the memory it occupies and close the socket. This is done with the
TipcConnDestroy function.

If a process no longer wants to accept clients on a server connection, that
connection can be destroyed.

For example:

if (!TipcConnDestroy(server_conn)) {
 TutOut("Could not destroy server connection: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}

If a client process is done with a connection, the connection can be destroyed. For
example:

if (!TipcConnDestroy(conn)) {
 TutOut("Could not destroy connection: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}

When a process or task exits, the operating system automatically closes any open
sockets the process had. When a peer-to-peer socket of a connection is closed, the
process at the other end eventually gets an error number of T_ERR_EOF when
trying to read or write data on its connection.

A process with connections using the tcp protocol may lose outgoing messages if
the process terminates without calling TipcConnDestroy to destroy each
connection. TCP/IP’s SO_LINGER option, which preserves data, is ignored when
closing a socket that has non-blocking I/O enabled. While data loss rarely occurs
on UNIX and OpenVMS, it can happen frequently on Windows.
TipcConnDestroy sets the block mode of the connection to FALSE before closing
the connection’s socket, which forces the operating system to deliver all flushed
outgoing messages.
TIBCO SmartSockets User’s Guide

Working With Connections | 107
Callbacks
Once two processes have created connections to each other, each process can
create connection callbacks to be executed when certain operations occur.
Callbacks are conceptually equivalent to dynamically adding a line of code to a
program. The SmartSockets Utilities reference contains more information on
callbacks, which are manipulated using utilities.

Process Callbacks

Connection process callbacks are executed while processing a message with the
function TipcConnMsgProcess. This callback type is the most frequently used. A
process callback can be called for a specific type of message or created globally
and called for all message types. For example, a process callback can be created
for the NUMERIC_DATA message type. When any message of that type is
processed by calling TipcConnMsgProcess, the process callback is called. If the
process callback is created globally, it is called for all NUMERIC_DATA type
messages as well as any other type of message.

Function to create callback:

TipcConnProcessCbCreate. For example:

if (TipcConnProcessCbCreate(conn, mt, my_func, my_arg) == NULL) {
 /* error */
}

Function to look up callback:

TipcConnProcessCbLookup. For example:

cb = TipcConnProcessCbLookup(conn, mt, my_func, my_arg);
if (cb == NULL) {
 /* error */
}

 TIBCO SmartSockets User’s Guide

108 | Chapter 2 Connections
Default Callbacks

Connection default callbacks are executed while processing a message with the
function TipcConnMsgProcess if a process callback specific to the message type
(that is, not a global process callback) has not been called. Default callbacks are
useful for processing unexpected message types or for generic processing of most
message types. For example, you have a client process to manage and display
alarm messages. The only process callback you would want for that client process
would be for messages of type "alarm." You could then write a default callback to
process any other type of data received and display a warning.

Function to create callback:

TipcConnDefaultCbCreate. For example:

if (TipcConnDefaultCbCreate(conn, my_func, my_arg) == NULL) {
 /* error */
}

Function to look up callback:

TipcConnDefaultCbLookup. For example:

cb = TipcConnDefaultCbLookup(conn, my_func, my_arg);
if (cb == NULL) {
 /* error */
}

Read Callbacks

Connection read callbacks are executed when an incoming message is read from a
connection’s socket into the read buffer and first unpacked into a message. Read
callbacks are most commonly used for writing incoming messages to message
files.

Function to create callback:

TipcConnReadCbCreate. For example:

if (TipcConnReadCbCreate(conn, mt, my_func, my_arg) == NULL) {
 /* error */
}

TIBCO SmartSockets User’s Guide

Working With Connections | 109
Function to look up callback:

TipcConnReadCbLookup. For example:

cb = TipcConnReadCbLookup(conn, mt, my_func, my_arg);
if (cb == NULL) {
 /* error */
}

Write Callbacks

Connection write callbacks are executed when an outgoing message is sent to a
connection (that is, copied to a connection’s write buffer). Write callbacks are most
commonly used for writing outgoing messages to message files.

Function to create callback:

TipcConnWriteCbCreate. For example:

if (TipcConnWriteCbCreate(conn, mt, my_func, my_arg) == NULL) {
 /* error */
}

Function to look up callback:

TipcConnWriteCbLookup. For example:

cb = TipcConnWriteCbLookup(conn, mt, my_func, my_arg);
if (cb == NULL) {
 /* error */
}

Queue Callbacks

Connection queue callbacks are executed when a message is inserted into or
deleted from a connection’s message queue. Queue callbacks are useful for
watching the messages that have been read in from a connection’s socket and
inserted into the message queue, but not yet processed.

Function to create callback:

TipcConnQueueCbCreate. For example:

if (TipcConnQueueCbCreate(conn, mt, my_func, my_arg) == NULL) {
 /* error */
}

 TIBCO SmartSockets User’s Guide

110 | Chapter 2 Connections
Function to look up callback:

TipcConnQueueCbLookup. For example:

cb = TipcConnQueueCbLookup(conn, mt, my_func, my_arg);
if (cb == NULL) {
 /* error */
}

Error Callbacks

Connection error callbacks are executed when an unrecoverable error occurs.
These errors include socket problems and network failures such as:

• A read timeout has occurred and the keep alive then failed.

• A write timeout has occurred.

• A read operation on the connection’s socket failed. The most common cause of
this error is that the process at the other end of the connection has destroyed
its connection, which will close the socket.

• A write operation on the connection’s socket failed. The most common cause
of this error is that the process at the other end of the connection has
destroyed its connection, which will close the socket.

Function to create callback:

TipcConnErrorCbCreate. For example:

if (TipcConnErrorCbCreate(conn, my_func, my_arg) == NULL) {
 /* error */
}

Function to look up callback:

TipcConnErrorCbLookup. For example:

cb = TipcConnErrorCbLookup(conn, my_func, my_arg);
if (cb == NULL) {
 /* error */
}

TIBCO SmartSockets User’s Guide

Working With Connections | 111
Example of Process Callback

This creates a process callback, called whenever a NUMERIC_DATA message is
processed:

mt = TipcMtLookupByNum(T_MT_NUMERIC_DATA);
 if (mt == NULL) {
 TutOut("Could not look up NUMERIC_DATA msg type: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (TipcConnProcessCbCreate(client_conn, mt,
cb_process_numeric_data,
 NULL) == NULL) {
 TutOut("Could not create NUMERIC_DATA process cb: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

Example of Default Callback

This creates a default callback, called when a message is processed that has no
process callbacks:

if (TipcConnDefaultCbCreate(client_conn,
 cb_default, NULL) == NULL) {
 TutOut("Could not create default cb: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

Example of Read Callback

This example creates a global read callback that is called whenever any message is
read from a connection:

if (TipcConnReadCbCreate(client_conn,
 NULL, /* global callback */
 cb_read,
 msg_file) == NULL) {
 TutOut("Could not create read cb: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}

 TIBCO SmartSockets User’s Guide

112 | Chapter 2 Connections
Example of Write Callback

This example creates a global write callback that is called whenever any message
is written to a connection:

if (TipcConnWriteCbCreate(conn,
 NULL, /* global callback */
 cb_write,
 msg_file) == NULL) {
 TutOut("Could not create write cb: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}

Example of Queue Callback

This example creates a global queue callback that is called whenever any message
is inserted into or deleted from a connection’s message queue:

if (TipcConnQueueCbCreate(client_conn,
 NULL, /* global callback */
 cb_queue,
 NULL) == NULL) {
 TutOut("Could not create queue cb: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}

Example of Error Callback

This example creates an error callback that is called whenever a non-recoverable
error occurs on a connection:

if (TipcConnErrorCbCreate(client_conn,
 cb_error,
 NULL) == NULL) {
 TutOut("Could not create error cb: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}

TIBCO SmartSockets User’s Guide

Working With Connections | 113
Callback Functions

Each connection callback has a specific function (such as
cb_process_numeric_data) and argument (such as NULL). Several types of
connection callbacks, such as process callbacks, also have a message type (such as
NUMERIC_DATA) associated with them. The most commonly used connection
callback type is the process callback. Process callback functions are used to
perform the main processing of a message.

The following section describes a callback function in detail. This callback
function, which is called when a message of type NUMERIC_DATA is processed
with TipcConnMsgProcess, simply accesses and prints the fields of the message:

/*..cb_process_numeric_data -- process callback for NUMERIC_DATA */
static void T_ENTRY cb_process_numeric_data(

T_IPC_CONN conn,
T_IPC_CONN_PROCESS_CB_DATA data,
T_CB_ARG arg)

Notice that this callback is declared with the macro T_ENTRY. This is necessary
for cross-platform portability. All prototypes and definitions of callbacks and
thread functions must be declared with T_ENTRY.

All SmartSockets callback functions do not return a value and take three
parameters:

• an opaque data type (type T_IPC_CONN in the case of connection callbacks)

• a non-opaque callback type-specific data argument

• a user-defined argument

{
 T_STR name;
 T_REAL8 value;

 /* set current field to first field in message */
 if (!TipcMsgSetCurrent(data->msg, 0)) {
 TutOut("Could not set current field of message: error <%s>.\n",
 TutErrStrGet());
 return;
 }

The message being processed is available in the data parameter. Every callback
function should first set the current field of the message before accessing the
message fields, as the current field could be set to any field when the callback
function is called.

/* access and print fields */
while (TipcMsgNextStrReal8(data->msg, &name, &value)) {
 TutOut("%s = %s\n", name, TutRealToStr(value));
 }
 TIBCO SmartSockets User’s Guide

114 | Chapter 2 Connections
/* make sure we reached the end of the message */
if (TutErrNumGet() != T_ERR_MSG_EOM) {
 TutOut("Did not reach end of message: error <%s>.\n",
 TutErrStrGet());
 }
} /* cb_process_numeric_data */

The above while loop accesses and prints all the name-value pairs from the
NUMERIC_DATA message. The final error check for T_ERR_MSG_EOM ensures
that the while loop reached the end of the message as expected (that is, some
other error condition such as a message field type mismatch did not occur). Each
application can add more or less error checking as desired.

Type-Specific Data Arguments

The non-opaque callback type-specific data argument varies among callback
types. All SmartSockets callback type-specific data argument types must have a
T_CB callback value as their first field.

Table 4 shows the callback type-specific data argument types for all connection
callback types and the fields in those argument types.

Table 4 Connection Callback Types

Callback
Type

Type of Second Parameter to
Callback Functions Fields in This Type

process T_IPC_CONN_PROCESS_CB_DATA T_CB cb;

T_IPC_MSG msg;

default T_IPC_CONN_DEFAULT_CB_DATA T_CB cb;

T_IPC_MSG msg;

read T_IPC_CONN_READ_CB_DATA T_CB cb;

T_IPC_MSG msg;

T_INT4 packet_size;

write T_IPC_CONN_WRITE_CB_DATA T_CB cb;

T_IPC_MSG msg;

queue T_IPC_CONN_QUEUE_CB_DATA T_CB cb;

T_IPC_MSG msg;

T_BOOL insert_flag;

T_INT4 position;
TIBCO SmartSockets User’s Guide

Working With Connections | 115
Receiving and Processing Messages
As described earlier, a connection has a priority queue of incoming messages. The
message at the front of this queue can be retrieved with the function
TipcConnMsgNext. This message is normally processed immediately with the
function TipcConnMsgProcess and then destroyed with the function
TipcMsgDestroy.

For example:

while ((msg = TipcConnMsgNext(client_conn, T_TIMEOUT_FOREVER))
 != NULL) {
 if (!TipcConnMsgProcess(client_conn, msg)) {
 TutOut("Could not process message: error <%s>.\n",
 TutErrStrGet());
 }
 if (!TipcMsgDestroy(msg)) {
 TutOut("Could not destroy message: error <%s>.\n",
 TutErrStrGet());
 }
}

/* make sure we reached the end of the data */
if (TutErrNumGet() != T_ERR_EOF) {
 TutOut("Did not reach end of data: error <%s>.\n",
 TutErrStrGet());
}

The above while loop receives and processes all messages from the connection,
and the final error check for T_ERR_EOF ensures that the while loop reached the
end of the data as expected. Each application can add more or less error checking
as desired.

If there are no messages in the connection’s message queue, then
TipcConnMsgNext reads data from the connection by calling the function
TipcConnRead over and over until a full message has been read in, a certain
period of time has elapsed, or an error occurs.

error T_IPC_CONN_ERROR_CB_DATA T_CB cb;

T_INT4 err_num;

T_INT4 c_err_num;

T_INT4 os_err_num;

T_INT4 socket_err_num;

Table 4 Connection Callback Types (Cont’d)

Callback
Type

Type of Second Parameter to
Callback Functions Fields in This Type
 TIBCO SmartSockets User’s Guide

116 | Chapter 2 Connections
As TipcConnRead reads in each message packet, it converts the message packet
into a message. The connection read callbacks are executed by TipcConnRead
each time a full message is read into the connection’s read buffer. The connection
queue callbacks are executed by TipcConnMsgInsert each time a message is
inserted into a connection’s message queue, and by TipcConnMsgNext and
TipcConnMsgSearch each time a message is removed from a connection’s
message queue.

If necessary, TipcConnRead converts the integers, real numbers, and strings in the
message header to the format used by the receiving process (see Sending
Messages in a Heterogeneous Environment on page 123 to learn more about
sending messages between different types of computers). TipcConnRead also
performs some checks for duplicate messages if the received message was sent
with GMD. See Receiving Messages on page 337 for details on the GMD-specific
aspects of receiving messages.

The second parameter to TipcConnMsgNext specifies the maximum amount of
time (in seconds) that it waits for an incoming message to arrive. The timeout 0.0
can be used to get the next message that is immediately available, the timeout
T_TIMEOUT_FOREVER can be used to wait indefinitely for the next message,
and any non-negative timeout can be used to wait for a certain period of time for
the next message.

TipcConnMsgProcess executes the connection default callbacks only if there are
no connection process callbacks for the type of the message being processed. The
two levels of callbacks allow for greater flexibility: process callbacks can handle
message type-specific needs and default callbacks can be used to handle generic
needs. While most messages should be processed with TipcConnMsgProcess so
that the connection process and default callbacks can be executed, there is no
requirement that all messages be processed this way.

If a process does not need the flexibility and extensibility that connection
callbacks offer, it can call TipcConnMsgNext to get a message and then access the
fields of the message directly with the TipcMsgNextType functions. All of the
SmartSockets modules such as RTdaq, however, use callbacks to process
messages, so that user-defined callbacks can also be added to extend the function.
TIBCO SmartSockets User’s Guide

Working With Connections | 117
Using the TipcConnMainLoop Convenience Function

The TipcConnMainLoop convenience function receives and processes messages
by calling TipcConnMsgNext, TipcConnMsgProcess, and TipcMsgDestroy over
and over. Using this function, the previous loop is rewritten as shown:

if (!TipcConnMainLoop(client_conn, T_TIMEOUT_FOREVER)) {
 /* make sure we reached the end of the data */
 if (TutErrNumGet() != T_ERR_EOF) {
 TutOut("Did not reach end of data: error <%s>.\n",
 TutErrStrGet());
 }
}

Searching for Incoming Messages With the TipcConnMsgSearch Function

In most situations, incoming messages should be accessed sequentially with
TipcConnMsgNext. Sometimes, though, messages need to be accessed in
non-priority order. Examples of this include remote procedure calls (see Remote
Procedure Calls on page 147 for more information) and checking for a message of
a specific type. The function TipcConnMsgSearch is used to search for a specific
message. For example, to search for a NUMERIC_DATA message, this search
function could be used:

/* === */
/*..search_numeric_data -- search for NUMERIC_DATA */
static T_BOOL T_ENTRY search_numeric_data(conn, msg, arg)
T_IPC_CONN conn;
T_IPC_MSG msg;
T_PTR arg;
{
 T_BOOL status;
 T_IPC_MT mt;
 T_INT4 num;

 if (!TipcMsgGetType(msg, &mt)) {
 TutOut("could not get msg type: error <%s>\n",
 TutErrStrGet());
 (void)TipcMsgPrint(msg, TutOut);
 return FALSE;
 }
 if (!TipcMtGetNum(mt, &num)) {
 TutOut("could not get message type num: error <%s>\n",
 TutErrStrGet());
 (void)TipcMsgPrint(msg, TutOut);
 return FALSE;
 }
 TIBCO SmartSockets User’s Guide

118 | Chapter 2 Connections
 /* return TRUE if message type matches what we want */
 return num == T_MT_NUMERIC_DATA;
} /* search_numeric_data */

The above search function search_numeric_data could then be used as follows:

msg = TipcConnMsgSearch(conn, T_TIMEOUT_FOREVER,
 search_numeric_data, NULL);
if (msg == NULL) {
 TutOut("Could not find NUMERIC_DATA message: error <%s>.\n",
 TutErrStrGet());
}

TipcConnMsgSearch traverses a connection’s message queue and calls a
user-defined search function once for each message. If the end of the message
queue is reached, then TipcConnMsgSearch calls the function TipcConnRead to
receive more messages into the message queue and then starts over again at the
front of the queue. TipcConnMsgSearch returns when, the search function returns
TRUE, a certain period of time has elapsed, or an error occurs.

If the search function returns TRUE, then TipcConnMsgSearch removes the
desired message from the connection’s message queue and returns the message.
The second parameter to TipcConnMsgSearch specifies a timeout just like the
second parameter to TipcConnMsgNext.

Using the TipcConnMsgSearchType Convenience Function

The TipcConnMsgSearchType convenience function searches for a message with a
specific type by calling TipcConnMsgSearch. Using this function, the code is
rewritten as shown in the example:

mt = TipcMtLookupByNum(T_MT_NUMERIC_DATA);
if (mt == NULL) {
 TutOut("Could not look up NUMERIC_DATA msg type: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}

msg = TipcConnMsgSearchType(conn, T_TIMEOUT_FOREVER, mt);
if (msg == NULL) {
 TutOut("Could not find NUMERIC_DATA message: error <%s>.\n",
 TutErrStrGet());
}

Note that if TipcConnMsgSearchType is used, no search function is needed.
TIBCO SmartSockets User’s Guide

Working With Connections | 119
Buffering of Incoming Messages

When a message is received through a connection, it passes through several
buffers before finally being accessed with TipcConnMsgNext or
TipcConnMsgSearch. A buffer is an area of memory where data, such as
messages, is stored while waiting to be accessed or transmitted. For incoming
messages, these buffers are used:

• the connection‘s socket’s incoming buffer

• the connection’s read buffer

• the connection’s message queue

Most of these buffers cannot be accessed directly, but inefficient use of these
buffers can reduce the performance of connections. When messages are
transferred from the connection’s socket’s incoming buffer to the connection’s
read buffer (this is done by TipcConnRead), an (operating system) system call is
performed. System call functions are necessary, but they are much more
time-consuming than normal functions, and better performance can be achieved
by batching data transfers into fewer system calls. A connection’s read buffer
helps to batch incoming data transfers by allowing TipcConnRead to read as
much data as possible for each system call.

Because sockets are byte streams, large messages may be received in pieces, which
are buffered in the connection’s read buffer until the entire message is received.
Once the full incoming message is received, it is transferred to the connection’s
message queue and is available to be accessed and processed.
 TIBCO SmartSockets User’s Guide

120 | Chapter 2 Connections
Sending Messages
Once a message has been constructed with the TipcMsg* functions, it can be sent
through the connection with the function TipcConnMsgSend. The code constructs
and sends a NUMERIC_DATA message:

mt = TipcMtLookupByNum(T_MT_NUMERIC_DATA);
if (mt == NULL) {
 TutOut("Could not look up NUMERIC_DATA msg type: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}

msg = TipcMsgCreate(mt);
if (msg == NULL) {
 TutOut("Could not create NUMERIC_DATA message: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}

if (!TipcMsgWrite(msg,
 T_IPC_FT_STR, "voltage",
 T_IPC_FT_REAL8, 33.4534,
 T_IPC_FT_STR, "switch_pos",
 T_IPC_FT_REAL8, 0.0,
 NULL)) {
 TutOut("Could not append to NUMERIC_DATA msg: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}

if (!TipcConnMsgSend(conn, msg)) {
 TutOut("Could not send NUMERIC_DATA message: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}

TipcConnMsgSend executes the connection write callbacks, converts the message
into a message packet, and then appends the message packet to the end of the
connection’s write buffer. If the message’s header string encode property is TRUE,
the message header string properties, such as destination, are stored as four-byte
integers in the message packet, which compresses the message header so as to use
less network bandwidth. See Header String Encode on page 14 for more
information about message header string encoding.

TipcConnMsgSend also saves a copy of the outgoing message in the connection
GMD area if the message is sent with GMD. See Sending Messages on page 336
for details on the GMD-specific aspects of sending messages. TipcConnMsgSend
then calls TipcConnFlush to flush the buffered outgoing data to the connection’s
socket if the connection’s auto flush size is not T_IPC_NO_AUTO_FLUSH, and
the number of bytes buffered in the connection’s write buffer is larger than the
value of the connection’s auto flush size.
TIBCO SmartSockets User’s Guide

Working With Connections | 121
See Buffering of Outgoing Messages on page 122 for more information on how
outgoing messages are buffered.

Using the TipcConnMsgWrite Convenience Function

The TipcConnMsgWrite convenience function handles a variable number of
arguments and allows you to create a message, append fields, send the message
on a connection, and destroy the message. The function takes enumerated values
that begin with T_IPC_FT_TYPE, where TYPE is replaced by a field type as shown
in Table 1 on page 7, such as T_IPC_FT_STR. A final parameter of NULL is used to
terminate the variable number of arguments. Using this function, the above
NUMERIC_DATA message could be constructed and sent as follows:

mt = TipcMtLookupByNum(T_MT_NUMERIC_DATA);
if (mt == NULL) {
 TutOut("Could not look up NUMERIC_DATA msg type: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}

if (!TipcConnMsgWrite(conn, mt,
 T_IPC_FT_STR, "voltage",
 T_IPC_FT_REAL8, 33.4534,
 T_IPC_FT_STR, "switch_pos",
 T_IPC_FT_REAL8, 0.0,
 NULL)) {
 TutOut("Could not append to NUMERIC_DATA message: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}

C/C++ functions that use a variable number of arguments often require fewer
lines of code to use, but no type checking is done by the C/C++ compiler on the
variable arguments.
 TIBCO SmartSockets User’s Guide

122 | Chapter 2 Connections
As an added convenience, TipcConnMsgWrite also allows enumerated values
that begin with T_IPC_PROP_NAME, where NAME is replaced by a message
property name, such as T_IPC_PROP_DELIVERY_MODE. For example, a
complex message can be constructed and sent with one call to
TipcConnMsgWrite:

if (!TipcConnMsgWrite(conn, mt,
 T_IPC_PROP_SENDER, "/_conan_5415",
 T_IPC_PROP_DEST, "/system/thermal",
 T_IPC_PROP_PRIORITY, 2,
 T_IPC_PROP_DELIVERY_MODE, T_IPC_DELIVERY_ALL,
 T_IPC_PROP_DELIVERY_TIMEOUT, 20.0,
 T_IPC_PROP_LB_MODE, T_IPC_LB_WEIGHTED,
 T_IPC_PROP_HEADER_STR_ENCODE, TRUE,
 T_IPC_PROP_USER_PROP, 42,
 T_IPC_FT_STR, "voltage",
 T_IPC_FT_REAL8, 33.4534,
 T_IPC_FT_STR, "switch_pos",
 T_IPC_FT_REAL8, 0.0,
 NULL)) {
 /* error */
}

Buffering of Outgoing Messages

When a message is sent through a connection by calling TipcConnMsgSend, it
passes through several buffers. A buffer is an area of memory where data, such as
messages, is stored while waiting to be accessed or transmitted. For outgoing
messages, these buffers are used:

• the connection’s write buffer

• the connection‘s socket’s outgoing buffer

These buffers cannot be accessed directly, but inefficient use of these buffers can
reduce the performance of connections. When messages are transferred from the
connection’s write buffer to the connection’s socket’s outgoing buffer (this is done
by TipcConnFlush), an (operating system) system call is performed. System call
functions are necessary, but they are much more time-consuming than normal
functions, and better performance can be achieved by batching data transfers into
fewer system calls. A connection’s write buffer helps to batch outgoing data
transfers by allowing TipcConnFlush to write as much data as possible for each
system call.

In most situations, the connection’s auto flush size property can be used to control
when the function TipcConnFlush is called automatically. Sometimes, though, a
program does need to use TipcConnFlush explicitly to force outgoing buffered
messages to be flushed. If a program sends messages and then does not call any
other TipcConn* functions for a period of time, the outgoing messages sit in the
connection’s write buffer. If the program sends messages and then calls
TipcConnMsgNext right away to get the next available message, the program
TIBCO SmartSockets User’s Guide

Working With Connections | 123
does not need to call TipcConnFlush (as TipcConnMsgNext calls TipcConnRead,
which automatically flushes the buffered outgoing data). Flushing the write
buffer before reading allows responses to the outgoing messages to be available
sooner.

Sending Messages in a Heterogeneous Environment
SmartSockets allows messages to be sent between processes on different types of
computers, such as Intel x86 and Sun SPARC. Converting a message from one
kind of platform to another is handled transparently by the SmartSockets API.
The rest of this section describes in detail how this is done.

In a heterogeneous environment, different computer nodes on a network often
have incompatible integer, real number, and string formats. A common example
is Sun SPARC and Intel x86. All of the platforms supported by SmartSockets use
two’s complement integer arithmetic, but there are two common integer layouts:

• big endian — the least significant byte of a number is in the highest address

• little endian — the least significant byte of a number is in the lowest address

Most non-Digital and non-Intel computers use big-endian format. Converting
integers between big-endian and little-endian formats is simple and involves
byte-swapping the entire integer. Only two-byte (C type T_INT2), four-byte
integers (C type T_INT4), and eight-byte integers (C type T_INT8) have to be
byte-swapped; one-byte (C type T_CHAR) integers and NULL-terminated
character strings do not need any conversion when moving data between
platforms using the single byte, US ASCII character set. Additional character set
considerations are discussed later in this section.

A similar situation exists for real numbers. These real number formats exist for
the platforms supported by SmartSockets:

• IEEE — almost-universal floating-point format

• DEC D — default format for OpenVMS VAX 8-byte real numbers (C type
T_REAL8)

• DEC F — format for OpenVMS 4-byte real numbers (C type T_REAL4)

• DEC G — default format for OpenVMS AXP 8-byte real numbers (C type
T_REAL8)

Most platforms supported by SmartSockets use IEEE floating-point format for
real numbers. In addition to the above formats, real numbers are subject to the
same endian-ness byte order that integers use. For example, IEEE numbers are
big-endian on most platforms but are little-endian on a few platforms.
 TIBCO SmartSockets User’s Guide

124 | Chapter 2 Connections
For characters and character strings, there are two possibilities:

• ASCII — ANSI standard character format

• EBCDIC — MVS character format

When a message is read from a connection, the integers, real numbers, and strings
within the message header are automatically converted from the formats of the
sending process to the formats of the receiving process by the function
TipcConnRead. The message data information is converted on an incremental
per-field basis by the TipcMsgNext* functions. This conversion scheme is
commonly known as receiver-makes-right data conversion. Because the data
fields in a message are only converted when the data is accessed, RTserver routes
publish-subscribe messages without performing any conversion on the data
fields.

Message conversion always takes place in the receiving process and only happens
when necessary (that is, no conversion happens when both processes have the
same formats). As described in The Server Accepts the Client on page 105, when
two processes create connections to each other, they first exchange with each
other their integer format and real number format (the character format is
deduced from the real number format). This format information is used by
TipcConnRead to determine when conversion is needed.
TIBCO SmartSockets User’s Guide

Using Threads With Connections | 125
Using Threads With Connections

Threads are a widely supported abstraction for concurrent programming. Many
modern operating systems have incorporated threads to leverage the availability
of relatively low-cost multiprocessor hardware. In fact, this often represents the
compelling reason to incorporate threads into any software design. A concurrent,
multithreaded program has the potential to fully utilize hardware platforms with
two or more processors, whereas a sequential, single-threaded program does not.
Even on uniprocessor systems, multithreaded programs can improve throughput
by overlapping processing and I/O requests without resorting to relatively
complex and non-portable asynchronous I/O facilities. Threads have also long
been recognized as a tool for implementing demanding software requirements for
high availability and responsiveness. SmartSockets is designed to support the
multiple-threads for each connection model and the single-thread for each
connection model of multithreaded applications.

The benefits of a multithreaded application, however, must be weighed carefully
against its costs in resource consumption, efficiency, and program complexity.
Because threads operate within a shared address space, their activities must be
carefully synchronized to insure that they do not interfere with one another. If an
application does not lend itself to partitioning into discrete units of processing of
a reasonable size, synchronization overhead can quickly outweigh the benefits of
concurrency even on multiprocessor hardware platforms. Threads are simply not
appropriate for all programs.

It is worth noting, however, that SmartSockets applications often do lend
themselves well to multithreaded implementations. This is particularly true of
server processes, which may get multiple requests from independent clients
simultaneously. These requests must be handled serially if the server has only one
thread of control, allowing long requests to block the servicing of other pending
requests. Multithreaded processes can be more adaptive to such variations,
allowing short requests to complete out of sequence. The use of multiple threads
also offers an alternative to the UNIX convention of forking a child process to deal
with each new client.

SmartSockets connections are designed to serve as high-level synchronization
objects in multithreaded applications. Each connection has a set of mutexes
(mutual exclusion locks) that are used to ensure that threads sharing the same
connection do not interfere with each other, yet can operate concurrently where
there is no chance of interference. For instance, one thread may be sending a
message on a connection, while a second thread is retrieving the next received
message from the connection’s queue, and a third and fourth thread are both
running one of the connection’s process callbacks.
 TIBCO SmartSockets User’s Guide

126 | Chapter 2 Connections
The following server and client examples demonstrate how to write a
connection-based server program that handles multiple simultaneous clients by
using a separate thread for each client connection. To simplify the example, a
fixed number of server threads (controlled by #define SERVER_COUNT 2) are
created in advance. This determines the maximum number of client connections
that may be simultaneously serviced. Should more than SERVER_COUNT clients
attempt to connect to the server, excess clients would be unable to successfully
complete their connection until one of the server threads becomes available.

There is also an example that extends this server to use multiple threads for each
client connection. This allows multiple messages from the same client to be
processed in parallel instead of serially, thus substantially improving response
times. See Adding Multiple Threads for a Client on page 134 for details.

The source code files for this example are located in these directories:

UNIX:
$RTHOME/examples/smrtsock/manual

OpenVMS:
RTHOME:[EXAMPLES.SMRTSOCK.MANUAL]

Windows:
%RTHOME%\examples\smrtsock\manual

The online source files have additional #ifdefs to provide C++ support. These
#ifdefs are not shown to simplify the example.

Example 9 Multithreaded Server Source Code

/* connmts1.c -- multithreaded connections example server 1 */

/*
This program uses multiple server threads which allows multiple clients to connect and submit
messages simultaneously.
*/

#include <rtworks/ipc.h>

#define SERVER_COUNT 2

T_IPC_CONN server_conn;
T_TSD_KEY id_key = T_INVALID_TSD_KEY;
TIBCO SmartSockets User’s Guide

Using Threads With Connections | 127
/* === */
/*..cb_process_numeric_data -- process callback for NUMERIC_DATA */
void T_ENTRY cb_process_numeric_data(

T_IPC_CONN conn,
T_IPC_CONN_PROCESS_CB_DATA data,
T_CB_ARG arg)

{
 T_STR id_str;
 T_INT4 i;
 T_STR var_name[3];
 T_REAL8 var_value[3];
 T_REAL8 in_time;
 T_REAL8 out_time;
 T_STR the_time = NULL;

 if (!TutTsdGetValue(id_key, &id_str)) {
 TutOut("Could not get TSD value for thread: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* set current field to first field in message */
 if (!TipcMsgSetCurrent(data->msg, 0)) {
 TutOut("%s: Could not set current field of msg: error <%s>.\n",
 id_str, TutErrStrGet());
 TutThreadExit(NULL);
 }

 for (i = 0; i < 3; i++) {
 if (!TipcMsgNextStrReal8(data->msg,
 &var_name[i], &var_value[i])) {
 TutOut("%s: Could not parse NUMERIC_DATA msg: error <%s>.\n",
 id_str, TutErrStrGet());
 TutThreadExit(NULL);
 }
 }

 in_time = TutGetWallTime();
 the_time = TutStrDup(TutTimeNumToStr(in_time));

 TutOut("%s: (%s %d %s %s %s %s) at %s\n", id_str,
 var_name[0], (T_INT4)var_value[0],
 var_name[1], TutRealToStr(var_value[1]),
 var_name[2], TutTimeNumToStr(var_value[2]),
 the_time);

 TutFree(the_time);
 TutSleep(var_value[1]);

 out_time = TutGetWallTime();
 TIBCO SmartSockets User’s Guide

128 | Chapter 2 Connections
 if (!TipcMsgWrite(data->msg,
 T_IPC_FT_STR, "in-time",
 T_IPC_FT_REAL8, in_time,
 T_IPC_FT_STR, "out-time",
 T_IPC_FT_REAL8, out_time,
 NULL)) {
 TutOut("%s: Could not append to NUMERIC_DATA msg: error
<%s>.\n",
 id_str, TutErrStrGet());
 TutThreadExit(NULL);
 }

 if (!TipcConnMsgSend(conn, data->msg)) {
 TutOut("%s: Could not send NUMERIC_DATA msg: error <%s>.\n",
 id_str, TutErrStrGet());
 TutThreadExit(NULL);
 }

 if (!TipcConnFlush(conn)) {
 TutOut("%s: Could not flush conn to client: error <%s>.\n",
 id_str, TutErrStrGet());
 TutThreadExit(NULL);
 }
} /* cb_process_numeric_data */

/* === */
/*..server_thread -- thread function for server threads */
T_PTR T_ENTRY server_thread(arg)
T_PTR arg;
{
 T_STRING id_str;
 T_IPC_MT mt;
 T_IPC_CONN client_conn;
 T_INT4 i;

 sprintf(id_str, "%d", *(T_INT4 *)arg);
 if (!TutTsdSetValue(id_key, id_str)) {
 TutOut("Could not set TSD value for thread: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 mt = TipcMtLookupByNum(T_MT_NUMERIC_DATA);
 if (NULL == mt) {
 TutOut("%s: Could not look up NUMERIC_DATA mt: error <%s>.\n",
 id_str, TutErrStrGet());
 TutThreadExit(NULL);
 }

 for (i = 0; i < 2; i++) {
 client_conn = TipcConnAccept(server_conn);
 if (NULL == client_conn) {
 TutOut("%s: Could not accept client: error <%s>.\n",
 id_str, TutErrStrGet());
 TutThreadExit(NULL);
 }
TIBCO SmartSockets User’s Guide

Using Threads With Connections | 129
 TutOut("%s: Accepted client connection %d.\n", id_str, i + 1);
 if (TipcConnProcessCbCreate(client_conn, mt,
 cb_process_numeric_data,
 arg) == NULL) {
 TutOut("%s: Could not create NUMERIC_DATA process cb.\n",
 id_str);
 TutOut(" error <%s>.\n", TutErrStrGet());
 TutThreadExit(NULL);
 }

 if (!TipcConnMainLoop(client_conn, T_TIMEOUT_FOREVER)) {
 /* make sure we reached the end of the data */
 if (TutErrNumGet() != T_ERR_EOF) {
 TutOut("%s: Did not reach end of data: error <%s>.\n",
 id_str, TutErrStrGet());
 }
 }

 TutOut("%s: Destroying client connection %d.\n", id_str, i +
1);
 if (!TipcConnDestroy(client_conn)) {
 TutOut("%s: Could not destroy client conn: error <%s>.\n",
 id_str, TutErrStrGet());
 }
 }

 return NULL;
} /* server_thread */

/* === */
/*..main -- main program */
int main()
{
 T_THREAD thread[SERVER_COUNT];
 T_INT4 id_args[SERVER_COUNT];
 T_INT4 i;

 if (!TipcInitThreads()) {
 TutOut("This platform does not support threads: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 if (!TutTsdKeyCreate(&id_key, 0)) {
 TutOut("Could not create TSD key: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 TutOut("Creating server connection.\n");
 server_conn = TipcConnCreateServer("tcp:_node:4000");
 if (NULL == server_conn) {
 TutOut("Could not create server connection: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 TIBCO SmartSockets User’s Guide

130 | Chapter 2 Connections

 for (i = 0; i < SERVER_COUNT; i++) {
 id_args[i] = i + 1;
 thread[i] = TutThreadCreate((T_THREAD_FUNC)server_thread,
 &id_args[i], NULL);
 if (TutThreadEqual(T_INVALID_THREAD, thread[i])) {
 TutOut("Could not create thread %d: error <%s>.\n",
 i, TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 }

 for (i = 0; i < SERVER_COUNT; i++) {
 if (!TutThreadWait(thread[i], NULL)) {
 TutOut("Could not wait for thread %d: error <%s>.\n",
 i, TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 }

 TutOut("Destroying server connection.\n");
 if (!TipcConnDestroy(server_conn)) {
 TutOut("Could not destroy server connection: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 return T_EXIT_SUCCESS;
} /* main */
TIBCO SmartSockets User’s Guide

Using Threads With Connections | 131
Example 10 Client Source Code
/* connmtc.c -- multithreaded connections example client */
/*
This program connects to the server process, submits several messages at once, and then outputs
their individual response times.
*/

#include <rtworks/ipc.h>

#define T_NUM_JOB_TIMES 5
T_REAL8 job_times[] = { 1.0, 2.0, 7.0, 2.0, 1.0 };
/* === */
/*..cb_process_numeric_data -- process callback for NUMERIC_DATA */
void T_ENTRY cb_process_numeric_data(

T_IPC_CONN conn,
T_IPC_CONN_PROCESS_CB_DATA data,
T_CB_ARG arg)

{
 T_INT4 i;
 T_STR var_name[5];
 T_REAL8 var_value[5];

 /* set current field to first field in message */
 if (!TipcMsgSetCurrent(data->msg, 0)) {
 TutOut("Could not set current field of message: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 for (i = 0; i < 5; i++) {
 if (!TipcMsgNextStrReal8(data->msg,
 &var_name[i], &var_value[i])) {
 TutOut("Could not parse NUMERIC_DATA message: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 }

 TutOut("Reply (%s %d %s %s %s %s\n",
 var_name[0], (T_INT4)var_value[0],
 var_name[1], TutRealToStr(var_value[1]),
 var_name[2], TutTimeNumToStr(var_value[2]));
 TutOut(" %s %s ",
 var_name[3], TutTimeNumToStr(var_value[3]));
 TutOut("%s %s) elapsed %s seconds\n",
 var_name[4], TutTimeNumToStr(var_value[4]),
 TutRealToStr(var_value[4] - var_value[2]));

} /* cb_process_numeric_data */
 TIBCO SmartSockets User’s Guide

132 | Chapter 2 Connections
/* === */
/*..main -- main program */
int main()
{
 T_IPC_CONN conn;
 T_IPC_MT mt;
 T_IPC_MSG msg;
 T_INT4 i;

 TutOut("Creating connection to server process.\n");
 conn = TipcConnCreateClient("tcp:_node:4000");
 if (NULL == conn) {
 TutOut("Could not connect to server process: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 mt = TipcMtLookupByNum(T_MT_NUMERIC_DATA);
 if (NULL == mt) {
 TutOut("Could not look up NUMERIC_DATA msg type: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 if (TipcConnProcessCbCreate(conn, mt,
 cb_process_numeric_data,
 NULL) == NULL) {
 TutOut("Could not create NUMERIC_DATA process cb: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 msg = TipcMsgCreate(mt);
 if (NULL == msg) {
 TutOut("Could not create NUMERIC_DATA message: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 for (i = 0; i < T_NUM_JOB_TIMES; i++) {
 if (!TipcMsgWrite(msg,
 T_IPC_FT_STR, "message-no",
 T_IPC_FT_REAL8, (T_REAL8)i + 1.0,
 T_IPC_FT_STR, "job-time",
 T_IPC_FT_REAL8, job_times[i],
 T_IPC_FT_STR, "submit-time",
 T_IPC_FT_REAL8, TutGetWallTime(),
 NULL)) {
 TutOut("Could not append to NUMERIC_DATA msg: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

TIBCO SmartSockets User’s Guide

Using Threads With Connections | 133
 if (!TipcConnMsgSend(conn, msg)) {
 TutOut("Could not send NUMERIC_DATA message: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 if (!TipcMsgSetNumFields(msg, 0)) {
 TutOut("Could not truncate NUMERIC_DATA message: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 }

 if (!TipcMsgDestroy(msg)) {
 TutOut("Could not destroy NUMERIC_DATA msg: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 if (!TipcConnFlush(conn)) {
 TutOut("Could not flush connection to server: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 if (!TipcConnMainLoop(conn, 15.0)) {
 TutOut("Could not run main loop to server: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 TutOut("Destroying connection to server process.\n");
 if (!TipcConnDestroy(conn)) {
 TutOut("Could not destroy connection to server: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 return T_EXIT_SUCCESS;
} /* main */
 TIBCO SmartSockets User’s Guide

134 | Chapter 2 Connections
Adding Multiple Threads for a Client
The client program listed above is an excellent candidate for use with a server that
processes multiple client messages concurrently (such as using multiple threads)
because:

• the client can submit multiple messages to the server at once

• the client is not dependent upon the ordering of the responses to its messages

• the server has sufficient resources to handle concurrent client requests

The original example multithreaded server program processes messages from
different client connections concurrently, but messages from an individual client
are still handled one at a time. By introducing multiple threads for each client
connection, overall server throughput can be considerably increased. The built-in
synchronization capabilities of the connection make the required modifications
straightforward. The relevant portions of the second server program,
connmts2.c, are shown below.

For the purposes of this example, each client thread creates a fixed number of
helper threads.

#define HELPER_COUNT 2

This function is executed by each of the helper threads:

/* === */
/*..helper_thread -- thread function for helper threads */
T_PTR T_ENTRY helper_thread(arg)
T_PTR arg;
{
 T_PTR *argv = (T_PTR *)arg;
 T_STR id_str = argv[0];
 T_IPC_CONN client_conn = argv[1];

 TutFree(argv);

 if (!TutTsdSetValue(id_key, id_str)) {
 TutOut("Could not set TSD value for thread: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 if (!TipcConnMainLoop(client_conn, T_TIMEOUT_FOREVER)) {
 TutOut("Could not run main loop for thread: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 return NULL;
} /* helper_thread */
TIBCO SmartSockets User’s Guide

Using Threads With Connections | 135
The server_thread function is modified so that it creates the helper threads
when the server thread is connected to a client, and waits for them to exit when
the client closes the connection:

/* === */
/*..server_thread -- thread function for server threads */
T_PTR T_ENTRY server_thread(arg)
T_PTR arg;
{
 T_STRING id_str;
 T_IPC_MT mt;
 T_IPC_CONN client_conn;
 T_INT4 i;
 T_INT4 j;
 T_THREAD thread[HELPER_COUNT];
 T_STRING id_strs[HELPER_COUNT];

 sprintf(id_str, "%d'", *(T_INT4 *)arg);
 ...

 for (i = 0; i < 2; i++) {
 ...

 for (j = 0; j < HELPER_COUNT; j++) {
 T_PTR *argv = (T_PTR *)TutMalloc(sizeof(T_PTR) * 2);

 sprintf(id_strs[j], "%d%c", *(T_INT4 *)arg, 'a' + j);
 argv[0] = &id_strs[j];
 argv[1] = client_conn;
 thread[j] = TutThreadCreate((T_THREAD_FUNC)helper_thread,
 argv, NULL);
 if (TutThreadEqual(T_INVALID_THREAD, thread[j])) {
 TutOut("Could not create thread %s: error <%s>.\n",
 id_strs[j], TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 }
 if (!TipcConnMainLoop(client_conn, T_TIMEOUT_FOREVER)) {
 /* make sure we reached the end of the data */
 if (TutErrNumGet() != T_ERR_EOF) {
 TutOut("%s: Did not reach end of data: error <%s>.\n",
 id_str, TutErrStrGet());
 }
 }

 for (j = 0; j < HELPER_COUNT; j++) {
 if (!TutThreadWait(thread[j], NULL)) {
 TutOut("Could not wait for thread %s: error <%s>.\n",
 id_strs[j], TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 }
 TIBCO SmartSockets User’s Guide

136 | Chapter 2 Connections
 TutOut("%s: Destroying client connection %d.\n", id_str, i +
1);
 if (!TipcConnDestroy(client_conn)) {
 TutOut("%s: Could not destroy client conn: error <%s>.\n",
 id_str, TutErrStrGet());
 }
 }
 return NULL;
} /* server_thread */

Compiling, Linking, and Running
To compile, link, and run the example programs, first you must either copy the
programs to your own directory or have write permission in one of these
directories:

UNIX:
$RTHOME/examples/smrtsock/manual

OpenVMS:
RTHOME:[EXAMPLES.SMRTSOCK.MANUAL]

Windows:
%RTHOME%\examples\smrtsock\manual

Step 1 Compile and link the programs

UNIX:
$ rtlink -o connmts1.x connmts1.c
$ rtlink -o connmtc.x connmtc.c
$ rtlink -o connmts2.x connmts2.c

OpenVMS:
$ cc connmts1.c
$ rtlink /exec=connmts1.exe connmts1.obj
$ cc connmtc.c
$ rtlink /exec=connmtc.exe connmtc.obj
$ cc connmts2.c
$ rtlink /exec=connmts2.exe connmts2.obj

Windows:
$ nmake /f cts1w32m.mak
$ nmake /f ctcw32m.mak
$ nmake /f cts2w32m.mak

To run the programs, start the first or second server process first in one terminal
emulator window and then the client process in another terminal emulator
window.
TIBCO SmartSockets User’s Guide

Using Threads With Connections | 137
Step 2 Start the first server program in the first window

UNIX:
$ connmts1.x

OpenVMS:
$ run connmts1.exe

Windows:
$ connmts1.exe

To start the second server program instead of the first server program, replace s1
with s2.

Step 3 Start the client program in the second window

UNIX:
$ connmtc.x

OpenVMS:
$ run connmtc.exe

Windows:
$ connmtc.exe

This is an example of the output from the first server process:

Creating server connection.
1: Accepted client connection 1.
1: (message-no 1 job-time 1 submit-time 13:10:16) at 13:10:16
1: (message-no 2 job-time 2 submit-time 13:10:16) at 13:10:17
1: (message-no 3 job-time 7 submit-time 13:10:16) at 13:10:19
2: Accepted client connection 1.
2: (message-no 1 job-time 1 submit-time 13:10:22) at 13:10:23
2: (message-no 2 job-time 2 submit-time 13:10:22) at 13:10:24
2: (message-no 3 job-time 7 submit-time 13:10:22) at 13:10:26
1: (message-no 4 job-time 2 submit-time 13:10:16) at 13:10:26
1: (message-no 5 job-time 1 submit-time 13:10:16) at 13:10:29
1: Destroying client connection 1.
1: Accepted client connection 2.
1: (message-no 1 job-time 1 submit-time 13:10:32) at 13:10:32
2: (message-no 4 job-time 2 submit-time 13:10:22) at 13:10:33
1: (message-no 2 job-time 2 submit-time 13:10:32) at 13:10:33
2: (message-no 5 job-time 1 submit-time 13:10:22) at 13:10:35
1: (message-no 3 job-time 7 submit-time 13:10:32) at 13:10:35
2: Destroying client connection 1.
2: Accepted client connection 2.
2: (message-no 1 job-time 1 submit-time 13:10:40) at 13:10:40
2: (message-no 2 job-time 2 submit-time 13:10:40) at 13:10:41
1: (message-no 4 job-time 2 submit-time 13:10:32) at 13:10:42
 TIBCO SmartSockets User’s Guide

138 | Chapter 2 Connections
2: (message-no 3 job-time 7 submit-time 13:10:40) at 13:10:43
1: (message-no 5 job-time 1 submit-time 13:10:32) at 13:10:44
1: Destroying client connection 2.
2: (message-no 4 job-time 2 submit-time 13:10:40) at 13:10:50
2: (message-no 5 job-time 1 submit-time 13:10:40) at 13:10:52
2: Destroying client connection 2.
Destroying server connection.

Here is an example of the output from each of the client processes connected to
the first server:

Creating connection to server process.
Reply (message-no 1 job-time 1 submit-time 13:10:16
 in-time 13:10:16 out-time 13:10:17) elapsed 1.122 seconds
Reply (message-no 2 job-time 2 submit-time 13:10:16
 in-time 13:10:17 out-time 13:10:19) elapsed 3.105 seconds
Reply (message-no 3 job-time 7 submit-time 13:10:16
 in-time 13:10:19 out-time 13:10:26) elapsed 10.105 seconds
Reply (message-no 4 job-time 2 submit-time 13:10:16
 in-time 13:10:26 out-time 13:10:29) elapsed 12.108 seconds
Reply (message-no 5 job-time 1 submit-time 13:10:16
 in-time 13:10:29 out-time 13:10:30) elapsed 13.129 seconds
Destroying connection to server process.

Here is an example of the output from the second server process:

Creating server connection.
1': Accepted client connection 1.
1': (message-no 1 job-time 1 submit-time 13:12:21) at 13:12:21
1a: (message-no 2 job-time 2 submit-time 13:12:21) at 13:12:21
1b: (message-no 3 job-time 7 submit-time 13:12:21) at 13:12:21
1': (message-no 4 job-time 2 submit-time 13:12:21) at 13:12:22
2': Accepted client connection 1.
2': (message-no 1 job-time 1 submit-time 13:12:23) at 13:12:23
2a: (message-no 2 job-time 2 submit-time 13:12:23) at 13:12:23
2b: (message-no 3 job-time 7 submit-time 13:12:23) at 13:12:23
1a: (message-no 5 job-time 1 submit-time 13:12:21) at 13:12:23
2': (message-no 4 job-time 2 submit-time 13:12:23) at 13:12:24
2a: (message-no 5 job-time 1 submit-time 13:12:23) at 13:12:25
1': Destroying client connection 1.
1': Accepted client connection 2.
1': (message-no 1 job-time 1 submit-time 13:12:36) at 13:12:36
1a: (message-no 2 job-time 2 submit-time 13:12:36) at 13:12:36
1b: (message-no 3 job-time 7 submit-time 13:12:36) at 13:12:36
1': (message-no 4 job-time 2 submit-time 13:12:36) at 13:12:37
2': Destroying client connection 1.
1a: (message-no 5 job-time 1 submit-time 13:12:36) at 13:12:38
2': Accepted client connection 2.
2': (message-no 1 job-time 1 submit-time 13:12:39) at 13:12:40
2a: (message-no 2 job-time 2 submit-time 13:12:39) at 13:12:40
2b: (message-no 3 job-time 7 submit-time 13:12:39) at 13:12:40
2': (message-no 4 job-time 2 submit-time 13:12:39) at 13:12:41
2a: (message-no 5 job-time 1 submit-time 13:12:39) at 13:12:42
1': Destroying client connection 2.
2': Destroying client connection 2.
Destroying server connection.
TIBCO SmartSockets User’s Guide

Using Threads With Connections | 139
Here is an example of the output from each of the client processes connected to
the second server: (Note the reduction in message response elapsed times.)

Creating connection to server process.
Reply (message-no 1 job-time 1 submit-time 13:12:21
 in-time 13:12:21 out-time 13:12:22) elapsed 1.152 seconds
Reply (message-no 2 job-time 2 submit-time 13:12:21
 in-time 13:12:21 out-time 13:12:23) elapsed 2.153 seconds
Reply (message-no 4 job-time 2 submit-time 13:12:21
 in-time 13:12:22 out-time 13:12:24) elapsed 3.155 seconds
Reply (message-no 5 job-time 1 submit-time 13:12:21
 in-time 13:12:23 out-time 13:12:24) elapsed 3.155 seconds
Reply (message-no 3 job-time 7 submit-time 13:12:21
 in-time 13:12:21 out-time 13:12:28) elapsed 7.15 seconds
Destroying connection to server process.

Working With Threads and Connections
Connection programs that call the Tipc* API functions from more than one thread
must first call TipcInitThreads, even if the program does not use any
SmartSockets threads features. See the reference page for TipcInitThreads in the
TIBCO SmartSockets Application Programming Interface reference for more details.
For example:

if (!TipcInitThreads()) {
 /* error */
 TutExit(T_EXIT_FAILURE);
}

Connection programs are free to mix and match the portable TutThread*,
TutMutex*, TutCond*, and TutTsd* functions with the non-portable native threads
functions, such as the POSIX pthreads functions or Win32 threads functions. For
more information on the SmartSockets portable multithreading functions, see the
TIBCO SmartSockets Utilities reference.

The primitive synchronization properties within each connection are used
individually or in combinations by the TipcConn* API functions to ensure that
threads sharing the connection do not interfere with one another or corrupt the
connection’s internal state.

Mutex Type Default Description

Read Mutual exclusion lock

C type T_MUTEX

An unlocked mutex if
TipcInitThreads has
been called first and the
architecture supports
threads, NULL otherwise.

The read mutex property protects
operations that access the
connection’s message queue, read
buffer, or GMD high sequence
number table, or read data from
the connection’s socket.
 TIBCO SmartSockets User’s Guide

140 | Chapter 2 Connections
Write Mutual exclusion lock

C type T_MUTEX

An unlocked mutex if
TipcInitThreads has
been called first and the
architecture supports
threads, NULL otherwise.

The write mutex property protects
operations that access the
connection’s write buffer or write
data to the connection’s socket.

Process Read/write mutual
exclusion lock

C type T_RW_MUTEX

An unlocked read/write
mutex if TipcInitThreads
has been called first and
the architecture supports
threads, NULL otherwise.

The process mutex property
protects operations that access the
connection’s process and default
callback lists. A read/write mutex
is used here so that multiple
threads may execute a
connection’s process and default
callbacks concurrently.

GMD Mutual exclusion lock

C type T_MUTEX

An unlocked mutex if
TipcInitThreads has
been called first and the
architecture supports
threads, NULL otherwise.

The gmd mutex property is a
temporary mutex that protects
operations that access the
connection’s GMD area. A
temporary mutex means that this
mutex is never held for an
indefinite period of time.

Queue Mutual exclusion lock

C type T_MUTEX

An unlocked mutex if
TipcInitThreads has
been called first and the
architecture supports
threads, NULL otherwise.

The queue mutex property is a
temporary mutex that protects
operations that access the
connection’s queue such as a
message insert or a message
delete. A temporary mutex means
that this mutex is never held for an
indefinite period of time.

Mutex Type Default Description
TIBCO SmartSockets User’s Guide

Advanced Uses of Connections | 141
Advanced Uses of Connections

The previous section described the most common ways of working with
connections. This section shows some advanced ways of using connections.

Mixing Connections and Xt Intrinsics (Motif)
Connections can be used in a Motif (or any other Xt-based widget set) program
through the use of the Xt Intrinsics functions XtAppAddInput and
XtRemoveInput. Both Motif and connections have their own main loop functions:
XtAppMainLoop for Motif and TipcConnMainLoop for connections. The easiest
way to mix these two main loops is to use XtAppAddInput to add the connection
as a source of input into Xt’s event-handling mechanism and then use
XtAppMainLoop. One of the parameters to XtAppAddInput is the function to be
called when data is available. When data is available for reading on the
connection, XtAppMainLoop calls your user-defined function, which can call
TipcConnMainLoop. If TipcConnMainLoop fails, then XtRemoveInput should be
called to remove the connection as a source of input. Refer to your operating
system manuals for full information on the functions XtAppAddInput,
XtAppMainLoop, and XtRemoveInput.

The function TipcConnGetXtSource can be used to get an
XtAppAddInput-compatible source from a connection. On UNIX, this source is
the socket file descriptor of the connection (that is, TipcConnGetXtSource gets the
same thing as TipcConnGetSocket). On OpenVMS, this source is an event flag in
cluster zero, which is needed for the OpenVMS implementation of
XtAppAddInput.

This code fragment shows how to use XtAppAddInput to register a function to be
called when data is available for reading on a connection:

/* === */
/*..xt_conn_func -- data available on a connection */
void xt_conn_func(client_data, source, id)
XtPointer client_data; /* really (T_IPC_CONN) */
int *source;
XtInputId *id;
{
 T_IPC_CONN conn = (T_IPC_CONN)client_data;

 /* Process all messages that can be read immediately. */
 if (!TipcConnMainLoop(conn, 0.0)) {
 /* an error occurred, so remove the source of input */
 XtRemoveInput(*id);
 /* additional error handling goes here */
 }
 TIBCO SmartSockets User’s Guide

142 | Chapter 2 Connections
} /* xt_conn_func */
/*...code from calling function is below */

T_INT4 xt_source;

if (!TipcConnGetXtSource(conn, &xt_source)) {
 /* error */
}

XtAppAddInput(app_context,
 xt_source,
#ifdef T_OS_VMS /* needed by OpenVMS XtAppAddInput */
 NULL,
#else
 (XtPointer)XtInputReadMask,
#endif
 xt_conn_func,
 (XtPointer)conn);

The previous example uses TipcConnMainLoop(conn, 0.0) to read and process
all messages that are immediately available on the connection. If your program
cannot immediately process all messages for some reason, such as it can only
process one message and then must allow the Motif/Xt user interface to be
updated, there are many Motif/Xt features available:

• work procedures can be used by calling XtAppAddWorkProc to register a
function that is called when the user interface event loop is idle

• timeout procedures can be used by calling XtAppAddTimeOut to register a
function that will be called after a certain amount of time has elapsed

• event manipulation functions like XtAppPending and XtAppProcessEvent
can be used to process additional X events

These Motif/Xt features can be used in a wide variety of combinations, and the
best combination depends on the specific needs of the program you are
developing. Refer to your operating system manuals for full information on the
functions XtAppAddWorkProc, XtAppAddTimeOut, XtAppPending, and
XtAppProcessEvent.

Use TipcConnMainLoop, or TipcConnMsgNext in a loop here instead of just
calling TipcConnMsgNext once. Otherwise, messages might be read in but left in
the connection message queue where XtAppMainLoop cannot see them. Timeout
values other than 0.0 should also be used with caution here, as a non-zero timeout
can cause the process to wait for data and decrease the responsiveness of the
Motif/Xt user interface.
TIBCO SmartSockets User’s Guide

Advanced Uses of Connections | 143
As described above, using connections with XtAppAddInput requires special care
for the buffering of incoming messages. Extra effort is also needed sometimes to
ensure proper buffering of outgoing messages. TipcConnMsgSend sends a
message but may not flush the message. Likewise many TipcMon* and
TipcSrvSubject* functions send messages to RTserver but do not explicitly flush
these messages. This can cause problems because XtAppMainLoop does not
know to flush these messages, and often no incoming messages arrive until these
buffered outgoing messages are flushed. The easiest solutions to this problem are
to set the connection auto flush size property to 0 or to call TipcConnFlush after
sending messages but before returning from your Motif/Xt callback functions.

In addition to checking when data is available to be read from a connection,
XtAppAddInput can also be used on a server connection to check when a client
has connected and can be immediately accepted with TipcConnAccept.

The source code for a complete example of mixing SmartSockets and Motif is
located in these files:

UNIX:
$RTHOME/examples/smrtsock/motifipc.c

OpenVMS:
RTHOME:[EXAMPLES.SMRTSOCK]MOTIFIPC.C

Windows:
%RTHOME%\examples\smrtsock\motifipc.c

Mixing Connections and the Select Function
The select function, which is often associated with sockets but can be used with
any file descriptor on most UNIX systems, provides a way to check many file
descriptors without polling each one individually. The function TutSocketCheck
provides a simplified interface to the select function that works well if you only
have one file descriptor. For example, the function TipcConnCheck uses
TutSocketCheck because a connection has exactly one socket. Many UNIX
systems also have a poll function that is similar to select, and the techniques
described in this section can be used for poll as well as select.

If you need to check multiple connections, or a mixture of sockets and
connections, then you must call select directly. Refer to your operating system
manuals for full information on the function select. The function
TipcConnGetSocket can be used to get the connection’s socket file descriptor,
which can then be used with select.
 TIBCO SmartSockets User’s Guide

144 | Chapter 2 Connections
This code fragment shows how to use select to wait for up to 10 seconds for data
to be available for reading on a connection or a socket:

fd_set read_set;
T_INT4 conn_fd;
T_INT4 largest_fd;
struct timeval time_out;
int status;

/* get the socket file descriptor from the connection */
if (!TipcConnGetSocket(conn, &conn_fd)) {
 /* error */
}

/* set the appropriate bits in the read set */
FD_ZERO(&read_set);
FD_SET(conn_fd, &read_set);
FD_SET(socket_fd, &read_set);

largest_fd = (conn_fd > socket_fd) ? conn_fd : socket_fd;
time_out.tv_sec = 10; /* 10 seconds */
time_out.tv_usec = 0; /* 0 microseconds */

status = select(largest_fd + 1,
 &read_set,
 NULL,
 NULL,
 &time_out); /* use NULL to wait indefinitely */
TutOut("%d file descriptors are ready for reading.\n", status);

if (FD_ISSET(conn_fd, &read_set)) {
 TutOut("Connection is ready for reading.\n");
 if (!TipcConnMainLoop(conn, 0.0)) {
 /* error */
 }
}

if (FD_ISSET(socket_fd, &read_set)) {
 TutOut("Socket is ready for reading.\n");
 /* call recv or read */
}

In addition to checking when data is available to be read from a connection,
select can also be used on a server connection to check when a client has
connected and can be immediately accepted with TipcConnAccept.

Use TipcConnMainLoop, or TipcConnMsgNext in a loop, here instead of just
calling TipcConnMsgNext once. Otherwise, messages might be read in but left in
the connection message queue where select cannot see them. Timeout values
other than 0.0 should also be used with caution here, as a non-zero timeout can
cause the process to wait for data and thus decrease the response time to other
processing needs.
TIBCO SmartSockets User’s Guide

Advanced Uses of Connections | 145
Mixing Connections and the Windows Message Loop
At the heart of all Windows applications is a message processing loop. Within this
loop, the application checks for the arrival of a Windows message. When one
arrives it is processed. The typical call used to check for incoming messages is
GetMessage. This is a blocking Windows call, and if no message is waiting to be
processed, the application will block until a message arrives. To provide timely
response to user-generated events, your application must service pending event
messages in a timely manner. Interfacing SmartSockets with Windows requires
careful coding to ensure that the user interface is serviced in a timely manner
while still providing the real-time response required for your application.

Many of the SmartSockets function calls block until a specific condition is met,
such as a SmartSockets message arriving. You should be careful not to use these
blocking calls in the Windows event-driven environment. Using them can result
in your application appearing to be non-responsive to user input, or even, in the
case of Win16, locking up the entire system. All of the blocking SmartSockets calls
have corresponding non-blocking calls that can be used in an event driven
environment.

WSAAsyncSelect is a function provided by winsock.dll, the Windows Socket
Library. It provides a means for receiving notification when a SmartSockets
message arrives on a connection. The service is activated by passing the
connection’s socket handle along with an indication of what events are to be
notified; in this case you want to know when data is ready to be read. The
SmartSockets function TipcConnGetSocket returns the connection’s socket
handle. A Windows message number and HWND window handle to notify are also
passed to the function. When data is ready to be read from the socket, a message
is sent to your window.

The message number passed to the function should be a user-defined message,
based on WM_USER. The socket notification remains in force until explicitly
cancelled. This code fragment shows how to use WSAAsyncSelect to wait for data
to be available for reading on a connection:

#define MY_SOCKET_MSG (WM_USER + 0)

T_IPC_CONN conn;

int WINAPI WinMain(HINSTANCE hThisInst, HINSTANCE hPrevInst,
 LPSTR lpszArgs, int nWinMode)
{
 HWND hwnd
 SOCKET sock;

 /* Define a window class */
 ...

 /* Register the window class *.
 ...
 TIBCO SmartSockets User’s Guide

146 | Chapter 2 Connections
 /* Create the window */
 hwnd = CreateWindow(...

 /* Create client connection */
 conn = TipcConnCreateClient(...

 /* get the connection’s socket */
 if (!TipcConnGetSocket(conn, &sock)) {
 /* error */
 }

 /* set up for read notification */
 if (WSAAsyncSelect(sock, hwnd,
 MY_SOCK_MSG, FD_READ) == SOCKET_ERROR) {
 /* error */
 }

 /* main message loop */
 ...
}

LRESULT CALLBACK WindowFunc(HWND hwnd, UINT message,
 WPARAM wParam, LPARAM lParam)
{
 switch (message) {
 case ...
 case MY_SOCK_MSG:
 if (!TipcConnMainLoop(conn, 0.0)) {
 /* error */
 }
 break;
 default: ...
 }
}

In addition to checking when data is available to be read from a connection,
WSAAsyncSelect can also be used on a server connection to check when a client
has connected and can be immediately accepted with TipcConnAccept.

The source code for a complete example of mixing SmartSockets and the
Windows Microsoft Foundation Classes (MFC) is located in these directories:

UNIX:
$RTHOME/examples/smrtsock/windows/rtwcon

OpenVMS:
RTHOME:[EXAMPLES.SMRTSOCK.WINDOWS.RTWCON]

Windows:
%RTHOME%\examples\smrtsock\windows\rtwcon
TIBCO SmartSockets User’s Guide

Advanced Uses of Connections | 147
Remote Procedure Calls
Messages can be sent between connections to perform a remote procedure call. A
remote procedure call (RPC) is a means for a process to execute a function in
another process and wait for the result of the function call. Normally when a
process sends a message through a connection with TipcConnMsgSend, the
sending process continues and does not wait for the receiving process to receive
the message and act on it. This normal mode of operation can be thought of as a
non-blocking RPC that does not return a result.

The function TipcConnMsgSendRpc performs a blocking RPC that does return a
result. One message is sent as the RPC call from the caller end of the connection,
and another message is sent back as the RPC result to the caller. The callee end of
the connection must be prepared to receive the call message and send back the
result message. TipcConnMsgSendRpc uses a simple relationship between the call
and result messages: the message type number of the result message must be one
greater than the message type number of the call message.

See the reference information for TipcConnMsgSendRpc in the TIBCO
SmartSockets Application Programming Interface for a code example of how to
perform RPCs with connections.

Time Resolution
Many connection properties, such as read timeout, and API functions, such as
TipcConnMsgNext, have a time-related value associated with them. Most
SmartSockets time-related values are stored in a T_REAL8 eight-byte real number.
A T_REAL8 has a limited precision of approximately 15 significant digits. Many
of the time-related values are further constrained by the resolution provided by
the select function and the resolution of the operating system internal clock. The
select function uses a timeval structure similar to the SmartSockets
T_TIME_STRUCT structure; both have two four-byte integer fields for fixed
second and microsecond resolution. Most operating systems do not provide
microsecond resolution, however. See Mixing Connections and the Select
Function on page 143 for more information on using connections with select.
Time-related values can always use fractional seconds but the resolution of the
fractional part varies depending on your configuration.
 TIBCO SmartSockets User’s Guide

148 | Chapter 2 Connections
File Descriptor Upper Limit
All operating systems supported by SmartSockets have an upper limit on the
number of file descriptors and socket descriptors a process can use
simultaneously. On most UNIX-based operating systems the setrlimit function
is used to raise the per-process descriptor limit. On OpenVMS the FILLM quota
controls the per-process descriptor limit. Refer to your operating system manuals
for more information on configuring descriptor limits to larger values (sometimes
the operating system itself must be reconfigured).

The size of the fd_set socket data structure controls how many socket descriptors
can be used with the select function, regardless of the setting of the per-process
descriptor limit. The fd_set data structure is used by TutSleep, TutSocketCheck,
RTlm, and RTserver. The size of fd_set is by default defined in an operating
system C language header file, is compiled into SmartSockets, and cannot be
changed at run-time.

On most operating systems supported by SmartSockets, fd_set is large enough
to accommodate at least 1024 simultaneous descriptors. This allows a process like
RTserver the potential to manage approximately 1015 RTclient processes at once!
On some platforms SmartSockets has direct support for the poll system call. On
these platforms the number of descriptors that can be simultaneously managed
by rtserver is greatly increased. To support large numbers of client connections in
RTserver, the option Max_Client_Conns must be increased above its default
value.
TIBCO SmartSockets User’s Guide

Handling Network Failures | 149
Handling Network Failures

SmartSockets has been designed to handle many different kinds of network
failures, and this robust behavior provides a certain level of fault tolerance. The
core function of SmartSockets fault tolerance is in connections.

This section describes the features of connections that implement fault tolerance.
For a discussion of the features specific to RTserver and RTclient that add more
fault tolerance, such as hot switchover from primary RTclients to backup
RTclients, see Handling Network Failures In Publish Subscribe on page 307, and
Running an RTclient With a Hot Backup on page 429.

In addition to detecting network failures, connections can completely recover
from these failures by using guaranteed message delivery, covered in Chapter 4,
Guaranteed Message Delivery.

What is Fault Tolerance?
Fault tolerance is a term used to describe computer systems that continue to
function even when some of the hardware and software fail. Examples of failure
conditions include:

• processes or computers running out of memory

• processes hanging or going into infinite loops

• computers crashing or hanging

• breaks in network cables

• misconfigured computers

• overloaded computers causing processes to run slowly

Fault tolerance can be implemented in hardware by mirrored filesystems on
multiple disks, redundant networks, redundant CPUs, redundant memory, and
so on. Hardware-based fault tolerant systems are more expensive than non-fault
tolerant systems due to the extra components. Fault tolerance can also be
implemented in software by products such as SmartSockets. Surprisingly,
enabling the fault tolerant features of connections has little effect on message
throughput.

The general mechanisms that SmartSockets uses for fault tolerance are:

• avoid operations that can block indefinitely, or put an upper limit on the
amount of time these operations can block

• periodically check for potential failure conditions
 TIBCO SmartSockets User’s Guide

150 | Chapter 2 Connections
Potential Network Failures
Connections use sockets as the communication link between two processes, and
thus can use the features of sockets and each network protocol for detecting
network failures. There are three areas of connections where problems can occur:

• creating a connection

• sending data on a connection

• receiving data on a connection

In each area SmartSockets builds on top of the features of sockets and network
protocols to provide faster detection of network problems. Each IPC protocol
(local, and TCP/IP) handles failures differently, which complicates matters. For
the local protocol, there are no possible network failures, because this protocol
does not use a network, although processes that use the local IPC protocol can still
fail.

For creating a connection, the server connection does not need any special
handling because creation of the server connection with the function
TipcConnCreateServer completes immediately. The process with the server
connection can use TipcConnCheck to check if a client has connected before
calling TipcConnAccept to accept the client connection. The creation of the client
connection with the function TipcConnCreateClient may not complete
immediately if the node of the server connection is somehow unavailable, such as
it has crashed, is turned off, or the network is ruptured. For TCP/IP client
connections, the option Socket_Connect_Timeout can be used to set a limit on
how long (in seconds) to wait for availability. The default value for
Socket_Connect_Timeout is 5.0. If Socket_Connect_Timeout is set to 0.0, then the
client connection creation timeout is disabled, and TCP/IP clients block for an
operating system-dependent amount of time if the server node is not available
(typically 75 seconds for TCP/IP, for example).

When sending data on a connection, if the data cannot be sent, either the receiving
process is not keeping up or a network failure has occurred. The TCP/IP
protocols by default do not send any packets during periods of inactivity and do
not forcefully break a link for many types of network problems (for example, a
broken network cable). TCP/IP does have the concept of an optional keepalive
that can be enabled. This network-level TCP/IP keepalive is different from an
application-level connection keep alive, but serves the same purpose. From this
point, the term keepalive (one word) is used to refer to a TCP/IP health check,
and the term keep alive (two words) is used to refer to an application-level health
check. The default TCP/IP keepalive timeout is very large on most systems
(typically two hours), cannot be changed by non-privileged users, and can only be
changed for all TCP/IP links, not just one. This makes the TCP/IP keepalive
TIBCO SmartSockets User’s Guide

Handling Network Failures | 151
unusable for most applications. It is available to SmartSockets programs though,
through the socket option (not to be confused with a SmartSockets option)
SO_KEEPALIVE. Refer to your operating system manuals for full information on
this socket option.

This code fragment enables TCP/IP keepalives on a connection’s socket:

T_INT4 conn_socket;
int one = 1;
if (!TipcConnGetSocket(conn, &conn_socket)) {
 /* error */
}
if (setsockopt(conn_socket, SOL_SOCKET, SO_KEEPALIVE,
 (char *)&one, sizeof(one)) != 0) {
 /* error */
}

For receiving data on a connection, if data cannot be received, then either the
sending process has not sent anything, or a network failure has occurred. The
above-mentioned features of TCP/IP also apply for receiving data: TCP/IP does
not send packets during periods of inactivity (by default). If no data is received
within a certain period of time, a connection can initiate a connection keep alive
(not to be confused with a TCP/IP keepalive) to check the health of the
connection. Keep alives are discussed in detail in the next section.

Keep Alives
A connection keep alive is a very simple way to check the health of a connection,
including the network and the process at the other end of a connection. The
function TipcConnKeepAlive is used to perform a keep alive. Connection keep
alives are remote procedure calls that send a KEEP_ALIVE_CALL message
through a connection and then wait for a KEEP_ALIVE_RESULT message back
from the other process. If the other process is alive, it receives the
KEEP_ALIVE_CALL message and sends back a KEEP_ALIVE_RESULT message.
If the keep alive originator does not receive a response within a certain period of
time, it assumes there has been a network failure and destroys the connection or
takes other actions.

For most uses, you can simply set the block mode, read timeout, write timeout,
and keep alive timeout properties of a connection to automatically control
checking for network failures (see Connection Composition on page 71 for
details). The function TipcConnCheck automatically calls TipcConnKeepAlive if
the amount of time that has elapsed since data was last read from the connection
is greater than the read timeout property of the connection. A connection by
default processes a KEEP_ALIVE_CALL message with the process callback
function TipcCbConnProcessKeepAliveCall. This function handles sending back
 TIBCO SmartSockets User’s Guide

152 | Chapter 2 Connections
a KEEP_ALIVE_RESULT message to the process that originated the keep alive.
While timeout checking is normally done automatically and transparently by
TipcConnCheck, you can call TipcConnKeepAlive directly to explicitly check the
health of a connection.

You should not try to explicitly send or receive KEEP_ALIVE_CALL and
KEEP_ALIVE_RESULT messages, but instead always use TipcConnCheck,
TipcConnKeepAlive, and TipcCbConnProcessKeepAlive to handle the details of
keep alives. Because keep alives are checking the health of both the network and
the other process, a process must be careful to read and process messages at a
regular interval; otherwise the keep alives fail.

Blocking and Non-Blocking Read/Write Operations
As described in Block Mode on page 74, for read timeouts, write timeouts, and
automatic keep alives to be enabled, the connection block mode must be set to
FALSE to enable non-blocking read and write operations. If the connection block
mode is TRUE, then read and write operations can block indefinitely, and many
network failures cannot be detected.

Connection read and write operations are handled differently. If no data can be
read within a certain period of time, some kind of failure may have occurred, or
there may simply be no data to read. Thus if a read timeout occurs, a keep alive is
initiated to check if the process at the other end of the connection is still alive.

If no data can be written within a certain period of time, however, this indicates a
problem, as the connection’s socket is full. There is no point in initiating a keep
alive when a write timeout occurs because the keep alive RPC call will most likely
not be able to be written to the already-plugged socket.
TIBCO SmartSockets User’s Guide

| 153
Chapter 3 Publish-Subscribe

This chapter introduces RTserver and RTclient, which allow many processes to
easily communicate with each other using a publish-subscribe communication
model. This model is different than the peer-to-peer model described in
Chapter 2, Connections.

Topics

• Publish-Subscribe Overview, page 154

• RTserver and RTclient Composition, page 156

• TIBCO SmartSockets Multicast, page 170

• Essential API Functions, page 172

• Working With RTclient, page 175

• Message File Logging, page 210

• Load Balancing, page 215

• Using Threads with the RTclient API, page 226

• Advanced RTclient Usage, page 227

• Using a Dispatcher, page 249

• Message Compression, page 271

• Security, page 275

• Starting and Stopping RTserver, page 284

• Working with RTserver, page 290

• Dynamic Message Routing, page 296

• Network Considerations, page 305
 TIBCO SmartSockets User’s Guide

154 | Chapter 3 Publish-Subscribe
Publish-Subscribe Overview

An RTserver process routes messages between RTclient processes. A key feature of
SmartSockets is the ability to distribute RTserver and RTclient processes over a
network. Different processes can be run on different computers, taking advantage
of all the computing power a network has to offer. RTservers and RTclients can be
dynamically started and stopped while the system is running.

The feature set of SmartSockets publish-subscribe architecture is layered on top of
connections and messages, but adds greater function and ease of use. Some of
these functions are listed below.

• RTserver and RTclient have simplified setup and control through options,
which require no programming.

• RTserver can partition a group of RTclients into a project.

• RTclient and RTserver use logical addresses called subjects for the sender
property and destination property of messages, which enable powerful yet
simple publish-subscribe services.

• Subjects are arranged in a hierarchical namespace with wildcard capabilities,
which makes it easier to build large projects.

• A group of RTservers can distribute the load of publish-subscribe message
routing with dynamic message routing that offers greater scalability and
flexibility.

• Routing between RTservers can be further optimized to use the lowest cost
route by assigning a cost to each path between RTservers.

• Additional callbacks are available including subject, server create, and server
destroy.

• An RTclient can automatically start an RTserver, automatically restart an
RTserver, and even continue running when an RTserver is temporarily
unavailable.

• RTserver and RTclient have advanced guaranteed message delivery (GMD)
capabilities, such as automatic recovery from most network failures.

• Much information about RTservers and RTclients can be monitored, which
allows you to easily debug, examine, and control your projects.

• Load balancing can be used to publish messages to one subscriber instead of
all interested subscribers.

• The RTclient API can be used safely in multithreaded programs.
TIBCO SmartSockets User’s Guide

Publish-Subscribe Overview | 155
This chapter describes RTserver and RTclient composition, how to work with the
RTclient Application Programming Interface (API), and how to work with
RTserver. Monitoring is mentioned briefly here. See Chapter 5, Project
Monitoring, for a full discussion on monitoring.

Most RTclients have a single, global connection to one RTserver. Generally, this is
the only connection required, and this connection forms the basis for most
RTclient-RTserver interactions. The focus of this chapter is on understanding this
connection and the interactions involved. You should be thoroughly familiar with
this connection and the relevant APIs before delving into more complex
connections. Connecting to an RTgms process instead of an RTserver process for
the single, global connection requires an understanding of multicasting and a
special set of PGM options. For more information, see TIBCO SmartSockets
Multicast, page 170. It is also possible to connect to multiple RTservers, using a
special multiple connection instead of the global connection. However, this type
of connection requires a completely different set of APIs, and each individual
connection must be created and configured discretely. For more information, see
Connecting to Multiple RTservers, page 248.
 TIBCO SmartSockets User’s Guide

156 | Chapter 3 Publish-Subscribe
RTserver and RTclient Composition

Before you use RTserver and the RTclient API, it helps to have an understanding
of the concepts involved:

Projects
Many RTclients can simultaneously use the same computer, and RTclients on
different computers can also send messages to each other. Two RTclients on a
network may or may not want to receive each other’s messages. Projects provide
a way to distinguish between groups of SmartSockets processes. A group of
RTservers exchange messages only with other RTclients in the same project. For
SmartSockets, a project is typically used to acquire, analyze, archive, and display
data. A project is designated by a name, which must be an identifier. For example,
one common project name is the name of your company’s product or application.

A project is a self-contained unit or partition that prevents unwanted messages
from being sent to processes, in that RTclients in different projects cannot send
messages to each other. Typically, an RTclient belongs to only one project, while an
RTserver can provide publish-subscribe routing services for one or more projects.
It is possible for an RTclient to connect to more than one project in the same
RTserver or to multiple projects across RTservers. See Connecting to Multiple
RTservers on page 248 for more information.

RTserver is a process that extends the features of connections to provide
transparent publish-subscribe message routing among many
processes.

RTclient is any program (user-defined or SmartSockets client) that
connects to RTserver and accesses its services (under this
definition RTmon can be considered an RTclient).

Project is a group of RTservers which exchange messages only with
other RTclients in the same project.

Subject is a logical address for a message. RTclient subscribes to
subjects, registering interest in those subjects. An RTclient also
publishes messages to subjects, meaning the RTclient sends
messages to subjects.

Data Frame is a group of messages with the same timestamp (not shown in
the figure).

Monitoring allows you to examine detailed information about your project
in real time (not shown in the figure).
TIBCO SmartSockets User’s Guide

RTserver and RTclient Composition | 157
For example, if RTclients are separately monitoring two factories, and the
processes are running on the same network, two projects can be used to ensure
that messages are not sent between the two separate factory projects. As shown in
Figure 11, these projects could be named FAC1 and FAC2. The option Project is
used to specify the project to which an RTclient belongs. The default value for
Project is rtworks. You should always set this option to prevent becoming part of
the default rtworks project, which may cause unwanted messages to be received.

Figure 11 RTserver and RTclient Architecture

S

C

= RTserver process

= RTclient process

Project FAC2

= a subject being
subscribed to by
RTclient

/sb

= a connectionNote

Project FAC1 has processes C1, S1, S2, and C2.

Project FAC2 has processes C3, S1, C4, S2, and C5.

Both RTserver S1 and S2 are used by both projects.

RTclient C1 cannot send messages to C3, C4, or C5 because they
are not in the same project.

A message published (sent) to the /sb1 subject in project FAC2 is
received by both RTclient C4 and C5.

/sb3

/sb1

/sb1

S2

/sb2

/sb3

/sb2

S1

C3
C4 C5

C2C1
Project FAC1
 TIBCO SmartSockets User’s Guide

158 | Chapter 3 Publish-Subscribe
Subjects
Just as projects restrict the boundaries of where messages are sent, subjects can
also further partition the flow of messages in a project. A subject is a logical
message address that can be thought of as providing a virtual connection between
RTclients. Subjects allow an RTclient to send a message to many processes with a
single publish operation. Subjects are designated by a name, which can be any
character string with a few restrictions (see Hierarchical Subject Namespace,
page 159 for details).

The following sections discuss the properties of subjects and the operations that
can be performed with subjects. The programming aspects of these operations are
described in detail in Using Subjects, page 203.

Subscribing to a Subject

As described in Chapter 1, Messages, a message has both a sender property and a
destination property. When the TipcConn* functions are used to send messages
through connections, the sender and destination properties are by default not
used. There are no predefined values for these properties when working with
connections.

For RTserver and RTclient, though, subjects are used for these properties. When
an RTclient is subscribing to a subject, it receives any published messages (sent to
RTserver) whose destination property is set to that subject. For example, in a
satellite project, you might partition messages by functional area — electrical
power, thermal, pointing control, and so on. These areas are declared as subjects
such as /elec_pwr, /thermal, /pt_ctrl. All messages pertaining to electrical
power are constructed with the /elec_pwr subject as their destination property.
Any RTclient interested in receiving messages destined for /elec_pwr subscribes
to the /elec_pwr subject. This is also known as the publish-subscribe paradigm in
that RTclients publish messages to specific subjects, and RTclients subscribe to
subjects in which they are interested.

The core capability of SmartSockets publish-subscribe is conceptually similar to
how electronic mail (email) mailing lists operate. A person sends an email
message addressed to the list, and the message is delivered to all persons
subscribed to the list. SmartSockets publish-subscribe is much more powerful,
however, as it offers much higher performance, more dynamic capabilities,
monitoring, and so on.

When two processes create any kind of peer-to-peer connection to each other,
including through T_IPC_CONN connections, they need specific physical
network addresses, such as for TCP/IP a node number and port number, to begin
communicating. If a process wants to send a message to many other processes, it
needs first to know the physical network addresses of the other processes, and
then to create connections to all of those processes. This kind of architecture does
TIBCO SmartSockets User’s Guide

RTserver and RTclient Composition | 159
not scale well, as configuration is complicated and tedious. The RTserver and
RTclient architecture’s use of subjects for message addresses allows an RTclient to
simply send the message with a subject as the destination property, and RTserver
takes care of routing the message to all RTclients that are subscribed to that
subject. RTclient can start or stop subscribing to a subject at any time, which
allows RTclient to control the quantity of incoming data as desired.

Hierarchical Subject Namespace

To provide greater flexibility and scalability for large projects, SmartSockets
subject names are arranged in a hierarchical namespace much like UNIX file
names or World Wide Web Universal Resource Locators (URLs). This hierarchical
namespace allows for large numbers of subject names to be created with similar
but not conflicting names, such as /system/primary/elec_pwr and
/system/backup/elec_pwr, and also for many powerful operations, such as
publish-subscribe with wildcards, to be performed. Small SmartSockets projects
can be built without requiring large amounts of complexity, and large projects can
also be more easily built with these hierarchical subject names.

A hierarchical subject name consists of components laid out left-to-right
separated by forward slashes (/). Each component can contain any other
non-slash characters except asterisks (*) and the ellipsis (...), both of which are
used for wildcards in publish-subscribe. Examples of hierarchical subject names
include /system, /system/primary/eps, /system/backup/eps and
/nodes/workstation.tibco.com/support.

Generally, a subject name is unlimited in length. However, each individual
component of a hierarchical subject name is limited to 63 characters in length, due
to restrictions imposed when certain commands, such as subscribe,
unsubscribe, or setopt, are processed.

An absolute subject name starts with a forward slash (/). SmartSockets allows for
greater flexibility and easier configuration by allowing any combination of
absolute and non-absolute subject names used in a project. All non-absolute
subject names automatically have the value of the option Default_Subject_Prefix
prefixed to them so as to create a fully qualified name for the hierarchical subject
namespace. This allows projects written using non-absolute subject names to be
easily moved from one area of the hierarchical subject namespace to another, such
 TIBCO SmartSockets User’s Guide

160 | Chapter 3 Publish-Subscribe
as from /company/new-york to /company/san-francisco, by simply changing
the value of the option Default_Subject_Prefix. Both RTclient and RTserver have
the option Default_Subject_Prefix. If the option is not set in the RTclient (that is,
has the value unknown), the RTclient inherits the Default_Subject_Prefix from the
first RTserver it connects to.

Subject Wildcards For Publish-Subscribe

Using wildcards (* or ...) in subjects is much like using wildcards for file names
in an operating system command line. The asterisk wildcard operates much as it
does on Windows, UNIX, OpenVMS, or MVS ISPF environments. It can be used
for an entire subject name component or as part of a more complicated wildcard
containing other characters, such as foo*bar. A wildcard component using an
asterisk (*) never matches more than one component, such as foo*bar does not
match foo/bar.

The ellipsis wildcard operates much as it does on OpenVMS, where it matches
any number of levels, including zero levels, of components. It must be used as an
entire component (that is, auto... is not a wildcard). Multiple wildcards can be
used in a subject name, such as /a*b*/.../d. The following table shows several
wildcarded subjects with examples of matches and mismatches.

From this point on, any non-absolute subjects used in examples should be treated
as if they have Default_Subject_Prefix prefixed to them when they are used by
RTclient.

Table 5 Wildcard Subject Examples

Wildcard Subject Matches Does Not Match

/stocks/auto/... /stocks/auto

/stocks/auto/*
/stocks/auto/ford

/stocks/*/ford

/stocks

/sports/*/sanjose /sports/nhl/sanjose

/sports/abl/sanjose

/.../sanjose

/sports/nhl/*/coach

/stocks/a*/... /stocks/auto

/stocks/*/...

/stocks/computer

/personnel/.../fred /personnel/eng/fred

/personnel/sales/mgmt/fred

/...

/personnel

/personnel/frank
TIBCO SmartSockets User’s Guide

RTserver and RTclient Composition | 161
When a message is published, if multiple subscribed-to subjects match, only one
copy of the message is delivered to each subscribing RTclient. An example use of
wildcard subscribes is to subscribe to a wildcard subject such as
/stocks/auto/... so as to receive all messages published to the non-wildcard
subjects that match. An example use of wildcard publishes is to publish to a
wildcard subject such as /stocks/auto/... so as to send messages to all
subscribers of the non-wildcard subjects that match. An easy way to publish a
message to all RTclients in the entire project is to publish the message to the
subject "/...". RTserver caches the matching values for wildcard subjects so that
potentially time-consuming wildcard matching is not needed for each message it
routes.

There is some overlap between projects and hierarchical subjects in that both can
be used to partition publish-subscribe, but projects should be used when it is
certain that no intercommunication should be allowed. Projects are also useful for
having the same subject names simultaneously in both a testbed application and a
production application.

For more details on using hierarchical subjects in large-scale projects, see
Dynamic Message Routing, page 296.

Monitoring a Subject

RTclient can also monitor many things about a subject, such as:

• the names of all subjects in a project

• the RTclients that are subscribed to a subject

• the subjects that an RTclient is subscribing to

• message traffic statistics

This is useful for monitoring process activity. RTclient can start or stop monitoring
a subject at any time. Monitoring subjects is discussed in Chapter 5, Project
Monitoring, and is shown in detail in the example code in Running an RTclient
With a Hot Backup, page 429.

/sports/*/... /sports/baseball/sfgiants

/sports/football/sfniners

/sports/...

/sports

Table 5 Wildcard Subject Examples

Wildcard Subject Matches Does Not Match
 TIBCO SmartSockets User’s Guide

162 | Chapter 3 Publish-Subscribe
Unique Subject

Each RTclient has a unique subject that is always used as the sender property of a
message sent to RTserver. When an RTclient first connects to RTserver, it
automatically subscribes to its unique subject. RTserver does not allow multiple
processes to have the same unique subject. By using the unique subject as the
sender property, an RTclient that receives a message can easily determine who
sent the message and also what subject to use to reply to the message if needed.
The option Unique_Subject is used to specify the unique subject of an RTclient.
The default value for Unique_Subject is _Node_Pid, where Node is the network node
name of the computer on which the process is running, and Pid is the operating
system process identifier of the process.

The Unique_Subject option is also used to configure GMD and monitoring. For
GMD, Unique_Subject is used to construct the pathnames for GMD disk files (see
Configuring GMD, page 331 for details). For monitoring, Unique_Subject is used
to identify all RTclients and RTservers.

Standard Subjects

Because subjects are an integral part of publish-subscribe communication, several
standard subjects provide a way to consolidate some useful subject-based
operations. The standard subjects are operated on as a set. The standard subjects
are:

These operations can be performed in a single step on the standard subjects:

• start subscribing to the standard subjects

• stop subscribing to the standard subjects

• retrieve the standard subjects

user-defined subjects Subjects listed in the option Subjects. These can be considered
user-defined standard subjects.

_Node The node-specific subject, where Node is the network node name
of the computer on which the process is running. The _Node
subject provides a way to publish a message to all RTclients
running on a specific node.

_all Common subject for all RTclients. The _all subject provides a
way to publish a message to all RTclients on all nodes.

_Process Standard SmartSockets process type subject (_mon).
User-defined RTclients do not have this process type subject.
The process type subject provides a way to publish a message to
all standard SmartSockets processes of a certain type.
TIBCO SmartSockets User’s Guide

RTserver and RTclient Composition | 163
User-defined subjects that are not listed in the Subjects option may also be used at
any time by using API functions, such as TipcSrvSubjectSetSubscribe, or
commands, such as subscribe, through a control channel.

What is RTserver?
While connections provide a means for two processes to exchange messages,
connections by themselves do not scale well to many processes. RTserver fills this
void and expands the capabilities of connection-based message passing; RTserver
is a publish-subscribe message router that uses connections to make large-scale
distributed IPC easier. RTserver also has advanced GMD and monitoring
function.

RTserver runs as a background process (on OpenVMS and Windows this is
known as a detached process, on MVS it can be an STC or started task) without an
interactive command interface. You can start RTserver manually from the
operating system prompt, or it can be started automatically when an RTclient first
tries to connect to RTserver on most platforms.

To start and use an RTserver, you must have a license for that RTserver. The
license needs to be added to the license file, talarian.lic, in the standard
directory. Or you can brand the RTserver using the rtbrand command. The
information in the license file takes precedence over any branding that you might
do. If you are upgrading an existing license to add more RTservers or to change
the type, such as from a single threaded to a multi-threaded RTserver, you must
add the new license information to the license file or else re-brand the RTservers.
See the TIBCO SmartSockets Installation Guide for information on the license file
and on branding.

In addition to routing publish-subscribe messages between RTclients, multiple
RTservers can route messages to each other. Multiple RTservers can distribute the
load of message routing. If a project is partitioned so that most of the messages
being published are routed between RTclients on the same node, then the use of
multiple RTservers can reduce the consumption of network bandwidth, because
processes on the same node can use the non-network local IPC protocol. See
Dynamic Message Routing on page 296 for more information on multiple
RTservers.

Most project and subject information is kept in RTserver. RTserver maintains a
table of some RTclients (including warm RTclients, which are discussed in Warm
RTclient in RTserver, page 346), a table of all projects, and a table of some of the
subjects in each project. These tables contain information about RTclients
subscribing to a subject, the information being monitored by RTclients, and which
other RTservers have RTclients subscribing to a subject. Each RTserver knows only
 TIBCO SmartSockets User’s Guide

164 | Chapter 3 Publish-Subscribe
the information necessary for its own publish-subscribe operation. Each RTserver
does not know about all RTclients. This greatly increases the scalability of
SmartSockets publish-subscribe projects. These scalability features are discussed
in more detail in Dynamic Message Routing, page 296.

When RTserver is running but not being used, it uses very little CPU time. The
amount of memory used by RTserver varies depending on the number of other
(RTserver and RTclient) processes RTserver has connections to and the number of
messages that RTserver has buffered to be routed to other RTservers and
RTclients. RTserver also deallocates memory for defunct subjects (a subject
becomes defunct when no more processes are subscribed to it) so that its memory
consumption does not grow over long periods of time. For more information,
refer to Starting and Stopping RTserver, page 284.

Publish-Subscribe Message Routing Example

This section provides an example of how a message originating from a single
RTclient is published (sent) to RTserver and routed to all RTclients subscribing to a
subject. In this example, there are three RTclients: RTclient1, RTclient2, and
RTclient3. Each of these RTclients is connected to the same RTserver. RTclient2 and
RTclient3 are both subscribed to the /sb1 subject. If RTclient1 publishes a message
to the /sb1 subject, this sequence of events occurs:

1. RTclient1 constructs a message with /sb1 as the destination.

2. RTclient1 sends the message to RTserver.

3. RTserver receives the message.

4. RTserver looks at the destination (/sb1) of the message.

5. RTserver sends the message to all RTclients currently subscribing to the /sb1
subject.

6. RTclient2 and RTclient3 each receive a copy of the message.

Figure 12 shows this flow of the message through RTserver. Note that if RTclient1
also subscribes to the /sb1 subject prior to publishing the message to the /sb1
subject, it too receives the message from RTserver.

Figure 12 RTserver Publish-Subscribe Message Routing
TIBCO SmartSockets User’s Guide

RTserver and RTclient Composition | 165
RTclient1

RTclient2

RTclient1 publishes (sends) the message
 to RTserver with a destination of /sb1.

Both RTclient2 and RTclient3 are
subscribing to the /sb1 subject.

RTclient1

RTclient2

RTserver routes a copy to

Message
dest = /sb1

Message
dest = /sb1

Message
dest = /sb1

RTserver

RTserver

RTclient3

RTclient3

/sb1

/sb1

/sb1

/sb1

Step 1

Step 2
 TIBCO SmartSockets User’s Guide

166 | Chapter 3 Publish-Subscribe
Monitoring RTserver

RTclient can monitor many things about RTserver. Some of these are listed below.

• the names of all RTservers in an RTserver group, a server cloud

• generic information about an RTserver, such as what node it is running on

• buffer statistics for an RTserver, such as message backlog

• option values in an RTserver, such as current configuration

• time information in an RTserver

• message traffic statistics in an RTserver

• inter-RTserver connection topology information

• routing information in an RTserver

This is useful for monitoring process activity. RTclient can start or stop monitoring
an RTserver at any time. Monitoring RTserver is discussed in Chapter 5, Project
Monitoring.

What is RTclient?
An RTclient is a process that is connected to an RTserver as a client. Usually, each
RTclient has one T_IPC_CONN connection to one RTserver, because an RTclient
cannot have more than one global connection at a time. In rare instances where an
RTclient requires multiple connections to RTservers, that RTclient can use multiple
RTserver connections. These are described in more detail in Connecting to
Multiple RTservers, page 248.

An RTclient can send messages, receive messages, and create callbacks using the
global connection just as it would any other connection. The publish-subscribe
message routing capabilities of RTserver are transparent to an RTclient, and
subjects provide a virtual connection between RTclients.

An RTclient can have complete control over when it creates a connection to
RTserver, or it can automatically create the connection when it is first needed. If an
RTserver is not already running, an RTclient can start an RTserver. If an
unrecoverable error (such as a network failure) occurs, the RTclient can restart the
RTserver.

All of the capabilities of the TipcConn* functions are available to an RTclient,
including most of the connection callback types (all except encode and decode).
An RTclient can partially destroy its connection to RTserver and temporarily
continue running as if it were still connected, or an RTclient can fully destroy its
connection to RTserver and continue as if it had never been connected at all. An
RTclient using GMD can even crash, be restarted, and recover from most network
failures.
TIBCO SmartSockets User’s Guide

RTserver and RTclient Composition | 167
Because of some extra function in RTclient, you do not use the TipcConn*
functions, but instead use a parallel set of TipcSrv* functions. Almost every
TipcConn* function has an equivalent TipcSrv* function. Figure 13 shows the
relationships among the various IPC functions.

Figure 13 The Layers of the SmartSockets API

See Working With RTclient on page 175 for a full discussion of the TipcSrv*
functions.

Operating System (Sockets, System Calls, and so on)

User Code

Connection (TipcConn*) API

RTclient (TipcSrv*) API

Message (TipcMsg*) API

Utility (Tut*) API

Monitoring (TipcMon*) API
 TIBCO SmartSockets User’s Guide

168 | Chapter 3 Publish-Subscribe
Monitoring RTclient

RTclient can monitor many things about any RTclient, such as:

• the names of all RTclients in a project

• the subjects that an RTclient is subscribing to

• messages received by an RTclient

• messages sent by an RTclient

• data created by an RTclient, referred to as extension data

• generic information about an RTclient, such as what node it is running on

• buffer statistics for an RTclient, such as message backlog

• option values in an RTclient, such as current configuration

• time information in an RTclient

• message type, callback, and subject information and statistics about an
RTclient

This is useful for monitoring process activity. RTclient can start or stop monitoring
an RTclient at any time. Monitoring RTclients is discussed in Chapter 5, Project
Monitoring.
TIBCO SmartSockets User’s Guide

RTserver and RTclient Composition | 169
Peer-To-Peer Or Client-Server

The publish-subscribe architecture of RTserver and RTclient is implemented using
SmartSockets peer-to-peer connections and takes advantage of all the features
that connections have to offer. Sometimes it can be unclear when to use a
connection to send and receive messages, and when to use RTserver to send and
receive messages. A general guideline is to use just connections when
communicating between exactly two processes (that is, a peer-to-peer situation)
and to use RTserver otherwise. These scenarios illustrate this guideline in detail:

• Use connections when only two processes need to communicate; subjects are
unnecessary in this case.

• Use RTserver when there are a varying number of processes involved in the
task. For example, if a process needs to communicate equally well with 1, 10,
or 20 other processes, using RTserver instead of just connections can greatly
simplify the development task.

• Use RTserver when sending messages to or receiving messages from a
standard SmartSockets process (except for a data source). For example, if an
RTclient wants to send a message to all RTclients that are currently running, it
uses publish-subscribe through RTserver instead of trying to find and create
connections to all RTclient processes.

• Use RTserver on platforms which do not support threads. A parent process
(task) can give work to child processes (subtasks) and the RTserver can be
used to route the results back to the requestor.

• Use RTservers when protocol bridging is required. If there is not a consistent
network protocol that all processes can use, then RTservers can be used
judiciously to route messages between heterogeneous network segments.

Keep in mind that a process can use as many connections as it wants and can mix
TipcConn*, TipcSrv*, and TipcMon* functions as needed.

Ease of Use
RTclient and RTserver can be controlled using both options and API functions.
Throughout this chapter, both approaches are documented as appropriate. All
RTclient and RTserver options are documented in Chapter 8, Options Reference.
The API functions are documented in the TIBCO SmartSockets Application
Programming Interface reference.
 TIBCO SmartSockets User’s Guide

170 | Chapter 3 Publish-Subscribe
TIBCO SmartSockets Multicast

In addition to standard publish-subscribe with RTserver and RTclient,
SmartSockets provides a multicast feature to further enhance the features and
performance of SmartSockets. This option uses reliable multicast, taking full
advantage of its bandwidth optimization properties. Multicast is an efficient way
of routing a message to multiple recipients. The SmartSockets Multicast feature
enables messages to be multicast to RTclients. SmartSockets Multicast uses the
PGM protocol to route messages and a new RT process called RTgms to handle
the message routing. There are new options for RTclients, and an extended logical
connection name that allows the RTclient to connect to the RTgms process. To
enable an RTclient to receive or send multicast messages, the RTclient simply
connects to the RTgms process, instead of connecting to an RTserver.

To use multicast with SmartSockets, you must have purchased a separate license
for the SmartSockets Multicast feature. Contact your TIBCO sales representative
for more information. Any RTclients receiving multicast must be running with the
SmartSockets Version 6.0 runtime libraries or higher. All RTservers should be at
the same SmartSockets version level as the RTgms processes.

When Should I Use Multicast?
The SmartSockets applications that benefit most from multicast are those that
distribute data among many network hosts simultaneously, rather than
exchanging data with a few hosts at a time. Two models of data distribution exist:
one-to-many and many-to-many. There are numerous examples of applications
that implement these models.

A one-to-many application sends the same information to many receivers
simultaneously. The data flow is one-way, from a single sender. An application
that sends time-critical, real-time information, such as stock quotes, is an ideal
example of a one-to-many application that benefits from multicast. Another
example is a real-time satellite telemetry feed which must be distributed
immediately to multiple workstations. Applications that send news and weather
are also good examples of applications suitable for multicast. Any application that
sends widely distributed information can benefit from multicast, even if the
information is not needed as immediately as some of the previous examples. The
analogous technical model is broadcast radio and television. The types of content
these applications typically send and the schedule coordination requirements are
similar.
TIBCO SmartSockets User’s Guide

TIBCO SmartSockets Multicast | 171
A many-to-many application is one that shares information with a number of
machines simultaneously. In other words, the data flow is bi-directional. Each
receiver is also a sender. Each many-to-many application acts as a one-to-many
application as it sends data and as a many-to-one application as it receives data.

Many SmartSockets applications involve one-to-many or many-to-many data
distribution, where one or multiple sources are publishing the same information
(messages) to multiple receivers. Examples can be found across industries:

• Financial: communication of market data to traders, brokers and the general
public

• Manufacturing and process control: real-time collection, monitoring and
distribution of sensor data from factory floors

• Military or aerospace: real-time signal collection and distribution of data from
satellites, radar, and integration and test stands

• Telecommunications: real-time monitoring and control of network devices,
and call and service routing

• General: video and audio conferencing for remote meetings and
teleconferencing

SmartSockets Multicast efficiently supports this one-to-many message
distribution by enabling publishers to send a single copy of a message to multiple
recipients who have subscribed to the same subject. This is more efficient than
requiring the source to send an individual copy of a message to each subscriber,
also called point-to-point unicast. In point-to-point unicast, the number of
subscribers is limited by the bandwidth available to the publisher. SmartSockets
Multicast is also more efficient than broadcasting one copy of the message to all
nodes (broadcast) on the network, because many nodes may not want the
message, and because broadcasts, in general, are limited to a single subnet.

SmartSockets Multicast is an efficient way to send messages when those messages
are sent to many RTclients all receiving over the same subject on the same
network. However, to use the PGM protocol, your network hardware, such as
routers and switches, must support multicasting. For more information about
what is required for a network that supports multicasting, contact TIBCO Product
Support.

For more information on multicast, see Chapter 10, Using Multicast.
 TIBCO SmartSockets User’s Guide

172 | Chapter 3 Publish-Subscribe
Essential API Functions

The SmartSockets publish-subscribe API covers a wide range of function. While
all of this function is available to a SmartSockets application developer, the typical
SmartSockets application uses only a small fraction of the available functions. The
following is a list of the few functions that every SmartSockets application uses,
followed by a brief description.

If you plan to use SmartSockets with C, see the TIBCO SmartSockets Application
Programming Interface reference for the information you need to use these
functions. It contains the complete reference information for all the C API
functions.

If you plan to use SmartSockets with C++, see the TIBCO SmartSockets C++ User’s
Guide reference for the information you need to use these functions.

If you plan to use SmartSockets with Java, see the TIBCO SmartSockets Java Library
User’s Guide and Tutorial and the online Java reference in JavaDoc format for the
information you need. The names of the C functions are similar to the names of
the classes and methods used for Java. If you are interested in support for the Java
Message Service (JMS), contact TIBCO Product Support for more information on
TIBCO JMS products.

Message Type Functions:
These functions create and retrieve information about message types:
TipcMtCreate Create a new message type.

TipcMtLookup Look up a message type by name. This is necessary to create
a new message.
TIBCO SmartSockets User’s Guide

Essential API Functions | 173
Message Functions:
These functions construct, manipulate and destroy messages:
TipcMsgAddNamed* This is a class of functions to add various types of

fields to a message by name, including binaries,
strings, and reals.

TipcMsgAppend* This is a class of functions to append various types of
fields to a message, including binaries, strings, and
reals.

TipcMsgCreate Create a message.

TipcMsgDeleteNamed Delete fields to a message by name, including binaries,
strings, and reals.

TipcMsgDestroy Destroy a message.

TipcMsgGetNamed* This is a class of functions that gets a field by name.
Analogous to the TipcMsgAddNamed* functions,
there is a "get named" for binaries, strings, reals, and
other types.

TipcMsgNext* This is a class of functions that reads the next field of
the type specified. Analogous to the TipcMsgAppend*
functions, there is a "get next" for binaries, strings,
reals, and other types.

TipcMsgSetCurrent Set the current field of a message.

TipcMsgSetDest Set the destination, typically the subject name to which
this message will be published.

TipcMsgUpdateNamed* This is a class of functions to update various types of
fields to a message by name, including binaries,
strings, and reals.

TipcSrvMsgSend Publish a message.
 TIBCO SmartSockets User’s Guide

174 | Chapter 3 Publish-Subscribe
Communication Functions:
These are RTclient functions that communicate with RTserver to receive and
process messages:

Utility Functions:
These functions help with startup, debugging and clean up. See the TIBCO
SmartSockets Utilities reference for the information you need to use these
functions:

TipcSrvMainLoop Read and process messages from RTserver.

TipcSrvMsgNext Get the next message from the connection to
RTserver.

TipcSrvMsgProcess Process a message in the connection to
RTserver.

TipcSrvMsgSend Publish (send) a message through the
connection to RTserver.

TipcSrvSubjectCbCreate Define a new callback to be invoked when a
message is received to a particular subject.

TipcSrvSubjectDefaultCbCreate Define a default subject callback, to be invoked
when no other subject callback is defined for
that subject.

TipcSrvSubjectSetSubscribe Start or stop subscribing to a subject.

TutCommandParseFile Parses commands from a file for startup configuration.

TutErrNumGet Get the value of the global SmartSockets error number.

TutErrStrGet Get the SmartSockets global error number as a
descriptive string.

TutExit Call exit handlers and terminate the process. This is
required in Windows applications.

TutOut Unconditionally print out to a SmartSockets output
window.
TIBCO SmartSockets User’s Guide

Working With RTclient | 175
Working With RTclient

This section discusses how to create, access, and destroy connections. Because the
focus of this chapter is on the publish-subscribe model, the connections that we
describe are usually between the RTclient and an RTserver. To learn more about
working with connections in general, see Chapter 2, Connections. The following
example programs show the publish-subscribe code used to publish a small data
frame of messages, including a user-defined message type, between two RTclients
through RTserver. The programs also show how to work with subjects. There are
two parts to the example: a sending RTclient and a receiving RTclient. An RTclient
can both send messages to and receive messages from RTserver, but this example
only shows the two processes doing one or the other. This example only shows a
few of the publish-subscribe features built on top of connections.

The source code files for this example are located in the following directory:

UNIX:
$RTHOME/examples/smrtsock/manual

OpenVMS:
RTHOME:[EXAMPLES.SMRTSOCK.MANUAL]

Windows:
%RTHOME%\examples\smrtsock\manual

The online source files have additional #ifdefs to provide C++ support; these
#ifdefs are not shown to simplify the example.

Example 14 Common Header Source Code

/* rtclient.h -- common header for RTclient examples */

#define EXAMPLE_PROJECT "example"
#define EXAMPLE_SUBJECT "rcv"
#define EXAMPLE_MT_NAME "example_mt"
#define EXAMPLE_MT_NUM 42
#define EXAMPLE_MT_GRAMMAR "int4 /*code*/ str /*explanation*/"

void create_ud_msg_types();

Example 15 Common Utility Source Code

/* rtclutil.c -- RTclient example utilities */

#include <rtworks/ipc.h>
#include "rtclient.h"
 TIBCO SmartSockets User’s Guide

176 | Chapter 3 Publish-Subscribe
/* === */
/*..create_ud_msg_types -- create example user-defined msg types */
void create_ud_msg_types()
{
 T_IPC_MT mt;

 /* Create our user-defined message type. */
 mt = TipcMtCreate(EXAMPLE_MT_NAME, EXAMPLE_MT_NUM,
 EXAMPLE_MT_GRAMMAR);
 if (mt == NULL) {
 TutOut("Could not create example message type: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 /* Add the new message type to the DATA logging category. */
 if (!TipcSrvLogAddMt(T_IPC_SRV_LOG_DATA, mt)) {
 TutOut("Could not add example mt to DATA category: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
} /* create_ud_msg_types */

Example 16 Receiver Source Code

/* rtclrcv.c -- RTclient example receiver */

/* The receiving RTclient creates its connection to RTserver, */
/* subscribes to subjects, and receives and processes messages. */

#include <rtworks/ipc.h>
#include "rtclient.h"

/* === */
/*..cb_process_numeric_data -- process callback for NUMERIC_DATA */
static void T_ENTRY cb_process_numeric_data(

T_IPC_CONN conn,
T_IPC_CONN_PROCESS_CB_DATA data,
T_CB_ARG arg)

{
 T_STR name;
 T_REAL8 value;

 TutOut("Entering cb_process_numeric_data.\n");

 /* set current field to first field in message */
 if (!TipcMsgSetCurrent(data->msg, 0)) {
 TutOut("Could not set current field of message: error <%s>.\n",
 TutErrStrGet());
 return;
 }
TIBCO SmartSockets User’s Guide

Working With RTclient | 177
 /* access and print fields */
 while (TipcMsgNextStrReal8(data->msg, &name, &value)) {
 TutOut("%s = %s\n", name, TutRealToStr(value));
 }
 /* make sure we reached the end of the message */
 if (TutErrNumGet() != T_ERR_MSG_EOM) {
 TutOut("Did not reach end of message: error <%s>.\n",
 TutErrStrGet());
 }
} /* cb_process_numeric_data */

/* === */
/*..cb_default -- default callback */
static void T_ENTRY cb_default(

T_IPC_CONN conn,
T_IPC_CONN_DEFAULT_CB_DATA data,
T_CB_ARG arg)

{
 T_IPC_MT mt;
 T_STR name;

 /* This callback function will be called for messages where */
 /* there are no process callbacks for that message type. */
 TutOut("Entering cb_default.\n");

 /* print out the name of the type of the message */
 if (!TipcMsgGetType(data->msg, &mt)) {
 TutOut("Could not get message type from message: error
<%s>.\n",
 TutErrStrGet());
 return;
 }
 if (!TipcMtGetName(mt, &name)) {
 TutOut("Could not get name from message type: error <%s>.\n",
 TutErrStrGet());
 return;
 }
 TutOut("Message type name is %s.\n", name);
} /* cb_default */
/* === */
/*..main -- main program */
int main(argc, argv)
int argc;
char **argv;
{
 T_OPTION option;
 T_IPC_MT mt; /* message type for creating callbacks */

 /* Create user-defined message types. */
 create_ud_msg_types();
 TIBCO SmartSockets User’s Guide

178 | Chapter 3 Publish-Subscribe
 /* Set the option Project to partition ourself. */
 option = TutOptionLookup("project");
 if (option == NULL) {
 TutOut("Could not look up option named project: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (!TutOptionSetEnum(option, EXAMPLE_PROJECT)) {
 TutOut("Could not set option named project: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* Allow a command-line argument containing the name of a */
 /* SmartSockets startup command file. This file can be used */
 /* to set options like Server_Names. */
 if (argc == 2) {
 if (!TutCommandParseFile(argv[1])) {
 TutOut("Could not parse startup command file %s: error
<%s>.\n",
 argv[1], TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 }
 else if (argc != 1) { /* too many command-line arguments */
 TutOut("Usage: %s [command_file_name]\n", argv[0]);
 TutExit(T_EXIT_FAILURE);
 }

 TutOut("Creating connection to RTserver.\n");
 if (!TipcSrvCreate(T_IPC_SRV_CONN_FULL)) {
 TutOut("Could not create connection to RTserver: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* create callbacks to be executed when certain operations occur */
 TutOut("Create callbacks.\n");

 /* process callback for NUMERIC_DATA */
 mt = TipcMtLookupByNum(T_MT_NUMERIC_DATA);
 if (mt == NULL) {
 TutOut("Could not look up NUMERIC_DATA msg type: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (TipcSrvProcessCbCreate(mt, cb_process_numeric_data, NULL)
 == NULL) {
 TutOut("Could not create NUMERIC_DATA process cb: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
TIBCO SmartSockets User’s Guide

Working With RTclient | 179
 /* default callback */
 if (TipcSrvDefaultCbCreate(cb_default, NULL) == NULL) {
 TutOut("Could not create default cb: error <%s>.\n",
 TutErrStrGet());
 }

 TutOut("Start subscribing to standard subjects.\n");
 if (!TipcSrvStdSubjectSetSubscribe(TRUE, FALSE)) {
 TutOut("Could not subscribe to standard subjects: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 TutOut("Start subscribing to the %s subject.\n",
EXAMPLE_SUBJECT);
 if (!TipcSrvSubjectSetSubscribe(EXAMPLE_SUBJECT, TRUE)) {
 TutOut("Could not start subscribing to %s subject: error
<%s>.\n",
 EXAMPLE_SUBJECT, TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* If an error occurs, then TipcSrvMainLoop will restart RTserver */
 /* and return FALSE. We can safely continue. */
 for (;;) {
 if (!TipcSrvMainLoop(T_TIMEOUT_FOREVER)) {
 TutOut("TipcSrvMainLoop failed: error <%s>.\n",
 TutErrStrGet());
 }
 }

 /* This line should not be reached. */
 TutOut("This line should not be reached!!!\n");
 return T_EXIT_FAILURE;
} /* main */

Example 17 Sender Source Code
/
* rtclsnd.c -- RTclient example sender */

/*
This sending RTclient creates its connection and publishes a data frame of messages to a subject
(through RTserver).
*/

#include <rtworks/ipc.h>
#include "rtclient.h"
 TIBCO SmartSockets User’s Guide

180 | Chapter 3 Publish-Subscribe
/* === */
/*..main -- main program */
int main(argc, argv)
int argc;
char **argv;
{
 T_OPTION option;
 T_IPC_MT mt;
 /* Create user-defined message types. */
 create_ud_msg_types();

 /* Set the option Project to partition ourself. */
 option = TutOptionLookup("project");
 if (option == NULL) {
 TutOut("Could not look up option named project: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (!TutOptionSetEnum(option, EXAMPLE_PROJECT)) {
 TutOut("Could not set option named project: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* Log outgoing data messages to a message file. Another */
 /* way to set options is to use TutCommandParseStr. */
 TutCommandParseStr("setopt log_out_data log_out.msg");

 /* Allow a command-line argument containing the name of a */
 /* SmartSockets startup command file. This file can be used */
 /* to set options like Server_Names. */
 if (argc == 2) {
 if (!TutCommandParseFile(argv[1])) {
 TutOut("Could not parse startup command file %s: error
<%s>.\n",
 argv[1], TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 }
 else if (argc != 1) { /* too many command-line arguments */
 TutOut("Usage: %s [command_file_name]\n", argv[0]);
 TutExit(T_EXIT_FAILURE);
 }

 TutOut("Creating connection to RTserver.\n");
 if (!TipcSrvCreate(T_IPC_SRV_CONN_FULL)) {
 TutOut("Could not create connection to RTserver: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
TIBCO SmartSockets User’s Guide

Working With RTclient | 181
 TutOut("Publish a frame of data to the receiver’s subject.\n");

 TutOut("Publishing a TIME message.\n");
 mt = TipcMtLookupByNum(T_MT_TIME);
 if (mt == NULL) {
 TutOut("Could not look up TIME msg type: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (!TipcSrvMsgWrite(EXAMPLE_SUBJECT, mt, TRUE,
 T_IPC_FT_REAL8, 1.0,
 NULL)) {
 TutOut("Could not publish TIME message: error <%s>.\n",
 TutErrStrGet());
 }

 TutOut("Publishing a NUMERIC_DATA message.\n");
 mt = TipcMtLookupByNum(T_MT_NUMERIC_DATA);
 if (mt == NULL) {
 TutOut("Could not look up NUMERIC_DATA msg type: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (!TipcSrvMsgWrite(EXAMPLE_SUBJECT, mt, TRUE,
 T_IPC_FT_STR, "voltage",
 T_IPC_FT_REAL8, 33.4534,
 T_IPC_FT_STR, "switch_pos",
 T_IPC_FT_REAL8, 0.0,
 NULL)) {
 TutOut("Could not publish NUMERIC_DATA message: error <%s>.\n",
 TutErrStrGet());
 }

 TutOut("Publishing an EXAMPLE message.\n");
 mt = TipcMtLookupByNum(EXAMPLE_MT_NUM);
 if (mt == NULL) {
 TutOut("Could not look up EXAMPLE msg type: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (!TipcSrvMsgWrite(EXAMPLE_SUBJECT, mt, TRUE,
 T_IPC_FT_INT4, 7,
 T_IPC_FT_STR, "Seven is your lucky number",
 NULL)) {
 TutOut("Could not publish EXAMPLE message: error <%s>.\n",
 TutErrStrGet());
 }

 TutOut("Publishing an END_OF_FRAME message.\n");
 mt = TipcMtLookupByNum(T_MT_END_OF_FRAME);
 if (mt == NULL) {
 TutOut("Could not look up END_OF_FRAME msg type: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 TIBCO SmartSockets User’s Guide

182 | Chapter 3 Publish-Subscribe
 if (!TipcSrvMsgWrite(EXAMPLE_SUBJECT, mt, TRUE, NULL)) {
 TutOut("Could not publish END_OF_FRAME message: error <%s>.\n",
 TutErrStrGet());
 }

 /* Each RTclient automatically creates a connection process */
 /* callback for CONTROL messages. Use this to send the command */
 /* "quit force" to the receiver’s command interface. */
 TutOut("Publishing a CONTROL message to stop the
receiver(s).\n");
 mt = TipcMtLookupByNum(T_MT_CONTROL);
 if (mt == NULL) {
 TutOut("Could not look up CONTROL msg type: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (!TipcSrvMsgWrite(EXAMPLE_SUBJECT, mt, TRUE,
 T_IPC_FT_STR, "quit force",
 NULL)) {
 TutOut("Could not publish CONTROL message: error <%s>.\n",
 TutErrStrGet());
 }

 /* Flush the buffered outgoing messages to RTserver. */
 if (!TipcSrvFlush()) {
 TutOut("Could not flush messages to RTserver: error <%s>.\n",
 TutErrStrGet());
 }

 /* Completely disconnect from RTserver. */
 if (!TipcSrvDestroy(T_IPC_SRV_CONN_NONE)) {
 TutOut("Could not destroy connection to RTserver: error
<%s>.\n",
 TutErrStrGet());
 }

 TutOut("Sender RTclient exiting successfully.\n");
 return T_EXIT_SUCCESS; /* all done */
} /* main */
TIBCO SmartSockets User’s Guide

Working With RTclient | 183
Compiling, Linking, and Running
To compile, link, and run the example programs, first you must either copy the
programs to your own directory or have write permission in the following
directory or partitioned datasets (MVS):

UNIX:
$RTHOME/examples/smrtsock/manual

OpenVMS:
RTHOME:[EXAMPLES.SMRTSOCK.MANUAL]

Windows:
%RTHOME%\examples\smrtsock\manual

Step 1 To compile and link the programs, use:

UNIX:
$ rtlink -o rtclrcv.x rtclrcv.c rtclutil.c
$ rtlink -o rtclsnd.x rtclsnd.c rtclutil.c

OpenVMS:
$ cc rtclrcv.c, rtclsnd.c, rtclutil.c
$ rtlink /exec=rtclrcv.exe rtclrcv.obj, rtclutil.obj
$ rtlink /exec=rtclsnd.exe rtclsnd.obj, rtclutil.obj

Windows:
$ nmake /f clrvw32m.mak
$ nmake /f clsnw32m.mak

On UNIX the rtlink command by default uses the cc command to compile and
link. To use a C++ compiler or a C compiler with a name other than cc, set the
environment variable CC to the name of the compiler, and rtlink then uses this
compiler. For example, these commands could be used to compile and link on
UNIX with the GNU C++ compiler g++:

$ env CC=g++ rtlink -o rtclrcv.x rtclrcv.c rtclutil.c
$ env CC=g++ rtlink -o rtclsnd.x rtclsnd.c rtclutil.c
 TIBCO SmartSockets User’s Guide

184 | Chapter 3 Publish-Subscribe
Step 2 Start RTserver

Before running the programs, start RTserver. An RTclient will not by default
automatically start an RTserver. You can change this behavior by using a start
prefix in RTclient’s Server_Names option. For more information, see Start Prefix
on page 195 and Starting and Stopping RTserver on page 284.

Use this command to start RTserver on 32-bit platforms:

$ rtserver

To run the programs, start the receiving process first in one terminal emulator
window and then the sending process in another terminal emulator window.

Step 3 Start the receiving program in the first window

UNIX:
$ rtclrcv.x

OpenVMS:
$ run rtclrcv.exe

Windows:
$ rtclrcv

Step 4 Start the sending program in the second window

UNIX:
$ rtclsnd.x

OpenVMS:
$ run rtclsnd.exe

Windows:
$ rtclsnd.exe

On platforms that support both 32- and 64-bit, use the rtserver64 command to
run the 64-bit version of RTserver.
TIBCO SmartSockets User’s Guide

Working With RTclient | 185
Here is an example of the receiving process output:

Creating connection to RTserver.
Connecting to project <example> on <_node> RTserver
Using local protocol
Message from RTserver: Connection established.
Start subscribing to subject </_node_5415>
Create callbacks.
Start subscribing to standard subjects.
Start subscribing to subject </_node>
Start subscribing to subject </_all>
Start subscribing to the rcv subject.
Entering cb_default.
Message type name is time.
Entering cb_process_numeric_data.
voltage = 33.4534
switch_pos = 0
Entering cb_default.
Message type name is example_mt.
Entering cb_default.
Message type name is end_of_frame.

Here is an example of the sending process output:

Now logging outgoing data-related messages to <log_out.msg>
Creating connection to RTserver.
Connecting to project <example> on <_node> RTserver
Using local protocol
Message from RTserver: Connection established.
Start subscribing to subject </_node_5415>
Publish a frame of data to the receiver’s subject.
Publishing a TIME message.
Publishing a NUMERIC_DATA message.
Publishing an EXAMPLE message.
Publishing an END_OF_FRAME message.
Publishing a CONTROL message to stop the receiver(s).
Now logging outgoing data - related messages to <log_out.msg>
Sender RTclient exiting successfully.

The message file log_out.msg, which is created by the sender:

time rcv 1
numeric_data rcv {
 voltage 33.4534
 switch_pos 0
}
example_mt rcv 7 "Seven is your lucky number"
end_of_frame rcv
control rcv "quit force"

More than one receiving process can be started if desired. Each receiving process
receives the same messages from the sending process. To run three receivers, start
the receiving program in three separate windows or in batch (background), using
the same command as shown in Step 3.
 TIBCO SmartSockets User’s Guide

186 | Chapter 3 Publish-Subscribe
Include Files
Code written in C or C++ that uses the SmartSockets Application Programming
Interface (API) must include the header file <rtworks/ipc.h>. This file is located
in these directories or partitioned datasets (MVS):

UNIX:
$RTHOME/include/$RTARCH/rtworks

OpenVMS:
RTHOME:[INCLUDE.RTWORKS]

Windows:
%RTHOME%\include\rtworks

The SmartSockets IPC API includes all the functions used for interprocess
communication.

Differences Between the TipcConn* and TipcSrv* API
Most TipcConn* connection functions have an equivalent TipcSrv* function that
operates only on the connection to RTserver. For most TipcConn* functions that
have a TipcSrv* equivalent, the calling sequences are identical except that the
T_IPC_CONN first parameter in the TipcConn* function disappears in the
TipcSrv* function because the connection is always with RTserver. For example,
the C/C++ function prototype for TipcConnMsgProcess is:

T_BOOL TipcConnMsgProcess(T_IPC_CONN conn, T_IPC_MSG msg);

The corresponding function prototype for TipcSrvMsgProcess is:

T_BOOL TipcSrvMsgProcess(T_IPC_MSG msg);

Table 6 shows the TipcSrv* functions that have names similar to TipcConn*
functions, but that have different behavior.

Table 6 TipcSrv* Functions With Different Behavior

Function Name Difference from Related TipcConn* Function

TipcSrvCreate TipcConnCreate creates an empty connection,
while TipcSrvCreate uses several options to find,
possibly start, and connect to RTserver.

TipcSrvDestroy TipcConnDestroy deallocates memory and closes
a socket, while TipcSrvDestroy may leave a warm
connection to RTserver.
TIBCO SmartSockets User’s Guide

Working With RTclient | 187
Table 7 shows the TipcConn* functions that do not have TipcSrv* equivalents.

TipcSrvMsgSend

TipcSrvMsgWrite

 TipcSrvMsgWriteVa

These functions set the sender property of a
message to the value in the option
Unique_Subject and have an additional
check_server_msg_send parameter (of type T_BOOL).
TipcSrvMsgWrite and TipcSrvMsgWriteVa also
have an additional destination parameter (of type
T_STR).

TipcSrvGmdFileDelete Because TipcSrvCreate calls TipcSrvGmdResend
(which will open any existing GMD files and thus
not allow them to be deleted),
TipcSrvGmdFileDelete does not call
TipcConnGmdFileDelete but does use the same
algorithm.

Table 7 TipcConn* Functions Without TipcSrv* Equivalents

Function Name Explanation

TipcConnCreateClient

TipcConnCreateServer

An RTclient uses the function TipcSrvCreate,
which uses the options Server_Names and
Default_Protocols to determine which IPC
protocol to use to create a client connection to
RTserver. An RTclient always creates a client
connection, not a server connection, when it
connects to RTserver.

TipcConnAccept RTserver accepts a connection from RTclient,
not the other way around.

TipcConnEncodeCbCreate
TipcConnEncodeCbLookup
TipcConnDecodeCbCreate
TipcConnDecodeCbLookup

RTclient does not support encode and decode
callbacks on the connection to RTserver.

Table 6 TipcSrv* Functions With Different Behavior (Cont’d)

Function Name Difference from Related TipcConn* Function
 TIBCO SmartSockets User’s Guide

188 | Chapter 3 Publish-Subscribe
Table 8 shows the TipcSrv* functions that do not have TipcConn* equivalents.

Table 8 TipcSrv* Functions Without TipcConn* Equivalents

Functions Explanation

TipcSrvLogAddMt

TipcSrvLogRemoveMt

These functions manipulate standard
message file logging types, which do not
exist in connections, only in RTclient.

TipcSrvCreateCbCreate
TipcSrvCreateCbLookup
TipcSrvDestroyCbCreate
TipcSrvDestroyCbLookup
TipcSrvSubjectCbCreate
TipcSrvSubjectCbDestroyAll
TipcSrvSubjectCbLookup
TipcSrvSubjectDefaultCbCreate
TipcSrvSubjectDefaultCbLookup
TipcSrvTraverseCbCreate
TipcSrvTraverseCbLookup

These functions manipulate server create
callbacks, server destroy callbacks, server
names traverse callbacks, and subject
callbacks, which do not exist in
connections, only in RTclient.

TipcSrvSubjectGetSubscribe
TipcSrvSubjectSetSubscribe
TipcSrvSubjectGetSubscribeLb
TipcSrvSubjectSetSubscribeLb
TipcSrvSubjectGmdInit
TipcSrvSubjectLbInit
TipcSrvSubjectTraverseSubscribe

These functions manipulate subjects,
which do not exist in connections, only in
RTserver and RTclient.

TipcSrvStdSubjectSetSubscribe

TipcSrvStdSubjectTraverse

These functions manipulate standard
subjects, which do not exist in
connections, only in RTserver and
RTclient.

TipcSrvGetConnStatus
TipcSrvIsRunning
TipcSrvStop

Miscellaneous RTclient utility functions.

TipcSrvGmdMsgServerDelete

 TipcSrvGmdMsgStatus

These functions provide GMD that exists
in RTclient but not in connections.
TIBCO SmartSockets User’s Guide

Working With RTclient | 189
Setting Options
Options allow you to customize your RTclient’s configuration. A user-defined
RTclient does not have any standard startup command files. It is up to you to
decide which command files, if any, should be loaded. Startup command files can
be loaded with the function TutCommandParseStr or by using
TutCommandParseFile. Options can also be set using the function
TutOptionSetType, where Type is replaced with the type of the option. All RTclient
options are discussed in detail in Chapter 8, Options Reference.

Creating a Connection to RTserver
After an RTclient has initialized its options, a connection to RTserver can be
created. There are two kinds of global connections to RTserver: a warm
connection and a full connection. Warm connections are discussed in Warm
Connection to RTserver on page 235. Through the remainder of this document,
the term connection to RTserver is used to mean a full global connection to
RTserver.

The function TipcSrvCreate is used to create a connection to RTserver. For
example:

if (!TipcSrvCreate(T_IPC_SRV_CONN_FULL)) {
 TutOut("Could not create connection to RTserver: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}

The connect command provides a way to use TipcSrvCreate from the
SmartSockets command interface (see the command reference for connect,
page 595).

An RTclient cannot have a global connection to more than one RTserver at a time,
although it can move its connection from one RTserver to another RTserver at any
time. However, instead of a single global connection, an RTclient can have
multiple RTserver connections using a special type of multiple connection. For
more information in C, see Connecting to Multiple RTservers, page 248. For more
information in Java, see the TIBCO SmartSockets Java Library User’s Guide and
Tutorial.
 TIBCO SmartSockets User’s Guide

190 | Chapter 3 Publish-Subscribe
TipcSrvCreate uses several options to control the creation of the connection to
RTserver:

The options Default_Subject_Prefix, Project, Server_Disconnect_Mode, and
Unique_Subject do not directly control connecting to RTserver, but they are used
once RTclient has found an RTserver.

Creating a Connection to RTgms
If the SmartSockets system is enabled for multicast and the RTclient wants to use
multicast, the RTclient must connect to an RTgms instead of connecting to an
RTserver. In most cases, the only change required is to the Group_Names and
Server_Names options in the RTclient command (.cm) file.

The Group_Names option specifies which multicast group the RTclient belongs
to. The default is rtworks, and you only need to change the value if you are not
using that group name.

The Server_Names option must provide the logical connection name for an
RTgms process instead of the logical connection name for an RTserver process.

For example, your RTclient command file might contain:

setopt group_names rtworks
setopt server_names tcp:nodea

Let’s assume the RTclient should belong to the multicast group mcast1, and
should connect to the RTgms on nodea using the default port, which is 5104.
Change the lines to:

setopt group_names mcast1
setopt server_names pgm:nodea

Default_Protocols specifies a list of IPC protocols to try if no protocol is
specified.

Server_Disconnect_Mode specifies the action RTserver should take when
RTclient disconnects.

Server_Names specifies a list of logical connection names used to find
and start RTserver.

Server_Start_Delay specifies the number of seconds to sleep between
traversals of the Server_Names option.

Server_Start_Max_Tries specifies the number of times to traverse the
Server_Names option.

Server_Start_Timeout specifies the number of seconds to wait for RTserver to
initialize.

Udp_Broadcast_Timeout specifies the number of seconds to wait for broadcast
replies.
TIBCO SmartSockets User’s Guide

Working With RTclient | 191
If you want to connect to an RTgms that is not using the default port, change the
Server_Names line to:

setopt server_names pgm:nodea:tcp.6000

which connects to the RTgms on nodea using port 6000. For more information on
the format of RTgms addresses, see Address for Multicast, page 194.

After ensuring your options are set correctly for multicast, use the function
TipcSrvCreate to connect to the RTgms process the same way you connect to an
RTserver process:

if (!TipcSrvCreate(T_IPC_SRV_CONN_FULL)) {
 TutOut("Could not create connection to RTgms: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}

When connecting to an RTgms process, you cannot specify pgm:localhost alone.
You must also include TCP as the protocol:

pgm:localhost:tcp

In addition to the options used in creating connections for an RTclient, there are
special options that apply only to multicast connections. The names of these
options begin with Pgm_. These options must be set in a multicast command file,
mcast.cm. For information on these options and on the multicast command file,
see Chapter 10, Using Multicast. If your SmartSockets system does not have the
multicast option installed, you receive an error when you attempt to connect to
RTgms.

Belonging to a Project
When an RTclient creates a connection to RTserver, it becomes part of the project
named in the option Project. As described in Projects on page 156, each project is
self-contained, and no messages can be sent between projects.
 TIBCO SmartSockets User’s Guide

192 | Chapter 3 Publish-Subscribe
Logical Connection Names for RT Processes
SmartSockets RT processes, such as RTserver and RTclient, simplify the creation of
connections with logical connection names that are specified consistently for all
protocols. RTserver and RTclient take full advantage of the logical connection
name feature of connections. For an introduction to these features, see the section
Logical Connection Names, page 101. RTserver uses logical connection names to
create its connections, and RTclient uses logical connection names to create a client
connection to an RTserver or RTgms.

The most important option for connecting to another RT process is Server_Names,
which is used to find and start an RT process such as RTserver. Server_Names is a
list of logical connection names. Each logical connection name has the form:

protocol:node:address

which can be shortened to protocol:node, protocol, or simply node for normal
connections. The TipcSrvCreate function expands the shortened forms to the long
protocol:node:address form and uses default values for the parts that are not specified.
For RTclient to find an RTserver, one of the logical connection names used by
RTclient must exactly match one of the logical connection names used by that
RTserver (for example, the name tcp:abc:1234 does not match the name
tcp:xyz:1234).

For RTclient to automatically start or re-start an RTserver, Server_Names must use
one of the start prefixes listed in Start Prefix on page 195. By default, the start
prefix is start_never, meaning that RTclient cannot start RTserver.

Protocol Portion

The protocol part of the connection name refers to an IPC protocol type. Examples
of common protocols are tcp, local. There is also the special SmartSockets
protocol defined for multicast, pgm. The pgm protocol is only supported if your
SmartSockets system has the multicast option installed.

If protocol is omitted from the connection name, then all protocols listed in the
Default_Protocols option are tried in order. These protocol names (with the
exception of udp_broadcast, which is described in the next section) map to the
TipcConnCreateClient function described in the section Creating a Client
Connection, page 104.

If you specify pgm for multicast as the protocol, the address portion of the logical
connection name uses a different format than for other protocols. See Address for
Multicast, page 194.
TIBCO SmartSockets User’s Guide

Working With RTclient | 193
The Udp_Broadcast Protocol

The udp_broadcast protocol is only used to find RTserver, and not to start
RTserver or send or receive messages. When the udp_broadcast protocol is used,
a packet is broadcast to all nodes on the local network to attempt to find an
RTserver. If an RTserver receives the broadcast packet, it responds to the request
with a list of logical connection names for RTclient to use to find that RTserver.
RTclient waits the number of seconds specified in the Udp_Broadcast_Timeout
option for RTserver to respond to its broadcast, and then connects to the RTserver
that responds first.

There are several categories of UDP broadcast addresses that vary in how wide an
area they are distributed over. The book TCP/IP Illustrated, Volume 1: The Protocols
by W. Richard Stevens has an excellent discussion of broadcasting. The categories
are shown below.

• the limited broadcast address is 255.255.255.255 and is intended for a single
network interface, but may work differently on a node with multiple network
interfaces

• the net-directed broadcast address is intended for a non-subnetted network

• the subnet-directed broadcast address is intended for a single TCP/IP subnet

• the all-subnets-directed broadcast address is intended for all subnets

Unfortunately, these categories behave differently depending on the operating
system and network router configuration used, making it hard to pick a default
broadcast address that works in all situations. The limited and
all-subnets-directed broadcast addresses do not work on several operating
systems supported by SmartSockets.

Therefore, by default the broadcast packet is sent to the subnet-directed address
of the main network interface. In non-subnetted networks, the net-directed,
subnet-directed, and all-subnet-directed broadcast addresses are equivalent,
which makes the subnet-directed address the most reasonable default for most
networks.

When using the udp_broadcast protocol, a dotted-decimal address can be used
for the node portion of the logical connection name to override the broadcast
default. For example, the logical connection name
udp_broadcast:255.255.255.255 can be used on many platforms as a limited
broadcast address.

SmartSockets does not support broadcast over several network interfaces at the
same time.
 TIBCO SmartSockets User’s Guide

194 | Chapter 3 Publish-Subscribe
 Node Portion

The node part of the connection name refers to a computer node name. If node is
omitted from the connection name, then _node, the current node, is used as a
default. Using the default node works if your RTserver or RTgms process to which
you are connecting is on the same node as your RTclient. If you configured them
to be on a different node, you must specify that node for the node portion of the
connection name.

Address Portion

The address part of the connection name refers to a protocol-specific IPC location,
such as a tcp port number. If address is omitted from the connection name, a
protocol-specific default address is used. The default addresses for all protocols are:

Address for Multicast

If you are connecting to an RTgms process for multicast, instead of to an RTserver,
the address portion of your logical connection name is a different format than for
other protocols. The format for multicast is:

unicast_protocol.address

where:

Protocol Name Default Address

local RTSERVER

pgm unicast_protocol.address

(See Address for Multicast.)

tcp 5101

udp_broadcast 5101

unicast_protocol specifies the unicast protocol to use when sending data to an
RTgms. The valid values you can specify are tcp or local.

This field is optional, unless you specified localhost for the node
on a UNIX system. If you specify localhost for the node, the
unicast protocol must be tcp.

On Windows, the default is tcp.

On UNIX, where the default is local, you must specify tcp as the
unicast protocol:

pgm:localhost:tcp
TIBCO SmartSockets User’s Guide

Working With RTclient | 195
If you specify a multicast format address, and your SmartSockets system does not
have the multicast option installed, you receive an error when you attempt to
connect to RTgms.

Start Prefix

Each logical connection name in RTclient can also have a logical connection name
modifier called a start prefix at the front, which must be separated from the name
with a colon:

start_prefix:protocol:node:address

For more information, see Logical Connection Name Modifiers on page 291.

The start prefix controls if and when an RTclient tries to start RTserver. On
Windows, if an RTserver has been installed as a Windows service, you must also
set the proper environment variable before an RTclient can use a start prefix to
start that RTserver. Set the RTSERVER_CMD environment variable to:

net start "SmartSockets RTserver"

The valid start prefixes are:

If no start prefix is specified, an implicit default start prefix of start_never is
used. If the protocol portion of the logical connection name is local and the node
portion is not the name of the current node, an implicit start prefix of
start_never is used because the local protocol cannot connect to a remote
RTserver.

address specifies the address portion of the unicast logical connection name
used by the RTgms to receive data. This is the address or port
defined for the RTgms. The default is 5104.

This field is optional.

start_always RTclient always tries to start RTserver if it cannot create the
connection to RTserver.

start_on_demand RTclient only tries to start RTserver if the RTclient has tried
all names in Server_Names at least once. This is useful for
only starting RTserver if an existing one cannot be found. For
this start prefix to be used, the Server_Start_Max_Tries option
must be increased above the default value of 1 (see pseudo
code in Finding and Starting RTserver on page 197 for
details).

start_never RTclient never tries to start RTserver. This is the default.

The start prefix is only for an RTclient to start an RTserver. It cannot be used by
any other process to start an RTserver or used by an RTclient to start a process
other than an RTserver.
 TIBCO SmartSockets User’s Guide

196 | Chapter 3 Publish-Subscribe
Randomizing Server_Names

The special value _random can be used in the Server_Names option in an RTclient
to randomize the list of RTserver names. Every name occurring after _random is
tried in a random order. This enables load balancing of the RTclient connections to
the associated RTservers. For example, if the option Server_Names is set to
workstation1, _random, workstation2, workstation3, workstation4,
then workstation1 is always tried first, and then workstation2, workstation3,
and workstation4 are tried in a random order each call to the TipcSrvCreate
function.

Scanning Server_Names

The special value _next can be used in the server_names option for an RTclient.
This special value changes the starting point at which the RTclient traverses the
server_names option in the event of server failure. If included, the _next value
must be the first value presented in the server_names list. Each server name is
tried in sequential order, starting with the "next" server listed after the currently
connected server. This prevents the RTclient from attempting to reconnect to a
server to which it had previously lost its connection.

For example:

setopt server_names _next, server1, server2, server3, server4

When the RTclient initially tries to make a connection to a server, it attempts to
connect to server1. Once a connection is established to server1, should a failure
occur in server1, the RTclient attempts reconnection by starting with the "next"
server in the list, server2. Without the _next property, the RTclient would always
attempt to connect to the list of servers starting with the first server in the list. The
_next option does not eliminate any servers from the list; if the RTclient reaches
the end of the list when using the _next option, then the RTclient circles back
around to the front of the list and continues connection attempts until all servers
in the list have been attempted.
TIBCO SmartSockets User’s Guide

Working With RTclient | 197
RTservers with Multiple IP Addresses
Generally, for an RTclient to find an RTserver, the logical connection name used in
Server_Names by the RTclient must exactly match the logical connection name
used in Conn_Names by the RTserver. For example, the name tcp:moe:1234 does
not match the name tcp:conan:1234. However, this perfect match is not needed
when the RTclient is trying to find an RT server that is listening on all IP addresses
on a machine with more than one IP address, that is, multi-homed.

An RTserver listens on all IP addresses of a machine if the node portion of its
logical connection name (specified in Conn_Names) is _any. Using _node for node
causes the RTserver to listen only on the default IP address. For example, if an
RTserver is on a machine with IP addresses ipaddr_a and ipaddr_b, and its
Conn_Names is set to tcp:_any:5101, an RTclient can connect to this RTserver if
its Server_Names option is set to either tcp:ipaddr_a:5101 or
tcp:ipaddr_b:5101.

If you want the RTserver to listen only on a specific IP address, you can specify
that IP address in the Conn_Names option. However, there is a known issue that
occurs if running an RTserver on a machine with multiple IP addresses when
using udp_broadcast to discover RTservers. Any responding RTserver replies
with only its default IP address, even if its Conn_Names option is specifically set
to listen on an IP address other than the default. If you are using udp_broadcast,
be sure to include the default IP address in the RTserver Conn_Names option, or
use _node or _any in the Conn_Names option.

Finding and Starting RTserver
An RTclient traverses the list of names in Server_Names at most
Server_Start_Max_Tries. Between each traversal RTclient sleeps for
Server_Start_Delay seconds. Each time an RTclient tries to start RTserver, it waits
for up to Server_Start_Timeout seconds for that RTserver to finish initializing. For
each entry in Server_Names, RTclient tries to connect, then possibly tries to start
RTserver (depending on what start prefix is used), then tries to connect again.

There is a server names traverse callback available to RTclients. This callback is
executed before each attempt to connect to an RTserver in the Server_Names list.
For more information, see Server Names Traverse Callbacks, page 239.

Using the keyword _any in Conn_Names is discouraged for RTserver to RTserver
connections. When an RTserver connects to another RTserver whose
Conn_Names use _any, the RTserver might attempt to reconnect every
Server_Reconnect_Interval seconds. This is a known problem and will be fixed in
a future release.
 TIBCO SmartSockets User’s Guide

198 | Chapter 3 Publish-Subscribe
This pseudo code shows the algorithm used by TipcSrvCreate:

randomize Server_Names list if _random is used

for (each $try from 1 to Server_Start_Max_Tries) {

 for (each $name in Server_Names) {
 connect to RTserver using $name
 if (connection could be created) {
 if (no connection previously existed) {
 resend old GMD messages
 }
 execute server create callbacks
 return
 }
 else {
 if ($name has the start prefix "start_always"
 or $name has no start prefix
 or ($name has the start prefix "start_on_demand"
 and $try > 1)) {
 start RTserver with command "rtserver -node node"
 wait up to Server_Start_Timeout seconds for RTserver to init
 connect to RTserver using $name
 if (connection could be created) {
 if (no connection previously existed) {
 resend old GMD messages
 }
 execute server create callbacks
 return
 }
 } /* if we should try to start RTserver */
 } /* if no connection */
 } /* for each name */

 sleep for Server_Start_Delay seconds
} /* for each try */

If TipcSrvCreate is able to successfully create a connection, it calls the server
create callbacks (see RTclient-Specific Callbacks on page 237 for information on
server create callbacks).

The options shown in the example are only accessed when the RTclient creates a
connection to RTserver. If one of these options is changed, it does not take effect
until the next time the RTclient creates a connection to RTserver. See Changing
RTclient Options on page 247 for an example of how to change these options and
have them take effect immediately.

The start_on_demand start prefix only starts RTserver if the option
Server_Start_Max_Tries is set to a value larger than 1 (the default).
TIBCO SmartSockets User’s Guide

Working With RTclient | 199
Starting RTserver on a Remote Node

When RTclient starts RTserver, it uses the node portion of the logical connection
name to determine which node to attempt to start RTserver on. To start RTserver
on a remote node, it must be possible to perform a remote shell rsh (remsh on
HP-UX) to that node without a password. If rsh to the remote system does not
work, then the RTclient is not able to start RTserver. Use this command to test rsh
(on all platforms except HP-UX):

$ rsh node rtserver -help

On HP-UX, use this command:

$ remsh node rtserver -help

If a prompt for a password appears when this command is entered, contact the
system administrator for help in configuring the remote shell (rsh or remsh) to not
require a password.

Starting RTserver on a remote machine under OpenVMS requires a TCP/IP
package running with support for the rsh command, such as MultiNet.

Local Protocol Failure

Occasionally, you may find that RTclient can no longer connect to RTserver using
the local protocol, but can still connect using the TCP protocol. For example:

Connecting to project <rtworks> on <_node> RTserver.
Using local protocol.
connect: No such file or directory
Could not connect to <_node> RTserver.
Connecting to project <rtworks> on <_node> RTserver.
Using tcp protocol.
Message from RTserver: Connection established.

One possible scenario is the local socket file used by RTserver (stored in the
directory specified by the function TutGetSocketDir) gets deleted somehow,
perhaps by an overzealous system administrator. To fix the problem, simply
restart RTserver, and a new socket file is created.

On platforms that support both 32- and 64-bit, use the rtserver64 command to
run the 64-bit version of RTserver.
 TIBCO SmartSockets User’s Guide

200 | Chapter 3 Publish-Subscribe
Automatically Connecting to RTserver

The above example programs explicitly call the function TipcSrvCreate to create a
connection to RTserver. RTclient can also automatically create a connection to
RTserver if one is needed, such as when RTclient tries to publish a message to
RTserver before it has created a connection to RTserver. Most of the TipcSrv*
functions automatically attempt to create a connection to RTserver (by calling
TipcSrvCreate themselves) if one is needed and the option Server_Auto_Connect
is set to TRUE.

The standard SmartSockets modules also use Server_Auto_Connect in a second
way. During initialization, each of these standard processes uses
Server_Auto_Connect to determine whether or not to require a connection to
RTserver. If Server_Auto_Connect is TRUE, the process requires a connection to
RTserver, and creates one, if necessary, to start up. To run the standard processes
without any connection to RTserver, Server_Auto_Connect must be set to FALSE.
Some standard data sources in the standard SmartSockets processes also require a
connection to RTserver regardless of the value of Server_Auto_Connect.

Table 9 shows the TipcSrv* functions that do not automatically create a connection
to RTserver.

Table 9 TipcSrv* Functions That do not Automatically Create a Connection to RTserver

Function Name Explanation

TipcSrvLogAddMt
TipcSrvLogRemoveMt

The standard message file logging types
can only be manipulated before a
connection to RTserver is created.

TipcSrvCreateCbCreate
TipcSrvCreateCbLookup
TipcSrvDestroyCbCreate
TipcSrvDestroyCbLookup

Manipulating server create callbacks and
server destroy callbacks does not need a
connection to RTserver.

TipcSrvCreate TipcSrvDestroy These functions explicitly manipulate the
connection to RTserver.

TipcSrvGetConnStatus
TipcSrvIsRunning

TipcSrvStop

Miscellaneous RTclient utility functions.

TipcSrvGmdFileDelete Because TipcSrvCreate calls
TipcSrvGmdResend, which will open any
existing GMD files and thus not allow
them to be deleted, TipcSrvGmdFileDelete
cannot create a connection to RTserver
TIBCO SmartSockets User’s Guide

Working With RTclient | 201
If a user-defined RTclient does not care when it creates a connection to RTserver, it
never needs to call TipcSrvCreate and can just let the process automatically
connect to RTserver when necessary. However, it is usually a good idea to
explicitly connect to RTserver once all the necessary options have been set to the
desired values.

Automatically Reconnecting to RTserver
When an unrecoverable error occurs on the connection to RTserver, the
connection error callbacks for this connection are called (see Error Callbacks,
page 110, for more details on connection error callbacks). The standard connection
error callback function TipcCbSrvError normally takes care of reconnecting to
RTserver. TipcCbSrvError uses the function TipcSrvCreate to reconnect to
RTserver so that the same options are used to both connect and reconnect to
RTserver. Any messages that were being buffered to be sent to RTserver are lost,
but RTclient is able to continue. If the RTclient cannot reconnect to RTserver, it
keeps a warm connection to RTserver in the hope that it is able to reconnect to
RTserver in the near future. For more information on TipcCbSrvError and how it
is automatically created as a connection error callback, see the man page for
TipcCbSrvError in the TIBCO SmartSockets Application Programming Interface
reference.

While most subject and monitoring information is kept in RTserver, RTclients do
keep track of the subjects they are subscribing to and monitoring categories they
are watching, so that when they reconnect to RTserver, they can easily start
subscribing to those subjects and watching those monitoring categories again.

If several RTclients are connected to RTserver and they all have errors occur on
their connections to RTserver (for example, RTserver fails or the node RTserver is
running on fails), it is possible that all of the RTclients might try to restart
RTserver. These many simultaneous restart attempts can use large amounts of
network resources. Avoid this when you configure the option Server_Names
through the use of the start prefixes (discussed in Start Prefix, page 195), by
ensuring that only one or two of the RTclients ever tries to restart RTserver. The
default behavior is for RTclients to not attempt to restart the RTserver.
 TIBCO SmartSockets User’s Guide

202 | Chapter 3 Publish-Subscribe
Destroying the Connection to RTserver
If an RTclient is done communicating with RTserver, it can destroy its connection
to RTserver. The connection can be fully destroyed, which destroys all
RTserver-related information in an RTclient, or it can be partially destroyed,
which leaves a subset of the full information in a warm connection. Warm
connections are discussed in Warm Connection to RTserver on page 235. From
this point on, the term destroying the connection to RTserver is used to mean fully
destroying the connection to RTserver.

The function TipcSrvDestroy is used to destroy the connection to RTserver. For
example:

if (!TipcSrvDestroy(T_IPC_SRV_CONN_NONE)) {
 TutOut("Could not destroy connection to RTserver: error <%s>.\n",
 TutErrStrGet());
}

The disconnect command provides a way to use TipcSrvDestroy from the
SmartSockets command interface (see the man page for disconnect in Chapter 9,
Command Reference, for more details). After a process destroys its connection to
RTserver it can continue as if it had never been connected to RTserver.

For a full destroy, TipcSrvDestroy removes all local subject information, destroys
all internal callbacks (for options like Server_Read_Timeout and Log_In_Data),
destroys the connection, and finally calls the server destroy callbacks (see
RTclient-Specific Callbacks on page 237 on server destroy callbacks). All messages
that have been sent to the connection to RTserver but not flushed are lost after a
call to TipcSrvDestroy. If a warm connection is retained, all messages that have
been read from the connection to RTserver but not processed after the call to
TipcSrvDestroy(T_IPC_SRV_CONN_WARM) are still available.

TipcSrvDestroy also attempts to send a DISCONNECT message to notify
RTserver of the value of the option Server_Disconnect_Mode. DISCONNECT
messages are discussed in DISCONNECT Message Type, page 351.

An RTclient using the TCP protocol to connect to RTserver can lose outgoing
messages if the process terminates without calling TipcSrvDestroy. TCP/IP’s
SO_LINGER option, which preserves data, is ignored when closing a socket that
has non-blocking I/O enabled. While data loss is rare on UNIX, MVS, and
OpenVMS, it can happen frequently on Windows. TipcSrvDestroy sets the block
mode of the connection to FALSE before closing the connection’s socket, forcing
the operating system to deliver all flushed outgoing messages.
TIBCO SmartSockets User’s Guide

Working With RTclient | 203
Using Subjects

Subscribing to a Subject

The function TipcSrvSubjectSetSubscribe can be used to start or stop subscribing
to a subject. This code causes RTclient to start subscribing to the subject named
/elec_pwr:

if (!TipcSrvSubjectSetSubscribe("/elec_pwr", TRUE)) {
 TutOut("Could not start subscribing to the /elec_pwr
 subject.\n");
 TutOut(" error <%s>.\n", TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}

Once RTclient starts subscribing to a subject, it receives all messages sent to
RTserver that have that subject as their destination property. If the second
parameter to TipcSrvSubjectSetSubscribe is FALSE, then RTclient stops subscribing
to the subject. TipcSrvSubjectSetSubscribe causes a SUBJECT_SET_SUBSCRIBE
message to be sent to RTserver, but the message is not automatically flushed. See
Sending Messages on page 208 for a discussion of sending and buffering
messages to RTserver.

The function TipcSrvSubjectGetSubscribe can be used to determine whether or
not RTclient is subscribing to a subject. For example:

T_BOOL subscribe_status;

if (!TipcSrvSubjectGetSubscribe("/elec_pwr", &subscribe_status)) {
 /* error */
}

TutOut("This process %s subscribing to the /elec_pwr subject.\n",
 subscribe_status ? "is" : "is not");

The subscribe and unsubscribe commands provide a way to use
TipcSrvSubjectSetSubscribe from the SmartSockets command interface. See
subscribe, page 626 and unsubscribe, page 630.

Monitoring a Subject

There are many types of information about subjects that can be monitored. For
information on monitoring, see Chapter 5, Project Monitoring.
 TIBCO SmartSockets User’s Guide

204 | Chapter 3 Publish-Subscribe
Unique Subject

As described in Unique Subject, page 162, an RTclient has a unique subject, which
RTserver requires to be unique among all processes in a project. This code shows
how an RTclient can use this property to ensure that it is the only process
subscribing to a subject:

TutCommandParseStr("setopt unique_subject my_subject");
if (!TipcSrvCreate(T_IPC_SRV_CONN_FULL)
 && TutErrNumGet() == T_ERR_SRV_ACCESS_DENIED) {
 TutOut("Another RTclient is using my_subject!\n");
}

Because the unique subject must be unique among all processes in a project, it can
be used to prevent multiple similarly-configured processes from running
(whether accidentally or intentionally). Because the default value for the unique
subject is generated from the node name and process identifier of the RTclient, the
default value is usually adequate for RTclients that aren’t using guaranteed
message delivery. Configuring GMD, page 331 discusses how Unique_Subject
must be explicitly set to use file-based GMD.

RTclient automatically subscribes to its unique subject when it connects to
RTserver, and SmartSockets does not allow RTclient to ever stop subscribing to its
unique subject.

Standard Subjects

The function TipcSrvStdSubjectSetSubscribe can be used to start or stop
subscribing to the standard subjects. This code causes RTclient to start subscribing
to all standard subjects, including the _time subject:

if (!TipcSrvStdSubjectSetSubscribe(TRUE, TRUE)) {
 /* error */
}

If the first parameter to TipcSrvStdSubjectSetSubscribe is FALSE, then RTclient
stops subscribing to the standard subjects. If the second parameter to
TipcSrvStdSubjectSetSubscribe is FALSE, then the _time subject is not included
with the standard subjects.
TIBCO SmartSockets User’s Guide

Working With RTclient | 205
Subject Callbacks

Subject callbacks are functions that are executed while processing a message with
the given destination (that is, subject). Subject callbacks are similar to connection
process callbacks, but have added flexibility to filter the callbacks based on
destination and message type. The functions TipcSrvSubjectCbCreate and
TipcSrvSubjectDefaultCbCreate can be used to create subject callbacks. The
following code causes RTclient to create a subject callback that gets executed
when any type of message is received by the "/stocks" subject:

if (!TipcSrvSubjectCbCreate("/stocks", NULL, subject_cb, NULL)) {
 /* error */
}

See RTclient-Specific Callbacks on page 237 for more information on this subject
callbacks.

Callbacks
Once RTclient has connected to RTserver, it can create callbacks to be executed
when certain operations occur. Most of the connection callback types, except
encode and decode callbacks, are available with the connection to RTserver. These
connection callback types are discussed in detail in the section Callbacks on
page 84. In addition to the connection callbacks, subject, server create, server
destroy, and server names traverse callbacks are available for the connection to
RTserver.

For the connection to RTserver, callbacks are manipulated with TipcSrv* functions
instead of TipcConn* functions. The TipcSrv*CbCreate functions create callbacks
in the connection to RTserver, and the TipcSrv*CbLookup functions look up
existing callbacks.

This creates a process callback called whenever a NUMERIC_DATA message is
processed:

mt = TipcMtLookupByNum(T_MT_NUMERIC_DATA);
if (mt == NULL) {
 TutOut("Could not look up NUMERIC_DATA msg type: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}
if (TipcSrvProcessCbCreate(mt, cb_process_numeric_data, NULL)
 == NULL) {
 TutOut("Could not create NUMERIC_DATA process cb: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}

 TIBCO SmartSockets User’s Guide

206 | Chapter 3 Publish-Subscribe
The callback functions themselves are written exactly the same for the connection
to RTserver as for any other connection. The following code shows a callback
function that prints the values in a NUMERIC_DATA message. The definition
and prototype for every callback function must use the T_ENTRY macro for
cross-platform compatibility.

/* === */
/*..cb_process_numeric_data -- process callback for NUMERIC_DATA */
static void T_ENTRY cb_process_numeric_data(

T_IPC_CONN conn,
T_IPC_CONN_PROCESS_CB_DATA data,
T_CB_ARG arg)

{
 T_STR name;
 T_REAL8 value;

 TutOut("Entering cb_process_numeric_data.\n");

 /* set current field to first field in message */
 if (!TipcMsgSetCurrent(data->msg, 0)) {
 TutOut("Could not set current field of message: error <%s>.\n",
 TutErrStrGet());
 return;
 }
 /* access and print fields */
 while (TipcMsgNextStrReal8(data->msg, &name, &value)) {
 TutOut("%s = %s\n", name, TutRealToStr(value));
 }
 /* make sure we reached the end of the message */
 if (TutErrNumGet() != T_ERR_MSG_EOM) {
 TutOut("Did not reach end of message: error <%s>.\n",
 TutErrStrGet());
 }
} /* cb_process_numeric_data */

These callbacks can be created either before or after RTclient starts working with
subjects, but the callbacks should be created before any messages are sent or
received (if the callbacks are needed for those messages).

RTclient also has callbacks that can be called when certain RTclient-specific events
occur, such as when the connection to RTserver is created. See RTclient-Specific
Callbacks on page 237 for more information on these callback types.
TIBCO SmartSockets User’s Guide

Working With RTclient | 207
Receiving and Processing Messages
RTclient receives and processes messages from the connection to RTserver the
same way that non-RTserver connections are used. See Receiving and Processing
Messages on page 115, for more details. As with callbacks, the TipcSrv* functions
are used, not the TipcConn* functions.

For example:

/* If an error occurs, then TipcSrvMainLoop will restart RTserver */
/* and return FALSE. We can safely continue. */
for (;;) {
 if (!TipcSrvMainLoop(T_TIMEOUT_FOREVER)) {
 TutOut("TipcSrvMainLoop failed: error <%s>.\n",
 TutErrStrGet());
 }
}

The above loop handles the case where RTclient loses its connection to RTserver
and reconnects again, and simply prints some diagnostic output each time this
occurs. Each program can add more or less error checking as desired.

Processing CONTROL Messages

When RTclient creates a connection to RTserver, the function TipcSrvCreate also
creates a connection process callback for CONTROL messages using the standard
callback function TipcCbSrvProcessControl. This callback function uses the value
of the option Enable_Control_Msgs to check if the command is enabled, and if
allowed, RTclient then calls TutCommandParseStr to have the process command
interface execute the command. This automatic processing of CONTROL
messages allows RTclient to publish remote commands to any other RTclient. See
Enable_Control_Msgs, page 533 for details on how to properly configure
CONTROL message security.

For more information on TipcCbSrvProcessControl and how it is automatically
created as a connection process callback, see the reference page for
TipcCbSrvProcessControl in the TIBCO SmartSockets Application Programming
Interface reference.
 TIBCO SmartSockets User’s Guide

208 | Chapter 3 Publish-Subscribe
Sending Messages
RTclient sends (publishes) messages using the connection to RTserver in a way
that is similar, but not quite identical, to the way other connections are used. The
functions TipcSrvMsgSend, TipcSrvMsgWrite, and TipcSrvMsgWriteVa differ
from their TipcConn* relatives in these ways:

• The above TipcSrv* functions all set the sender property of the message being
sent to the value in the option Unique_Subject.

• The above TipcSrv* functions have an additional check_server_msg_send
parameter (of type T_BOOL) that determines whether or not the option
Server_Msg_Send is checked before actually sending the message.

• TipcSrvMsgWrite and TipcSrvMsgWriteVa have an additional destination
parameter (of type T_STR) that is the name of a subject to be used as the
destination property of the message being sent (to use TipcSrvMsgSend the
destination property of the message must be set first with TipcMsgSetDest).

The Server_Msg_Send option specifies whether or not RTclient should send
messages to RTserver. If check_server_msg_send is TRUE and Server_Msg_Send is
FALSE, then the above TipcSrv* functions do not send the message. Some
messages sent internally by the SmartSockets IPC library, such as
SUBJECT_SET_SUBSCRIBE messages, are always sent regardless of the setting of
Server_Msg_Send. This option is useful for backup processes that should receive
messages from RTserver but not send any out. The use of any option greatly
simplifies the development of such backup processes; for a complete example see
Running an RTclient With a Hot Backup, page 429. You should normally use TRUE
for the check_server_msg_send parameter to the above TipcSrv* functions if you wish
to use the Server_Msg_Send option to easily create backup processes.

This uses TipcSrvMsgWrite to send an INFO message to all processes in a project:

TutOut("Publishing a CONTROL message to stop the receiver(s).\n");
mt = TipcMtLookupByNum(T_MT_CONTROL);
if (mt == NULL) {
 TutOut("Could not look up CONTROL msg type: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}
 if (!TipcSrvMsgWrite("_ie", mt, TRUE,
 T_IPC_FT_STR, "quit force",
 NULL)) {
 TutOut("Could not publish CONTROL message: error <%s>.\n",
 TutErrStrGet());
}

TIBCO SmartSockets User’s Guide

Working With RTclient | 209
The previous example could be rewritten as follows to use TipcSrvMsgSend
instead of TipcSrvMsgWrite:

TutOut("Publishing a CONTROL message to stop the receiver(s).\n");
mt = TipcMtLookupByNum(T_MT_CONTROL);
if (mt == NULL) {
 TutOut("Could not look up CONTROL msg type: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}
msg = TipcMsgCreate(mt);
if (msg == NULL) {
 TutOut("Could not create CONTROL message: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}
if (!TipcMsgSetDest(msg, "_ie")
 || !TipcMsgAppendStr(msg, "quit force")
 || !TipcSrvMsgSend(msg, TRUE)) {
 TutOut("Could not construct and publish CONTROL message.\n");
 TutOut(" error <%s>.\n", TutErrStrGet());
}

Buffering of Outgoing Messages

The connection to RTserver has the same auto flush size property that all other
connections have for controlling how many bytes of outgoing data are buffered
before being automatically flushed. This property can be set with the function
TipcSrvSetAutoFlushSize, but it can also be accessed with the
Server_Auto_Flush_Size option. This option can be set in startup command files
for greater convenience in all RTclients.
 TIBCO SmartSockets User’s Guide

210 | Chapter 3 Publish-Subscribe
Message File Logging

A message file is a file, in either text format or binary format, containing one or
more messages. Through the use of options, RTclient can easily log (that is, write
into text message files) the messages that have been sent to or received from
RTserver. With this message file logging, the message types are grouped into three
standard categories. Any message type can also be added to or removed from
these categories with the API functions TipcSrvLogAddMt and
TipcSrvLogRemoveMt (see Changing Logging Categories on page 214). This
section describes the features of message file logging.
TIBCO SmartSockets User’s Guide

Message File Logging | 211
Message File Logging Categories
Message types are divided into three categories for the purpose of being logged
into message file:

All standard message types are described in detail in the section Standard
Message Types on page 40.

The standard message types in each message file logging category are:

data Not used by SmartSockets. Available for user-defined messages.

status Not used by SmartSockets. Available for user-defined messages.

internal SmartSockets internal messages

Data Internal

BOOLEAN_DATA

CONTROL

ENUM_DATA

HISTORY_BOOLEAN_DATA

HISTORY_ENUM_DATA

HISTORY_NUMERIC_DATA

HISTORY_STRING_DATA

NUMERIC_DATA

OBJECT_DATA

STRING_DATA

VAR_VALUE_CALL

VAR_VALUE_RESULT

CONN_INIT

CONNECT_CALL

CONNECT_RESULT

DISCONNECT

GMD_ACK

GMD_DELETE

GMD_FAILURE

GMD_INIT_CALL

GMD_INIT_RESULT

GMD_NACK

GMD_STATUS_CALL

GMD_STATUS_RESULT

KEEP_ALIVE_CALL

KEEP_ALIVE_RESULT

MON_* (64 msg types)

SERVER_STOP_CALLSERVER_STOP_RESULT

SUBJECT_RETRIEVE

SUBJECT_SET_SUBSCRIBE
 TIBCO SmartSockets User’s Guide

212 | Chapter 3 Publish-Subscribe
Data Messages

Data messages are the most common category of message sent between RTclients.
This message file shows several sample data messages (note that alias names are
identifiers):

time /_time 42
numeric_data /system/thermal {
 voltage 33.4534
 switch_pos 0
}
boolean_data /elec_pwr relay_aligned true
string_data /system {
 i80_message "Carry tire chains"
 i50_message "Road closed"
}
enum_data /system/console battery_status normal
control /system "setopt frame_interval 1.0"
end_of_frame /_time

Internal Messages

All the remaining standard message types are included in the internal category.
Internal messages include (but are not limited to) these groups of message types:

• messages used to implement GMD

• monitoring messages

• messages sent to and from RTserver to check the health of the connection

• messages sent from RTclient to RTserver to manipulate subjects

You do not usually explicitly create and send internal messages, but logging these
types of messages can be useful for debugging purposes. This message file shows
several sample internal messages:

subject_set_subscribe /_server thermal true true
server_stop_call /_server 2
gmd_ack /_server 345613
server_stop_result /_client "RTserver stopping"
mon_subject_subscribe_status /_client "/_workstation1_2269" {
"/_workstation1_2269" } "" ""
TIBCO SmartSockets User’s Guide

Message File Logging | 213
Logging Messages
RTclient starts and stops logging messages in the logging categories by setting
these options:

RTserver can also log incoming and outgoing messages to message files. See
Message File Logging on page 295 for more information on logging messages in
an RTserver.

Starting Message Logging

Message logging is started by setting one of the above options (either with the
function TutOptionSetStr or the setopt command) to the name of a file. For
example:

setopt log_in_data incoming.msg

The above example causes the RTclient to start logging all incoming data
messages into the incoming.msg file. If the file does not exist, it is created. If the
file exists from a previous session, it is overwritten with new information.

Multiple categories can be logged into the same file. For example, RTclient could
log both incoming data messages and outgoing status messages into the same
message file by setting these options:

setopt log_in_data messages.msg
setopt log_out_status messages.msg

The first line either creates the file or overwrites an existing file and begins
logging incoming data messages. The second line begins logging outgoing status
messages to the same file.

To Log this Category: Use the Option:

Incoming data messages Log_In_Data

Outgoing data messages Log_Out_Data

Incoming status messages Log_In_Status

Outgoing status messages Log_Out_Status

Incoming internal messages Log_In_Internal

Outgoing internal messages Log_Out_Internal
 TIBCO SmartSockets User’s Guide

214 | Chapter 3 Publish-Subscribe
Stopping Message Logging

Message logging is stopped by setting one of the above options to UNKNOWN, either
with the function TutOptionSetUnknown or the unsetopt command. For
example:

unsetopt log_in_data

The above example causes the RTclient to stop logging all incoming data
messages. If multiple categories are being logged to the same file, the file is not
closed until logging is stopped for all the relevant categories.

Changing Logging Categories
Any message type can be added to or removed from a message file logging
category, including both standard message types and user-defined message types.
All the standard messages types are automatically added to exactly one category.
Message types can be added to multiple categories and they can also be removed
from all categories.

The function TipcSrvLogAddMt is used to add a message type to a logging
category. This creates a user-defined message type and adds it to the data
category:

#define XYZ_COORD_DATA 1001

mt = TipcMtCreate("xyz_coord_data, XYZ_COORD_DATA, "int4 int4
int4");
if (mt == NULL) {
 /* error */
}
if (!TipcSrvLogAddMt(T_IPC_SRV_LOG_DATA, mt)) {
 /* error */
}

The function TipcSrvLogRemoveMt is used to remove a message type from a
logging category. This looks up the TIME message type and removes it from the
data category:

mt = TipcMtLookupByNum(T_MT_TIME);
if (mt == NULL) {
 /* error */
}
if (!TipcSrvLogRemoveMt(T_IPC_SRV_LOG_DATA, mt)) {
 /* error */
}

Both TipcSrvLogAddMt and TipcSrvLogRemoveMt can only be used before
RTclient has created any connection to RTserver.
TIBCO SmartSockets User’s Guide

Load Balancing | 215
Load Balancing

In normal publish-subscribe operations, a message is sent to all RTclients that
have subscribed to the subject the message is being published to. However, in
some situations you may wish to have messages sent to only one subscribing
RTclient. An example of this is a project where there is high message throughput
and each message takes some time to process. In this case, you may wish to
replicate a set of RTclients and have them take turns processing the messages to
better keep up with message flow.

This is accomplished in SmartSockets using load balancing. Rather than have a
single RTclient handle all the messages, you can use load balancing to process the
messages across multiple RTclients. This is very useful when processing a heavy
message load. A load-balanced message is routed to only a single RTclient, not to
all RTclients subscribed to the destination subject. The RTclient to which the
message is routed is selected based on the load balancing mode specified. Load
balancing implies that there is a set of RTclients that are all equally capable of
processing load-balanced messages.

For example, consider the simple example shown in Figure 18. There are three
receivers, all subscribed to the same subject. Messages 1, 2, and 3 are published to
that subject. On the left side of the figure, each message is routed to all receivers
because there is no load balancing. The right side shows what happens when the
messages are marked to be delivered using round-robin load balancing. The first
message is delivered to Receiver 1, the second message to Receiver 2, and the
third message to Receiver 3. Each message is delivered to only a single RTclient.
 TIBCO SmartSockets User’s Guide

216 | Chapter 3 Publish-Subscribe
Figure 18 Messages Delivered With and Without Load Balancing

Load balancing can be specified per-message or per-message type using the load
balancing mode message property (see Load Balancing Mode on page 15 for more
information). Setting the load balancing mode for each message takes precedence
over per-message type. By default, messages are not load balanced and are
distributed to all subscribers.

Load balancing is dynamic in that whenever an RTclient connects or disconnects
to an RTserver, the load balancing calculations are updated in real time. When an
RTclient publishes the first message using load balancing to a subject, RTserver
starts collecting subject subscription information from the appropriate RTservers
to accurately track load balancing accounting. This increases the scalability of
load balancing due to the fact that only the relevant RTservers dynamically
exchange load balancing information. The RTclient API function
TipcSrvSubjectGmdInit can also be used to manually initialize GMD accounting
for a subject to which messages will be published.

RTserver

Receiver

Publisher

1

3

2

1

3

1

3

1

Messages are NOT Load Balanced

RTserver

Publisher

2

1

2
1

Messages are Being Load Balanced

Messages

using ROUND_ROBIN

Receiver
2

Receiver
3

Receiver
1

Receiver
2

Receiver
3

3

2

1

2 2
3

3

TIBCO SmartSockets User’s Guide

Load Balancing | 217
Overriding Load Balancing
It is important to note that any RTclient has the ability to override load balancing,
on a subject basis, so an RTclient could subscribe to a subject that has
load-balanced messages being sent to it, but receive all the messages, such as for
an archive). A simple example would be if you are monitoring a project and wish
to see all the messages sent to a specific subject. If you did a normal subscribe and
the messages were being load balanced, you would not see each one if there was
another RTclient subscribed to the same subject in the project. To override load
balancing, the function TipcSrvSubjectSetSubscribeLb(subject_name, TRUE,
FALSE) should be used instead of TipcSrvSubjectSetSubscribe(subject_name,
TRUE). The first parameter specifies to which subject you are subscribing or
unsubscribing. The second parameter specifies whether you are subscribing
(TRUE) or unsubscribing (FALSE). The last parameter specifies whether you wish
to receive all messages (FALSE) or be included in the load balancing calculations
(TRUE). For example, an RTclient wishing to receive all messages published to the
subject "/manual/chapter4", regardless of whether the messages are load
balanced or not, would call the function as follows:

TipcSrvSubjectSetSubscribeLb("/manual/chapter4", TRUE, FALSE);

The subscribe command can also be used with the -load_balancing_off
parameter to override load balancing:

MON> subscribe -load_balancing_off "/manual/chapter4"
 TIBCO SmartSockets User’s Guide

218 | Chapter 3 Publish-Subscribe
Load Balancing Modes
SmartSockets supports several load balancing modes as shown in Table 10.

Weighted load balancing takes into account the receiver’s ability to process
messages using acknowledgments. These acknowledgments are a result of a
message being sent guaranteed. Weighted load balancing can only be used with
GMD. When RTclient publishes a message that uses weighted load balancing,
RTserver cycles through the list of receivers and sends the message to the first
RTclient which has the fewest number of unacknowledged messages. Using the
number of unacknowledged messages takes into account the speed of the receiver
and the speed of the round trip to that receiver.

For example, with a message stream that requires significant CPU processing
resources, a fast receiver only one RTserver hop away would be able to process
and acknowledge messages faster then a slow receiver several RTserver hops
away. As a result, the fast receiver which is closet would often be favored over the

Table 10 Load Balancing Modes

Mode Description

T_IPC_LB_NONE This is the default and specifies no load balancing. The message is
sent to all subscribers.

T_IPC_LB_ROUND_ROBIN The list of subscribing RTclients is held in a circular list, with each
successive message simply sent to the next RTclient in the list.

This mode is a good choice when the subscribers are all capable of
receiving and processing a request with nearly equal speed. There
is no additional overhead with this mode.

T_IPC_LB_WEIGHTED The message is published to the RTclient that has the fewest
pending requests.

This mode is a good choice when the subscribers differ
significantly in their ability to process a request promptly, such as
hardware speed differences or network delays.

This method can only be used with GMD and requires no
additional overhead beyond what GMD requires.

T_IPC_LB_SORTED The message is always sent to the first RTclient in the list. The list
is formed by doing an alphabetical sort of the unique subject name
of each RTclient.

This mode is a good choice when you want a specific subscriber to
process all messages until it fails, when a hot standby can take
over. There is no additional overhead with this mode.
TIBCO SmartSockets User’s Guide

Load Balancing | 219
slower receiver which would not be able to acknowledge messages as quickly. So,
the weighting of receivers by the number of acknowledgments takes into account
not just the speed of the receiver’s system, but also the speed of systems running
RTservers in between the publisher and subscriber, the networks used to connect
the systems, and any overhead that could be introduced by the load balancing
algorithm.

See Multiple RTserver Processes on page 298 for more details on using multiple
RTservers on the same project.

Load Balancing and GMD
A message that is being load balanced can also be guaranteed (have a delivery
mode of SOME or ALL; see Chapter 4, Guaranteed Message Delivery for more
information). If a message is to be both load balanced and guaranteed, message
delivery failures are handled in the following ways.

• If the connection to an RTclient is lost, the RTclient’s Server_Disconnect_Mode
option is set to warm, and it reconnects before the amount of time specified in
the Client_Reconnect_Timeout expires, then the message is resent by RTserver
to the RTclient when it reconnects.

• If the connection to an RTclient is lost, the RTclient’s Server_Disconnect_Mode
option is set to warm, and it does not reconnect before the amount of time
specified in the Client_Reconnect_Timeout expires, then the message is load
balanced among the remaining RTclients if it is resent by the publisher.

Note that ROUND_ROBIN and SORTED can be used with or without GMD. WEIGHTED
requires GMD to be used as RTserver uses the GMD acknowledgments in its load
balancing calculations. A warm RTclient is not counted in the load balancing
calculation unless all subscribing RTclients are warm RTclients (see Warm RTclient
in RTserver, page 346).
 TIBCO SmartSockets User’s Guide

220 | Chapter 3 Publish-Subscribe
Load Balancing Example
This example shows a publishing RTclient that creates and sends 20 messages.
The first 10 messages are sent with a load balancing mode of NONE, so all
subscribers receive them. The next 10 messages are sent with a load balancing
mode of ROUND_ROBIN so they are evenly distributed across the subscribers.

The source code files for this example are located in these directories:

UNIX:
$RTHOME/examples/smrtsock/manual

OpenVMS:
RTHOME:[EXAMPLES.SMRTSOCK.MANUAL]

Windows:
%RTHOME%\examples\smrtsock\manual

The online source files have additional #ifdefs to provide C++ support; these
#ifdefs are not shown to simplify the example.

The subscribers simply print out the contents of the messages. The source code for
the subscribers is not shown, but the lbrecv.c file is located in the same directory
as the sender program.

Example 19 Sender Source Code

/* lbsend.c - send messages (some load balanced, some not) */

#include <rtworks/ipc.h>
#define MSG_COUNT 1001

int main(argc, argv)
int argc;
char **argv;
{
 T_OPTION option;
 T_IPC_MSG msg;
 T_IPC_MT mt;
 T_INT4 i;
TIBCO SmartSockets User’s Guide

Load Balancing | 221
 /* Set the option Project to partition ourself. */
 option = TutOptionLookup("project");
 if (option == NULL) {
 TutOut("Could not look up option named project: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (!TutOptionSetEnum(option, "smartsockets")) {
 TutOut("Could not set option named project: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* Define a new message type */
 mt = TipcMtCreate("msg_count", MSG_COUNT, "int4");
 if (mt == NULL) {
 TutOut("Could not create message type MSG_COUNT: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* Connect to RTserver */
 if (!TipcSrvCreate(T_IPC_SRV_CONN_FULL)) {
 TutOut("Could not connect to RTserver: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* Create a message of type MSG_COUNT */
 msg = TipcMsgCreate(mt);
 if (msg == NULL) {
 TutOut("Could not create msg of type MSG_COUNT: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* Set the destination subject of the message */
 if (!TipcMsgSetDest(msg, "/manual/chapter4")) {
 TutOut("Could not set subject of message: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 for (i = 0; i < 20; i++) {
 /* Reset num of fields to 0 so we can reuse message */
 if (!TipcMsgSetNumFields(msg, 0)) {
 TutOut("<%d> Could not clear message: error <%s>.\n",
 i, TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 TIBCO SmartSockets User’s Guide

222 | Chapter 3 Publish-Subscribe
 /*
 * First 10 messages, send to everyone,
 * Second 10 messages, load balance using round robin
 */
 if (i < 10) {
 /* This is the default behavior and not required */
 if (!TipcMsgSetLbMode(msg, T_IPC_LB_NONE)) {
 TutOut("Could not set load balance to NONE: error <%s>.\n",
 TutErrStrGet());
 }
 }
 else {
 if (!TipcMsgSetLbMode(msg, T_IPC_LB_ROUND_ROBIN)) {
 TutOut("Could not set load balance to ROUND_ROBIN\n");
 TutOut(" error <%s>.\n", TutErrStrGet());
 }
 }

 /* Build the data part of the message with 1 integer */
 if (!TipcMsgAppendInt4(msg, i)) {
 TutOut("<%d> Could not build message: error <%s>.\n",
 i, TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* Publish the message */
 if (!TipcSrvMsgSend(msg, TRUE)) {
 TutOut("<%d> Could not publish message: error <%s>.\n",
 i, TutErrStrGet());
 }

 /* Make sure message is flushed */
 if (!TipcSrvFlush()) {
 TutOut("<%d> Could not flush message: error <%s>.\n",
 i, TutErrStrGet());
 }

 }

 /* Destroy the message */
 if (!TipcMsgDestroy(msg)) {
 TutOut("<%d> Could not destroy message: error <%s>.\n",
 i, TutErrStrGet());
 }

 return T_EXIT_SUCCESS; /* all done */
} /* main */
TIBCO SmartSockets User’s Guide

Load Balancing | 223
Compiling, Linking, and Running
To compile, link, and run the example programs, first you must either copy the
programs to your own directory or have write permission in these directories:

UNIX:
$RTHOME/examples/smrtsock/manual

OpenVMS:
RTHOME:[EXAMPLES.SMRTSOCK.MANUAL]

Windows:
%RTHOME%\examples\smrtsock\manual

Step 1 To compile and link the program, use:

UNIX:
$ rtlink -o lbsend.x lbsend.c
$ rtlink -o lbrecv.x lbrecv.c

OpenVMS:
$ cc lbsend.c, lbrecv.c
$ rtlink /exec=lbsend.exe lbsend.obj
$ rtlink /exec=lbrecv.exe lbrecv.obj

Windows:
$ nmake /f lbsdw32m.mak
$ nmake /f lbrcw32m.mak

Step 2 Start an RTserver

To see how the load balancing works, start your RTserver.

Then you start two copies of lbrecv and start the publishing process, lbsend. To
do this, execute the start command in two separate windows.

Step 3 Start lbrecv

UNIX:
$ lbrecv.x

OpenVMS:
$ run lbrecv.exe

Windows:
$ lbrecv.exe
 TIBCO SmartSockets User’s Guide

224 | Chapter 3 Publish-Subscribe
Step 4 Start lbsend

To run the sending program, use:

UNIX:
$ lbsend.x

OpenVMS:
$ run lbsend.exe

Windows:
$ lbsend.exe

An example of the output from the window where the first lbrecv is running is
shown:

Connecting to project <smartsockets> on <_node> RTserver
Using local protocol
Message from RTserver: Connection established.
Start subscribing to subject </_workstation.talarian.com_24000>
Message data = 0
Message data = 1
Message data = 2
Message data = 3
Message data = 4
Message data = 5
Message data = 6
Message data = 7
Message data = 8
Message data = 9
Message data = 11
Message data = 13
Message data = 15
Message data = 17
Message data = 19
TIBCO SmartSockets User’s Guide

Load Balancing | 225
An example of the output from the window where the second lbrecv is running
is shown:

Connecting to project <smartsockets> on <_node> RTserver.
Using local protocol.
Message from RTserver: Connection established.
Start subscribing to subject </_workstation.talarian.com_24003>.
Message data = 0
Message data = 1
Message data = 2
Message data = 3
Message data = 4
Message data = 5
Message data = 6
Message data = 7
Message data = 8
Message data = 9
Message data = 10
Message data = 12
Message data = 14
Message data = 16
Message data = 18

Note that both programs processed the first ten messages. This is because the load
balancing mode of these messages was set to NONE. The next ten messages were
evenly distributed across the two processes because load balancing mode was set
to ROUND_ROBIN for these messages. The first lbrecv processed messages 11, 13,
15, 17, and 19 and the second lbrecv processed messages 10, 12, 14, 16, and 18.

As an interesting exercise to see how an RTclient can still receive all messages,
whether they are being load balanced or not, make a copy of the lbrecv program.
Change the line in the main program from:

if (!TipcSrvSubjectSetSubscribe("/manual/chapter4", TRUE)) {

to:

if (!TipcSrvSubjectSetSubscribeLb("/manual/chapter4", TRUE,
FALSE)) {

Compile, link, and run the new program alongside two copies of lbrecv. You see
that the new program processes all 20 messages, while the two copies of lbrecv
behave just as they did before.
 TIBCO SmartSockets User’s Guide

226 | Chapter 3 Publish-Subscribe
Using Threads with the RTclient API

As described in Using Threads With Connections on page 125, multithreading is
an effective technique for SmartSockets applications. RTclients can be
multithreaded as well, using a warm or full connection to RTserver for high-level
synchronization.

In addition to the synchronization properties incorporated into each connection,
the RTserver connection is protected by an additional read/write mutex. This
extra level of synchronization enables one thread in an RTclient to change the state
of the RTserver connection without interfering with the other threads sharing the
connection. Operations that do not affect the state of the RTserver connection are
performed with only a read-lock on the read/write mutex and may thus run
concurrently, while operations that do affect the state acquire a write-lock.

Working with threads in an RTclient is very similar to working with threads in
peer-to-peer connections. The source code files, rtsvcp.c and rtsvcc.c,
illustrating load balancing and threads are located in these directories:

UNIX:
$RTHOME/examples/smrtsock/manual

OpenVMS:
RTHOME:[EXAMPLES.SMRTSOCK.MANUAL]

Windows:
%RTHOME%\examples\smrtsock\manual
TIBCO SmartSockets User’s Guide

Advanced RTclient Usage | 227
Advanced RTclient Usage

This section covers advanced usage of RTclients, and many topics might cover
issues that are not relevant to your applications. Advanced usage adds another
layer of complication, so be sure you need the feature before designing your
application around it. In other words, the simplest RTclient that does the job is the
best for the application. It will be easier to debug and to maintain.

Advanced Example With Warm Connections and Server Callbacks
This example shows several advanced features of RTclient, including a warm
connection to RTserver, server create callbacks, and server destroy callbacks. To
learn more about working with the basic features of RTclient, see Working With
RTclient on page 175.

The source code files for this example are located in these directories:

UNIX:
$RTHOME/examples/smrtsock/manual

OpenVMS:
RTHOME:[EXAMPLES.SMRTSOCK.MANUAL]

Windows:
%RTHOME%\examples\smrtsock\manual

The online source files have additional #ifdefs to provide C++ support; these
#ifdefs are not shown to simplify the example.

Advanced Example Source Code

Here is an example of the advanced RTclient code:

/* rtcladv.c -- RTclient advanced example */

/*
This RTclient creates and destroys its connection to RTserver in various ways, and publishes
messages to a subject it is subscribing to.
*/

#include <rtworks/ipc.h>
#include "rtclient.h"
 TIBCO SmartSockets User’s Guide

228 | Chapter 3 Publish-Subscribe
/* === */
/*..cb_default -- default callback */
static void T_ENTRY cb_default(

T_IPC_CONN conn,
T_IPC_CONN_DEFAULT_CB_DATA data,
T_CB_ARG arg)

{
 T_IPC_MT mt;
 T_STR name;

 TutOut("Entering cb_default.\n");

 /* print out the name of the type of the message */
 if (!TipcMsgGetType(data->msg, &mt)) {
 TutOut("Could not get message type from message: error
<%s>.\n",
 TutErrStrGet());
 return;
 }
 if (!TipcMtGetName(mt, &name)) {
 TutOut("Could not get name from message type: error <%s>.\n",
 TutErrStrGet());
 return;
 }
 TutOut("Message type name is <%s>\n", name);
} /* cb_default */

/* === */
/*..cb_server_create -- server create callback */
static void T_ENTRY cb_server_create(

T_IPC_CONN conn,
T_IPC_SRV_CREATE_CB_DATA data,
T_CB_ARG arg)

{

 /* Create other callbacks if we did not have a warm connection. */
 if (data->old_conn_status == T_IPC_SRV_CONN_WARM) {
 TutOut("We already had a warm connection to RTserver, which ");
 TutOut("preserves all callbacks.\n");
 return; /* nothing to do */
 }

 /* A larger process would create many callbacks here. This */
 /* simple example only creates a connection default callback. */
 TutOut("Creating other callbacks.\n");

 /* default callback */
 if (TipcSrvDefaultCbCreate(cb_default, NULL) == NULL) {
 TutOut("Could not create default callback: error <%s>.\n",
 TutErrStrGet());
 }

} /* cb_server_create */
TIBCO SmartSockets User’s Guide

Advanced RTclient Usage | 229
/* === */
/*..cb_server_destroy -- server destroy callback */
static void T_ENTRY cb_server_destroy(

T_IPC_CONN conn,
T_IPC_SRV_DESTROY_CB_DATA data,
T_CB_ARG arg)

{
 TutOut("Entering cb_server_destroy.\n");
 if (data->new_conn_status == T_IPC_SRV_CONN_WARM) {
 TutOut("Leaving a warm connection to RTserver.\n");
 }
 else {
 TutOut("Leaving no connection to RTserver.\n");
 }

 /* cb_server_destroy */

/* === */
/*..main -- main program */
int main(argc, argv)
int argc;
char **argv;
{
 T_OPTION option;
 T_IPC_MT mt;

 /* Set the option Project to partition ourself. */
 option = TutOptionLookup("project");
 if (option == NULL) {
 TutOut("Could not look up option named project: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (!TutOptionSetEnum(option, EXAMPLE_PROJECT)) {
 TutOut("Could not set option named project: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* Allow a command-line argument containing the name of a */
 /* SmartSockets startup command file. This file can be used */
 /* to set options like Server_Names. */
 if (argc == 2) {
 if (!TutCommandParseFile(argv[1])) {
 TutOut("Could not parse startup command file %s: error
<%s>.\n",
 argv[1], TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 }
 else if (argc != 1) { /* too many command-line arguments */
 TutOut("Usage: %s [command_file_name]\n", argv[0]);
 TutExit(T_EXIT_FAILURE);
 }
 TIBCO SmartSockets User’s Guide

230 | Chapter 3 Publish-Subscribe
 /* create callbacks to be executed when certain operations occur */
 TutOut("Create callbacks.\n");

 /* If an RTclient will be creating and destroying its connection */
 /* to RTserver over and over, it should use a server create */
 /* callback to create the rest of its callbacks. */

 /* server create callback */
 if (TipcSrvCreateCbCreate(cb_server_create, NULL) == NULL) {
 TutOut("Could not create server create callback: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* server destroy callback */
 if (TipcSrvDestroyCbCreate(cb_server_destroy, NULL) == NULL) {
 TutOut("Could not create server destroy callback: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 TutOut("Creating connection to RTserver.\n");
 if (!TipcSrvCreate(T_IPC_SRV_CONN_FULL)) {
 TutOut("Could not create connection to RTserver: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* Destroy connection to RTserver to show how this can be done. */
 TutOut("\nDestroying connection to RTserver but leave it
warm.\n");
 if (!TipcSrvDestroy(T_IPC_SRV_CONN_WARM)) {
 TutOut("Could not destroy connection to RTserver: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 TutOut("Creating connection to RTserver from warm
connection.\n");
 if (!TipcSrvCreate(T_IPC_SRV_CONN_FULL)) {
 TutOut("Could not create connection to RTserver: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 TutOut("Completely destroying connection to RTserver.\n");
 if (!TipcSrvDestroy(T_IPC_SRV_CONN_NONE)) {
 TutOut("Could not destroy connection to RTserver: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
TIBCO SmartSockets User’s Guide

Advanced RTclient Usage | 231
 /* At this point, the RTclient could proceed as if it had */
 /* never been connected to RTserver at all. For this example */
 /* we want to reconnect eventually, though. */

 /* Set the option Server_Auto_Connect to FALSE to show how */
 /* an RTclient can buffer outgoing messages even when not */
 /* connected to RTserver. */
 TutCommandParseStr("setopt server_auto_connect false");

 TutOut("\nCreating warm connection to RTserver.\n");
 if (!TipcSrvCreate(T_IPC_SRV_CONN_WARM)) {
 TutOut("Could not create warm connection to RTserver.\n");
 TutOut(" error <%s>.\n", TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* Now proceed with normal processing even though we only */
 /* have a warm connection. */
 TutOut("Start subscribing to standard subjects.\n");
 if (!TipcSrvStdSubjectSetSubscribe(TRUE, TRUE)) {
 TutOut("Could not start subscribing to standard subjects.\n");
 TutOut(" error <%s>.\n", TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 TutOut("Start subscribing to the %s subject.\n",
EXAMPLE_SUBJECT);
 if (!TipcSrvSubjectSetSubscribe(EXAMPLE_SUBJECT, TRUE)) {
 TutOut("Could not start subscribing to %s subject: error
<%s>.\n",
 EXAMPLE_SUBJECT, TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 TutOut("Publish a frame of data to the receiver’s subject.\n");

 TutOut("Publishing a TIME message.\n");
 mt = TipcMtLookupByNum(T_MT_TIME);
 if (mt == NULL) {
 TutOut("Could not look up TIME msg type: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (!TipcSrvMsgWrite(EXAMPLE_SUBJECT, mt, TRUE,
 T_IPC_FT_REAL8, 1.0,
 NULL)) {
 TutOut("Could not publish TIME message: error <%s>.\n",
 TutErrStrGet());
 }
 TIBCO SmartSockets User’s Guide

232 | Chapter 3 Publish-Subscribe
 TutOut("Publishing a NUMERIC_DATA message.\n");
 mt = TipcMtLookupByNum(T_MT_NUMERIC_DATA);
 if (mt == NULL) {
 TutOut("Could not look up NUMERIC_DATA msg type: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (!TipcSrvMsgWrite(EXAMPLE_SUBJECT, mt, TRUE,
 T_IPC_FT_STR, "voltage",
 T_IPC_FT_REAL8, 33.4534,
 T_IPC_FT_STR, "switch_pos",
 T_IPC_FT_REAL8, 0.0,
 NULL)) {
 TutOut("Could not publish NUMERIC_DATA message: error <%s>.\n",
 TutErrStrGet());
 }

 TutOut("Publishing an END_OF_FRAME message.\n");
 mt = TipcMtLookupByNum(T_MT_END_OF_FRAME);
 if (mt == NULL) {
 TutOut("Could not look up END_OF_FRAME msg type: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
if (!TipcSrvMsgWrite(EXAMPLE_SUBJECT, mt, TRUE, NULL)) {
 TutOut("Could not publish END_OF_FRAME message: error <%s>.\n",
 TutErrStrGet());
}

TutOut("\nCreating connection to RTserver.\n");
if (!TipcSrvCreate(T_IPC_SRV_CONN_FULL)) {
 TutOut("Could not create connection to RTserver: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}

/* Each RTclient automatically creates a connection process */
/* callback for CONTROL messages. Use this to send the command */
/* "quit force" to the receiver’s command interface. */
TutOut("Publishing a CONTROL message to stop ourself.\n");
mt = TipcMtLookupByNum(T_MT_CONTROL);
if (mt == NULL) {
 TutOut("Could not look up CONTROL msg type: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}
if (!TipcSrvMsgWrite(EXAMPLE_SUBJECT, mt, TRUE,
 T_IPC_FT_STR, "quit force",
 NULL)) {
 TutOut("Could not publish CONTROL message: error <%s>.\n",
 TutErrStrGet());
}

TIBCO SmartSockets User’s Guide

Advanced RTclient Usage | 233
/* Flush the buffered outgoing messages to RTserver. */
if (!TipcSrvFlush()) {
 TutOut("Could not flush messages to RTserver: error <%s>.\n",
 TutErrStrGet());
 }

 /* If an error occurs, then TipcSrvMainLoop will restart RTserver */
 /* and return FALSE. We can safely continue. */
 for (;;) {
 if (!TipcSrvMainLoop(T_TIMEOUT_FOREVER)) {
 TutOut("TipcSrvMainLoop failed: error <%s>.\n",
 TutErrStrGet());
 }
 }

 /* This line should not be reached. */
 TutOut("This line should not be reached!!!\n");
 return T_EXIT_FAILURE;
} /* main */

Compiling, Linking, and Running

To compile, link, and run the example programs, first you must either copy the
programs to your own directory or have write permission in these directories:

UNIX:
$RTHOME/examples/smrtsock/manual

OpenVMS
RTHOME:[EXAMPLES.SMRTSOCK.MANUAL]

Windows:
%RTHOME%\examples\smrtsock\manual

Step 1 To compile and link the program, use:

UNIX:
$ rtlink -o rtcladv.x rtcladv.c

OpenVMS:
$ cc rtcladv.c
$ rtlink /exec=rtcladv.exe rtcladv.obj

Windows:
$ nmake /f cladw32m.mak

Step 2 Ensure RTserver is running
 TIBCO SmartSockets User’s Guide

234 | Chapter 3 Publish-Subscribe
Step 3 To run the program, use:

UNIX:
$ rtcladv.x

OpenVMS:
$ run rtcladv.exe

Windows:
$ rtcladv.exe

Here is an example of the output:

Create callbacks.
Creating connection to RTserver.
Connecting to project <example> on <_node> RTserver
Using local protocol
Message from RTserver: Connection established.
Start subscribing to subject </_workstation_5415>
Creating other callbacks.

Destroying connection to RTserver but leave it warm.
Entering cb_server_destroy.
Leaving a warm connection to RTserver.
Creating connection to RTserver from warm connection.
Attempting to reconnect to RTserver
Connecting to project <example> on <_node> RTserver
Using local protocol
Message from RTserver: Connection established.
Start subscribing to subject </_workstation_5415> again
We already had a warm connection to RTserver, which preserves all
callbacks.
Completely destroying connection to RTserver.
Entering cb_server_destroy.
Leaving no connection to RTserver.

Creating warm connection to RTserver.
Creating other callbacks.
Start subscribing to standard subjects.
Start subscribing to subject </_time>
Start subscribing to subject </_workstation_5415>
Start subscribing to subject </_all>
Start subscribing to the rcv subject.
Publish a frame of data to the receiver’s subject.
Publishing a TIME message.
Publishing a NUMERIC_DATA message.
Publishing an END_OF_FRAME message.
TIBCO SmartSockets User’s Guide

Advanced RTclient Usage | 235
Creating connection to RTserver.
Attempting to reconnect to RTserver.
Connecting to project <example> on <_node> RTserver
Using local protocol
Message from RTserver: Connection established.
Start subscribing to subject </_workstation_5415> again.
Start subscribing to subject </_all> again.
Start subscribing to subject </_workstation> again.
Start subscribing to subject </_time> again
Start subscribing to subject </_rcv> again.
We already had a warm connection to RTserver, which preserves all
callbacks.
Publishing a CONTROL message to stop ourself.
Entering cb_default.
Message type name is <time>
Entering cb_default.
Message type name is <numeric_data>
Entering cb_default.
Message type name is <end_of_frame>

Warm Connection to RTserver
A warm connection to RTserver is a subset of a full connection to RTserver. A
warm connection keeps as much RTserver-related information as possible. The
only difference between a warm connection and a full connection is that the warm
connection does not have a valid socket (there is no communication link to
RTserver with a warm connection). No messages can be flushed to RTserver on a
warm connection and no messages can be read from the warm connection, but
most TipcSrv* functions behave in a fashion similar to when a full connection
exists. RTserver is not aware of the RTclient when the RTclient has a warm
connection, unless RTclient has told RTserver to keep a warm RTclient record for
this RTclient (see Warm RTclient in RTserver, page 346).

With a warm connection to RTserver, callbacks can be created, callbacks can be
destroyed, and messages can be buffered. If RTclient has a warm connection and
then creates a full connection (the connection conceptually changes from warm to
full), the warm-buffered messages are flushed to the newly-created full
connection.

If RTclient does not have a connection to RTserver, then TipcSrvCreate can be used
to create a warm connection to RTserver. For example:

if (!TipcSrvCreate(T_IPC_SRV_CONN_WARM)) {
 /* error */
}

 TIBCO SmartSockets User’s Guide

236 | Chapter 3 Publish-Subscribe
If RTclient has a full connection to RTserver, then TipcSrvDestroy can be used to
leave a warm connection to RTserver. For example:

if (!TipcSrvDestroy(T_IPC_SRV_CONN_WARM)) {
 /* error */
}

Once RTclient destroys the full connection but leaves a warm connection, it can
easily recreate a full connection to RTserver in the future and pick up where it left
off. For more details on how TipcSrvDestroy works in this situation, see the man
page for TipcSrvDestroy in the TIBCO SmartSockets Application Programming
Interface reference.

Connection Status

There is some overlap between TipcSrvCreate and TipcSrvDestroy in the respect
that both explicitly change the status of the connection to RTserver. The function
TipcSrvGetConnStatus can be used to determine the status of the connection to
RTserver. For example:

T_IPC_SRV_CONN_STATUS conn_status;

if (!TipcSrvGetConnStatus(&conn_status)) {
 /* error */
}
switch (conn_status) {
case T_IPC_SRV_CONN_NONE:
 TutOut("RTclient has no connection to RTserver.\n");
 break;
case T_IPC_SRV_CONN_WARM:
 TutOut("RTclient has a warm connection to RTserver.\n");
 break;
case T_IPC_SRV_CONN_FULL:
 TutOut("RTclient has a full connection to RTserver.\n");
 break;
default:
 /* error */
}

The main difference between TipcSrvCreate and TipcSrvDestroy is that
TipcSrvCreate always moves the connection status closer to
T_IPC_SRV_CONN_FULL, while TipcSrvDestroy moves the connection status
the opposite direction towards T_IPC_SRV_CONN_NONE.
TIBCO SmartSockets User’s Guide

Advanced RTclient Usage | 237
Continued Operation While RTserver is Down

As described in Automatically Reconnecting to RTserver on page 201, if an
unrecoverable error occurs on the connection to RTserver, the full connection to
RTserver is destroyed, but a warm connection is kept. If RTclient cannot
successfully restart and reconnect to RTserver, it keeps the warm connection and
continues operation. Depending on the settings of the Server_* options and the
usage of the TipcSrv* functions, RTclient continues running and keeps trying to
restart and reconnect to RTserver. When RTserver does come back up, then
RTclient can create a full connection again.

RTclient-Specific Callbacks
In addition to all the callback types connections offer (see Callbacks on page 84 for
details on connection callback types), there are several additional callback types
RTclient can use including: server create callbacks, server destroy callbacks, and
subject callbacks. Table 11 shows the callback type-specific data argument types
for all RTclient callback types and the fields in those argument types.

Table 11 RTclient Callback Types

Callback Type Type of Second Parameter to
Callback Functions Fields in This Type

server create T_IPC_SRV_CREATE_CB_DATA T_CB cb;

T_IPC_SRV_CONN_STATUS
old_conn_status;

T_IPC_SRV_CONN_STATUS
new_conn_status;

server destroy T_IPC_SRV_DESTROY_CB_DATA T_CB cb;

T_IPC_SRV_CONN_STATUS
old_conn_status;

T_IPC_SRV_CONN_STATUS
new_conn_status;

server names traverse T_IPC_SRV_TRAVERSE_CB_DATA T_CB cb;

T_STR server_name;

T_BOOL stop_traverse;

subject T_IPC_SRV_SUBJECT_CB_DATA T_CB cb;

T_IPC_MSG msg;
 TIBCO SmartSockets User’s Guide

238 | Chapter 3 Publish-Subscribe
Server Create Callbacks

Server create callbacks are called when an RTclient creates either a full or warm
connection to RTserver. Server create callbacks are useful for creating other
callbacks, such as connection process callbacks on the connection to RTserver, that
cannot be created until RTclient has a connection to RTserver. If an RTclient creates
and destroys its connection to RTserver many times, it should use server create
callbacks to create the other callbacks needed in the connection to RTserver. For
example:

/* === */
/*..cb_server_create -- server create callback */
static void T_ENTRY cb_server_create(

T_IPC_CONN conn,
T_IPC_SRV_CREATE_CB_DATA data,
T_CB_ARG arg)

{
 T_IPC_MT mt; /* for creating callback */
 /* Create other callbacks if we did not have a warm connection. */
 if (data->old_conn_status == T_IPC_SRV_CONN_WARM) {
 TutOut("We already had a warm connection to RTserver, which ");
 TutOut("preserves all callbacks.\n");
 return; /* nothing to do */
 }

 /* A larger process would create many callbacks here. This */
 /* simple example only creates a connection default callback. */
 TutOut("Creating other callbacks.\n");

 /* default callback */
 if (TipcSrvDefaultCbCreate(cb_default, NULL) == NULL) {
 TutOut("Could not create default callback: error <%s>.\n",
 TutErrStrGet());
 }
} /* cb_server_create */

Server Destroy Callbacks

Server destroy callbacks are called when an RTclient destroys its connection to
RTserver, leaving either a warm connection or no connection. Server destroy
callbacks are the opposite of server create callbacks.

Server destroy callbacks do overlap slightly with connection error callbacks,
because the standard connection error callback function TipcCbSrvError (see
Automatically Reconnecting to RTserver on page 201) calls TipcSrvDestroy, which
causes the server destroy callbacks to be executed. Server destroy callbacks are
useful for RTclients that need to know when the connection to RTserver no longer
has a valid socket, such as RTclients that are also Motif or Windows GUI
programs. See the man page for TipcSrvDestroyCbCreate in the TIBCO
SmartSockets Application Programming Interface reference for an example of how
server destroy callbacks help in this situation.
TIBCO SmartSockets User’s Guide

Advanced RTclient Usage | 239
Server Names Traverse Callbacks

Server names traverse callbacks are called when an RTclient traverses the
Server_Names list to connect to an RTserver. The callback is executed before a
connection to each entry in the list is attempted. There are many uses for this
callback, and the argument you pass in TipcSrvTraverseCbCreate can be
anything.

The callback structure includes two fields, stop_traverse and server_name.
When you want the process to stop traversing the Server_Names list and fail the
TipcSrvCreate, set data->stop_traverse = T_TRUE. If you know the thread ID
of the receive thread, you can check to see if this is the receive thread and set
stop_traverse to TRUE if it is not. You can also pass a structure containing the
thread ID and other information allowing you to do sophisticated backoff
algorithms. By setting your server reconnect delay to a low value, you can then
control how long to wait in this callback.

Here are some considerations to keep in mind when using the callback:

• The callback is always called when a TipcSrvCreate is performed. If you don't
want it invoked until after the initial connect is made, don't install it until after
the first TipcSrvCreate is done.

• When an error occurs, this callback is called after the server reconnect delay
has been performed. Set the Server_Reconnect_Delay option to a low value if
you want the callback to perform the initial delay.

• The callback is called before trying to connect to any RTserver in the
Server_Names list. It works even when you randomize the list.

This is a server names traverse callback used to print a message for each server
name in the Server_Names list. It stops traversing the Server_Names list if a
successful connection is made or connection attempts fail for the first three
servers in the list:

#include <rtworks/ipc.h>

/*
==*/
/* ..my_server_traverse_cb - server name traversal callback */
void T_ENTRY my_server_traverse_cb
(
 T_IPC_CONN conn,
 T_IPC_SRV_TRAVERSE_CB_DATA data,
 T_CB_ARG arg
)
{
 T_INT4 *count = (T_INT4 *)arg;

 TutOut("Inside my_server_traverse_cb: server_name = %s\n",
 data->server_name);
 TIBCO SmartSockets User’s Guide

240 | Chapter 3 Publish-Subscribe
 /* stop trying at 3 servers */
 if(*count >= 3) {
 TutWarning("Setting stop flag.\n");
 data->stop_traverse = T_TRUE;
 }
 *count += 1;
}

/*
==*/
/* ..main - main program */
int main(int argc, char **argv) {

 T_INT4 trav_count = 0;

 /* create a callback to be called when traversing the server names list */
 if (TipcSrvTraverseCbCreate(my_server_traverse_cb,
 (T_CB_ARG)&trav_count) == T_NULL) {
 /* error */;
 }

 TipcSrvCreate(T_IPC_SRV_CONN_FULL);

} /* main */
TIBCO SmartSockets User’s Guide

Advanced RTclient Usage | 241
Subject Callbacks

Earlier in this document, it was described how to define callbacks to process
messages based on the type of the message. For RTserver connections, subject
callbacks are available which are actually a superset of connection process
callbacks, such as execute this callback when a message of type T arrives with
destination S. Subject callbacks give you all the power of process callbacks with
additional filtering capabilities. You should consider using subject callbacks
rather than process callbacks when processing messages from RTserver.

Rather than processing a message based only on its type, subject callbacks allow
you to process a message based on both its destination (subject) and its type. With
a subject callback, you can specify a separate function for each subject (or group)
of subjects you wish to operate on. When a message arrives at the receiver for the
specified subject and is ready to be processed, the callback is executed. Subject
callbacks operate similar to process callbacks. To create a subject callback, you
make a call to TipcSrvSubjectCbCreate as shown:

T_CB TipcSrvSubjectCbCreate(subject, mt, func, arg)

where:

Here are some examples of creating subject callbacks:

mt = TipcMtLookupByNum(T_MT_INFO);

/* Execute the function subj_cb for any message type which has a destination of "/stocks" */
TipcSrvSubjectCbCreate("/stocks", NULL, subj_cb, NULL);

/* Execute the function subj_cb for any messages of type INFO, regardless of the destination */
TipcSrvSubjectCbCreate(NULL, mt, subj_cb, NULL);
/* or */
TipcSrvSubjectCbCreate("/...", mt, subj_cb, NULL);

/* Execute the function subj_cb for any messages of type INFO, which have a destination of
"/stocks"*/
TipcSrvSubjectCbCreate("/stocks", mt, subj_cb, NULL);

/* Execute the function subj_cb for messages of any type with any destination */
TipcSrvSubjectCbCreate(NULL, NULL, subj_cb, NULL);

/* Execute the function default_subj_cb if there are no subject callbacks which match the message */
TipcSrvSubjectDefaultCbCreate(default_subj_cb, NULL);

subject is the destination you wish to specify the callback on and (NULL means
any destination).

mt is the message type the callback should be applied to (NULL means any
message type).

func is the callback function to be executed.

arg is an optional argument to pass into func.
 TIBCO SmartSockets User’s Guide

242 | Chapter 3 Publish-Subscribe
Wildcards can be used when specifying the subject argument when creating a
subject callback. A NULL subject maps to the "/..." wildcard subject. When you
register a wildcard subject the callback function will get executed for each
incoming message whose destination matches the wildcard pattern. It is possible
that a single message can invoke multiple callbacks if its destination matches
multiple wildcards.

Table 12 shows several examples of wildcarded subjects and message types and
whether or not the subject callback gets executed.

Just as with process callbacks, you can define a default subject callback to be
executed if no callback has been defined for a given subject. Default subject
callbacks are only called when no other subject callback matches the incoming
message criteria. Default subject callbacks are registered with the
TipcSrvSubjectDefaultCbCreate function. If a subject callback is registered with a
NULL subject and NULL message type, then default subject callbacks will never get
executed.

As with other callback types, you can use the function TutCbSetPriority to set the
priority of your subject callbacks.

Connection process callbacks are separate from server subject callbacks in their
priority sets. Do not mix connection process callbacks and server subject callbacks
because the priorities between callback types are not honored.

Table 12 Subject Callback Execution

Subject Message Type When Callback Gets Executed

/stocks NUMERIC_DATA NUMERIC_DATA message is received with destination
of /stocks.

/stocks NULL When any type of message is received with destination of
/stocks.

/... or
NULL

STRING_DATA STRING_DATA message is received, regardless of the
destination. This is similar to the connection process
callback behavior except that subject callbacks are always
called after connection process callbacks.

/... or
NULL

NULL When a message of any type with any destination is
received (the default subject callback is never executed in
this case).
TIBCO SmartSockets User’s Guide

Advanced RTclient Usage | 243
Subject callbacks can be destroyed by looking up each callback and destroying it
with the TutCbDestroy function. A convenience function,
TipcSrvSubjectCbDestroyAll, has been created to facilitate destroying all subject
callbacks including default subject callbacks.

See the man page for TipcSrvSubjectCbCreate and
TipcSrvSubjectDefaultCbCreate in the TIBCO SmartSockets Application
Programming Interface reference for an example of how subject callbacks work.

Example Using Subject Callbacks

This code shows the use of subject callbacks. Two different subject callbacks are
defined in the program:

• ProcessInfo — executed when processing a message of type INFO with
destination EXAMPLE_SUBJECT

• ProcessNumData — executed when processing a message of type
NUMERIC_DATA with destination EXAMPLE_SUBJECT

Both callback functions simply access the fields and print out the contents of the
message:

/* rtsubjcb.c - print out contents of messages processed via
subject callback */
/* $RTHOME/examples/smrtsock/manual/rtsubjcb.c */

#include <rtworks/ipc.h>
#include "rtclient.h"

/* == */
/*..ProcessInfo - callback for processing INFO messages published
 to the EXAMPLE_SUBJECT subject */
static void T_ENTRY ProcessInfo(

T_IPC_CONN conn,
T_IPC_CONN_PROCESS_CB_DATA data,
T_CB_ARG arg)

{
 T_IPC_MSG msg = data->msg;
 T_STR msg_text;

 TutOut("Entering ProcessInfo callback.\n");

 if (!TipcMsgSetCurrent(msg, 0)) {
 TutOut("Could not set current field of message: error <%s>.\n",
 TutErrStrGet());
 return;
 }
 TIBCO SmartSockets User’s Guide

244 | Chapter 3 Publish-Subscribe
 if (!TipcMsgNextStr(msg, &msg_text)) {
 TutOut("Could not text from INFO message: error <%s>.\n",
 TutErrStrGet());
 return;
 }

 TutOut("Text from message = %s\n", msg_text);
} /* ProcessInfo */
/* === */
/*..ProcessNumData - callback for processing NUMERIC_DATA messages
 published to the EXAMPLE_SUBJECT subject */
static void T_ENTRY ProcessNumData(

T_IPC_CONN conn,
T_IPC_CONN_PROCESS_CB_DATA data,
T_CB_ARG arg)

{
 T_IPC_MSG msg = data->msg;
 T_STR name;
 T_REAL8 value;

 TutOut("Entering ProcessNumData callback.\n");
 if (!TipcMsgSetCurrent(msg, 0)) {
 TutOut("Could not set current field of message: error <%s>.\n",
 TutErrStrGet());
 return;
 }

 /* Access and print fields */
 while (TipcMsgNextStrReal8(msg, &name, &value)) {
 TutOut("Var Name = %s; Value = %s\n", name,
TutRealToStr(value));
 } /* while */

 /* Make sure we reached end of message */
 if (TutErrNumGet() != T_ERR_MSG_EOM) {
 TutOut("Did not reach end of message: error <%s>.\n",
 TutErrStrGet());
 }
} /* ProcessNumData */

/* === */
int main(argc, argv)
int argc;
char **argv;
{
 T_OPTION option;
 T_IPC_MT mt;
TIBCO SmartSockets User’s Guide

Advanced RTclient Usage | 245
 /* Set the project name */
 option = TutOptionLookup("project");
 if (option == NULL) {
 TutOut("Could not look up option named project: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (!TutOptionSetEnum(option, EXAMPLE_PROJECT)) {
 TutOut("Could not set option named project: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* Connect to the RTserver */
 TutOut("Creating a connection to RTserver.\n");
 if (!TipcSrvCreate(T_IPC_SRV_CONN_FULL)) {
 TutOut("Could not connect to RTserver!\n");
 TutExit(T_EXIT_FAILURE);
 } /* if */

 /* Create subject callbacks to be executed when messages arrive
 with a given destination and given type */
 TutOut("Creating subject callbacks.\n");

 /* Subject callback for INFO messages with destination
 EXAMPLE_SUBJECT subject */
 mt = TipcMtLookupByNum(T_MT_INFO);
 if (mt == NULL) {
 TutOut("Could not lookup INFO message type: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (TipcSrvSubjectCbCreate(EXAMPLE_SUBJECT, mt,
 ProcessInfo, NULL)
 == NULL) {
 TutOut("Could not create ProcessInfo subject callback: ",
 "error <%s>.\n", TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 /* Subject callback for NUMERIC_DATA messages with destination
 EXAMPLE_SUBJECT subject */
 mt = TipcMtLookupByNum(T_MT_NUMERIC_DATA);
 if (mt == NULL) {
 TutOut("Could not lookup NUMERIC_DATA message type: ",
 "error ,<%s>.\n", TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (TipcSrvSubjectCbCreate(EXAMPLE_SUBJECT, mt,
 ProcessNumData, NULL)
 == NULL) {
 TutOut("Could not create ProcessNumData subject callback: ",
 "error <%s>.\n", TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 TIBCO SmartSockets User’s Guide

246 | Chapter 3 Publish-Subscribe
 /* Start subscribing to the EXAMPLE_SUBJECT subject */
 TutOut("Start subscribing to the %s subject.\n",
EXAMPLE_SUBJECT);
 if (!TipcSrvSubjectSetSubscribe(EXAMPLE_SUBJECT, TRUE)) {
 TutOut("Could not subscribe to %s subject: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
/* Read and process all incoming messages */
 if (!TipcSrvMainLoop(T_TIMEOUT_FOREVER)) {
 TutOut("TipcSrvMainLoop failed: error <%s>.\n",
 TutErrStrGet());
 }
} /* main */

This code can be verified by first compiling, linking and running
$RTHOME/examples/smrtsock/manual/rtsubjcb.c. Messages can be published
to it using the example program found in
$RTHOME/examples/smrtsock/manual/rtsndsub.c.

Remote Procedure Calls
The section Remote Procedure Calls on page 147 describes how messages can be
sent between processes to perform a remote procedure call. A remote procedure
call (RPC) is a means for a process to execute a function in another process and
wait for the result of the function call. This enables a request-reply
communication model.

Normally when an RTclient publishes a message to a subject using
TipcSrvMsgSend, the publishing RTclient continues and does not wait for the
subscribing RTclients to receive the message and act on it. This normal mode of
operation can be thought of as a one-to-many non-blocking RPC that may or may
not return a result (depending on whether or not the receiving RTclients send
back result messages).

The function TipcSrvMsgSendRpc performs a one-to-one blocking RPC that does
return a result. One message is sent as the RPC call from the caller RTclient, and
another message is sent back as the RPC result to the caller. The target RTclient
must be prepared to receive the call message and send back the result message.
TipcSrvMsgSendRpc uses a simple relationship between the call and result
messages: the message type number of the result message must be one greater
than the message type number of the call message.

See the reference information for TipcSrvMsgSendRpc in TIBCO SmartSockets
Application Programming Interface for a code example of how to perform RPCs with
other RTclients. TipcSrvMsgSendRpc cannot be used to achieve a one-to-many
blocking RPC; this kind of RPC can be handled by sending the call message with
TipcSrvMsgSend and then gathering all the necessary result messages with
TipcSrvMsgSearchType.
TIBCO SmartSockets User’s Guide

Advanced RTclient Usage | 247
Changing RTclient Options
Many options, such as Project, are only referenced when RTclient creates a
connection to RTserver. One way to change these options dynamically is to
destroy the connection to RTserver, keeping it warm, and then create a new
RTserver connection using the warm information. Code like this can be used to
change options like Project or Server_Names, the changes taking effect
immediately:

/* destroy existing connection to RTserver, but keep it warm */
if (!TipcSrvDestroy(T_IPC_SRV_CONN_WARM)) {
 /* error */
}

/* change project */
TutCommandParseStr("setopt project new_project");
/* create a new connection to RTserver from warm info */
if (!TipcSrvCreate(T_IPC_SRV_CONN_FULL)) {
 /* error */
}

There are restrictions for changing certain RTclient options:

• Project

The Project option is set as read only while RTclient has a full connection to
RTserver. This prevents confusion from resulting if this option is changed after
the full connection is created.

• Unique_Subject and Default_Subject_Prefix

Because the Unique_Subject and Default_Subject_Prefix options may be used
each time RTclient publishes a message, these options are set as read only
while RTclient has a warm or full connection to RTserver. This prevents
misconfiguration during normal publish-subscribe operation. The connection
to RTserver must be fully destroyed (no warm connection can be left) and
recreated before a change to the value of Unique_Subject or
Default_Subject_Prefix can take effect.
 TIBCO SmartSockets User’s Guide

248 | Chapter 3 Publish-Subscribe
Connecting to Multiple RTservers
Most RTclient applications require only one connection to an RTserver. The
TipcSrv API uses a single global connection to an RTserver. For those rare
applications whose architecture requires an RTclient to connect to multiple
RTservers, those RTclients can use special multiple connections instead of a global
connection.

Multiple RTserver connections use the TipcSrvConn API which allows distinct
connections to multiple RTservers. Each connection has its own set of
subscriptions and callbacks. Setting different option values for individual
connections requires the use of named options, defined using the setnopt
command or TutOptionNamedLookup, and the TipcSrvConnCreateNamed
function. For information on the TipcSrvConn API, and the associated
TipcDispatcher and TipcEvent APIs, see the TIBCO SmartSockets Application
Programming Interface.

Certain SmartSockets commands cannot be used with multiple connections
outside of CONTROL messages, as there is no way for the command processor to
know for which connection the command is intended. The commands created
with TipcInitCommands (connect, disconnect, subscribe, and unsubscribe)
are applied to the global connection if processed via a direct API call. If these
commands are received as CONTROL messages, they will act on the connection
on which they were received.

Because file-based GMD, by default, creates a sub-directory named after the
RTclient’s unique subject, file conflicts can arise when different multiple RTserver
connections sharing the same unique subject attempt to write to the same
directory. To avoid this, specify a different GMD sub-directory for each
connection using the Server_Gmd_Dir_Name option. For more information, see
File-based GMD and Connections to Multiple RTservers on page 353.

A dispatcher is available to manage the incoming messages from multiple
RTserver clouds. Using a dispatcher can increase the performance of your
application. See Using a Dispatcher on page 249 for more information.

Using multiple connections is recommended when an RTclient:

• connects to two or more RTserver clouds, or

• connects to two or more projects in the same RTserver cloud.

In most other cases, multiple connections are unnecessary. If used unwisely, they
can cause serious performance issues across your SmartSockets application.
TIBCO SmartSockets User’s Guide

Using a Dispatcher | 249
Using a Dispatcher

An RTclient dispatcher manages tasks, determining when and in what order they
execute. A dispatcher does one or both of these activities:

• manages the waiting process for messages from multiple RTserver
connections

This is especially useful in single threaded RTclients. By adding one or more
RTserver connections to a dispatcher with TipcDispatcherSrvAdd, a single
TipcDispatcherMainLoop call is equivalent to calling TipcSrvConnMainLoop
on each of the RTserver connections simultaneously.

• manages events originating within an RTclient, between RTclients, or between
sockets

An event is an object registered in the dispatcher that manages it. The
dispatcher determines when the event should execute. There are five kinds of
events: connection, message, socket, timer, and user. See Events on page 254
for more information.

Types of Dispatchers
There are two kinds of dispatchers:

• a dispatcher to handle multiple tasks for a specified time interval

This kind of dispatcher is created with TipcDispatcherCreate and runs in the
RTclient thread in which it is created. A call to TipcDispatcherMainLoop is
required to run this dispatcher. TipcDispatcherMainLoop also defines the time
interval for the dispatcher to run before exiting its main loop.

While the dispatcher is running, it checks its registered events to determine if
any should be executed, and waits for messages from RTservers. This is the
most common type of dispatcher to use for RTclients. See Single Threaded
RTclients on page 251 for more information.

• a dispatcher to run continuously in a detached thread

This kind of dispatcher is created in a separate thread with
TipcDispatcherCreateDetached. A detached dispatcher runs indefinitely in
the background and can only be stopped with TipcDispatcherDestroy. See
Example 22 on page 265 for an example of using this kind of dispatcher.
 TIBCO SmartSockets User’s Guide

250 | Chapter 3 Publish-Subscribe
This table summarizes the SmartSockets functions used for a dispatcher:

See the TIBCO SmartSockets Application Programming Interface for more
information on these functions.

Function Name Purpose

TipcDispatcherCreate Creates a dispatcher to manage incoming
messages on an RTserver connection. The
dispatcher can also manage connection,
message, socket, timer, and user events.

TipcDispatcherCreateDetached Creates a dispatcher in a detached thread,
which is a thread running on its own in the
background. The dispatcher runs
continuously until destroyed with
TipcDispatcherDestroy.

TipcDispatcherDestroy Removes a dispatcher created with
TipcDispatcherCreate or
TipcDispatcherCreateDetached.

TipcDispatcherDispatch Provides an alternate method of waiting for
messages or managing events, as opposed to
using TipcDispatcherMainLoop. See How a
Dispatcher Executes Events on page 255 for
more information.

TipcDispatcherMainLoop Controls how long the dispatcher dispatches
for messages or manages events. After the
defined interval of time elapses,
TipcDispatcherMainLoop exits. The
dispatcher does not function again until
TipcDispatcherMainLoop is called again.

TipcDispatcherSrvAdd Adds an RTserver connection to a dispatcher.

TipcDispatcherSrvRemove Removes an RTserver connection from a
dispatcher.
TIBCO SmartSockets User’s Guide

Using a Dispatcher | 251
Single Threaded RTclients
When a single threaded RTclient has connections to multiple RTservers, using a
dispatcher to wait for messages can greatly increase the performance of the
RTclient.

What Happens Without a Dispatcher?

Without a dispatcher, an RTclient’s normal procedure of waiting for a message
from an RTserver, reading the message, and processing the message, is
complicated by the fact that more than one RTserver is sending messages to the
RTclient. The wait-read-process cycle is multiplied by the number of RTserver
connections, which can easily slow down the RTclient because the
wait-read-process steps for each RTserver connection are performed sequentially.

For example, an RTclient has two RTserver connections, one for RTserver A and
one for RTserver B. Here is a summary of how some of the wait-read-process steps
might decrease the performance of the RTclient:

1. Wait for messages from RTserver A until a message arrives.

2. When a message arrives, read it from RTserver A.

3. Send the message to the RTclient’s connection for RTserver A for processing
and wait for processing to complete.

4. Wait for messages from RTserver B until a message arrives.

5. When a message arrives, read it from RTserver B.

6. Send the message to the RTclient’s connection for RTserver B for processing
and wait for processing to complete.

7. Wait for messages from RTserver A, and so on.

Except for reading a message, every step offers the potential to block all other
processing until it is completed. If 200 messages a second flow into this RTclient
from the RTservers, you can see how performance would be slowed down as time
spent waiting for and processing a message accumulates.
 TIBCO SmartSockets User’s Guide

252 | Chapter 3 Publish-Subscribe
How a Dispatcher Improves Performance

Using a dispatcher causes the wait-read-process steps to be multiplexed in such a
way that long periods of time associated with the wait steps are greatly decreased.

For example, you have an RTclient connected to RTserver A and RTserver B. Here
is a summary of how some of the wait-read-process steps might be managed by
the dispatcher:

1. Wait for messages from RTserver A and RTserver B. The first message to arrive
is from RTserver B.

2. Read the message from RTserver B.

3. Send the message to the RTclient’s connection for RTserver B for processing
and wait for processing to complete.

4. Wait for messages from RTserver A or B as done in Step 1. The second
message to arrive is from RTserver A.

5. Send this message to the RTclient’s connection for RTserver A for processing.
and wait for processing to complete.

6. Wait for a message from RTserver A or B, and so on.

With a dispatcher handling the waiting steps more efficiently, the overall
performance of the RTclient is increased. Further increase in performance is
possible if you design your RTclient to process each message in the quickest way.

Using a Dispatcher

Adding RTserver connections to a dispatcher and running the dispatcher’s main
loop is equivalent to calling the main loop function of all the RTserver connections
at the same time.

The code shown in Example 20 and Example 21 result in the same behavior:
waiting for a message on one RTserver connection.

Example 20 Waiting for Messages Without a Dispatcher

 /* Create an RTsever connection. */
 TipcSrvCreate(T_IPC_SRV_CONN_FULL);

 /* Register a default callback to wait for messages. */
 TipcSrvDefaultCbCreate(defCbFunc, T_NULL);

 /* Receive messages from the RTserver. */
 TipcSrvMainLoop(T_TIMEOUT_FOREVER);
TIBCO SmartSockets User’s Guide

Using a Dispatcher | 253
Example 21 Waiting for RTserver Messages With a Dispatcher

 T_IPC_SRV srv;
 T_IPC_DISPATCHER disp;

 /* Create an RTsever connection. */
 TipcSrvCreate(T_IPC_SRV_CONN_FULL);

 /* Register a default callback to wait for messages. */
 TipcSrvDefaultCbCreate(defCbFunc, T_NULL);

 /* Create a dispatcher and add the RTserver connection to it. */
 disp = TipcDispatcherCreate();
 TipcSrvGetSrv(&srv);
 TipcDispatcherSrvAdd(disp, srv);

 /* Receive messages from the RTserver. */
 TipcDispatcherMainLoop(disp, T_TIMEOUT_FOREVER);

The difference between the two examples is that more connections to more
RTservers can be added to the dispatcher disp in Example 21 with
TipcDispatcherSrvAdd. The dispatcher could also manage various events
affecting the RTclient. Waiting for messages from all the RTservers and dealing
with events only requires a single main loop, the dispatcher’s.
 TIBCO SmartSockets User’s Guide

254 | Chapter 3 Publish-Subscribe
Events
An event, an object registered in the dispatcher that manages it, is a way to:

• monitor the availability of a socket or connection for read and write
operations

• process a message based on the message’s subject or type

• communicate between the threads of an RTclient

• cause a function of your RTclient to execute repeatedly at a set interval of time

This table summarizes the types of events managed by a dispatcher:

Event Type Description

Connection A connection event executes when an RTclient connection is
available for reading or writing a message to another RTclient.
A connection event is similar to a socket event except the
sockets are SmartSockets connections between RTclients.

See Connection Events on page 256 for more information.

Message A message event executes when an incoming message matches
the message type or subject defined for the event.

See Message Events on page 258 for more information.

Socket Socket events are used when integrating other socket-based
software into a dispatcher’s main loop. A socket event executes
when a socket is available for sending or receiving a message.

See Socket Events on page 260 for more information.

Timer A timer event executes at a time interval you define. The event
usually repeats but can be executed only once.

See Timer Events on page 262 for more information.

User A user event is useful for inter-thread communication. By
running a dispatcher for each thread, user events can be sent
between dispatchers in a manner that does not disrupt a
thread’s processing.

See User Events on page 263 for more information.
TIBCO SmartSockets User’s Guide

Using a Dispatcher | 255
How a Dispatcher Executes Events

It is the dispatcher’s role to recognize when an event’s execution criteria is met.
When the criteria is met, it triggers the dispatcher to execute the callback function
associated with the event. A callback function always executes in the thread that
dispatches the event. You specify the thread in which you want the callback
function executed by passing a dispatcher’s identifier in the TipcEventCreate*
function at the time an event is registered. An event’s callback function should not
run for a long time because this delays the execution of other events waiting to be
dispatched.

For example, a connection event is triggered whenever a connection is available
for a read operation. When the dispatcher determines a connection is available for
reading, it executes the connection event’s callback function to do the actual work
of reading the incoming message from the connection.

The typical way to run a dispatcher involves calling TipcDispatcherMainLoop to
run the dispatcher for a specified period of time. During the time period, the
dispatcher manages the wait-read-process steps for messages from RTservers, and
determines if any of its events were triggered for execution. After the time period
elapses, the dispatcher exits from its main loop and does not run until
TipcDispatcherMainLoop is called again.

Another way to run a dispatcher is to call TipcDispatcherDispatch. This function
also defines a time period for the dispatcher to run, but the dispatcher exits its
main loop as soon as it handles one or more events. It only runs for its entire time
period if no messages arrive or there are no events to execute.

Examples of Using TipcDispatcherDispatch:

1. TipcDispatcherDispatch is called to run a dispatcher for 3 seconds. The
dispatcher determines after 1 second that a timer event is triggered. After
invoking the timer event, the dispatcher exits rather than running for the
remaining 2 seconds of its time period.

2. TipcDispatcherDispatch is called to run a dispatcher for 5 seconds. The
dispatcher determines after 2 seconds that a message has arrived from an
RTserver, a message event is triggered, and a timer event is triggered. After
reading the message and invoking the two events, the dispatcher exits rather
than running for the remaining 3 seconds of the time period.

3. TipcDispatcherDispatch is called to run a dispatcher for 2 seconds. No
RTserver messages arrive and no events are triggered during the time period.
The dispatcher runs for 2 seconds before exiting its main loop.
 TIBCO SmartSockets User’s Guide

256 | Chapter 3 Publish-Subscribe
Connection Events

Connection events are a special method of communicating between SmartSockets
connections without routing the messages through an RTserver. This kind of
connection is referred to as the peer-to-peer model.

A connection event is executed by a dispatcher when the connection associated
with the event is ready for a read or write operation. When you register a
connection event, you must specify which operation triggers the event with a
check mode value of T_IO_CHECK_READ or T_IO_CHECK_WRITE.

Read-Mode Example

These steps take place to implement a connection event for read-mode in an
RTclient:

1. The RTclient registers a connection event of check mode T_IO_CHECK_READ
with the dispatcher that monitors the connection.

2. When the connection is available to accept an incoming message in its socket,
the dispatcher executes the connection event.

3. The callback function of the connection event reads the message from the
connection’s socket.

Write-Mode Example

These steps take place to implement a connection event for write-mode in an
RTclient:

1. The RTclient registers a connection event of check mode T_IO_CHECK_WRITE
mode with the dispatcher that monitors the connection.

2. When the connection is available to accept an outgoing message on its socket,
the dispatcher executes the connection event.

3. The callback function of the connection event writes the message to the
connection’s socket.
TIBCO SmartSockets User’s Guide

Using a Dispatcher | 257
This table summarizes the SmartSockets functions used for SmartSockets
connection events:

See the TIBCO SmartSockets Application Programming Interface for more
information on these functions.

Function Name Purpose

TipcEventCreateConn Registers a SmartSockets connection event with a
dispatcher. The event’s execution is triggered
when a message can be written to a connection
(T_IO_CHECK_WRITE mode), or a message can be
read from a connection (T_IO_CHECK_READ
mode).

TipcEventDestroy Removes a connection event from a dispatcher.

TipcEventGetCheckMode Returns the triggering mode for a connection
event (T_IO_CHECK_READ or
T_IO_CHECK_WRITE).

TipcEventGetConn Returns the identifier of the connection for a
connection event.

TipcEventGetDispatcher Returns the identifier of the dispatcher where a
connection event is registered.

TipcEventGetType Returns the type of an event. When used for a
connection event, the returned value is
T_IPC_EVENT_CONN.
 TIBCO SmartSockets User’s Guide

258 | Chapter 3 Publish-Subscribe
Message Events

With message events, the processing of a message can easily be spread across
multiple threads based on the message’s type or subject.

When using message events, a message travels from the sending RTclient through
the RTserver to the receiving RTclient’s connection or dispatcher. The RTclient’s
connection or dispatcher, whichever is waiting for messages, sends the message
to the appropriate thread’s dispatcher.

The receiving dispatcher determines if this message matches any of its registered
message types or subjects. Upon a match, the dispatcher immediately triggers the
execution of a callback function to process the message.

See the Multiple Thread Example with Timer and Message Events on page 264 for
an example of using message events.

Messages must not be destroyed within a message event’s callback function.
SmartSockets automatically destroys a message once all the events have received
it.
TIBCO SmartSockets User’s Guide

Using a Dispatcher | 259
This table summarizes the SmartSockets functions used for message events:

See the TIBCO SmartSockets Application Programming Interface for more
information on these functions.

Function Name Purpose

TipcEventCreateMsg Registers a message event with a dispatcher. The
event’s execution is triggered by the subject of
the incoming message.

TipcEventCreateMsgType Registers a message event with a dispatcher. The
event’s execution is triggered by the type of
incoming message.

TipcEventDestroy Removes a message event from a dispatcher.

TipcEventGetDispatcher Returns the identifier of the dispatcher where a
message event is registered.

TipcEventGetType Returns the type of an event. When used for a
message event, the returned value is:

• T_IPC_EVENT_MSG if the message event is
triggered by a subject, or

• T_IPC_EVENT_MSG_TYPE if the message
event is triggered by a message’s type
 TIBCO SmartSockets User’s Guide

260 | Chapter 3 Publish-Subscribe
Socket Events

Socket events, similar to connection events, are events that signal a message can
be sent or received between the sockets of a client and another vendor’s server.
The client can be an RTclient connected to an RTserver and another vendor’s
server, or it can be a client only connected to another vendor’s server. In either
case, the client uses the SmartSockets dispatcher to handle the execution of the
socket event.

A socket event is executed by the dispatcher when the vendor’s socket is ready
for a read or write operation. When you register a socket event, you must specify
which operation triggers the event with a check mode value of T_IO_CHECK_READ
or T_IO_CHECK_WRITE.

Any vendor’s software that supports the ANSI standard for socket architecture
can be used in a socket event. However, the socket must be in non-blocking mode
to support the asynchronous model of SmartSockets. A write event is triggered
when one or more bytes can be written to the vendor’s socket. A read event is
triggered for these conditions:

• one or more bytes can be read from the vendor’s socket

• a socket error occurred, such as the vendor’s socket peer closed the connection
TIBCO SmartSockets User’s Guide

Using a Dispatcher | 261
This table summarizes the SmartSockets functions used for sockets events:

See the TIBCO SmartSockets Application Programming Interface for more
information on these functions.

Function Name Purpose

TipcEventCreateSocket Registers a socket event with a dispatcher. The
event’s execution is triggered when a message
can be written to the socket (T_IO_CHECK_WRITE
mode), or a message can be read from the socket
(T_IO_CHECK_READ mode).

TipcEventDestroy Removes a socket event from a dispatcher.

TipcEventGetCheckMode Returns the triggering mode for a socket event
(T_IO_CHECK_READ or T_IO_CHECK_WRITE).

TipcEventGetDispatcher Returns the identifier of the dispatcher where a
socket event is registered.

TipcEventGetSocket Returns the identifier of the socket for a socket
event.

TipcEventGetType Returns the type of an event. When used for a
socket event, the returned value is
T_IPC_EVENT_SOCKET.
 TIBCO SmartSockets User’s Guide

262 | Chapter 3 Publish-Subscribe
Timer Events

Timer events originate within an RTclient. After a defined number of seconds has
elapsed, the dispatcher triggers the execution of the timer event. A timer event is
executed repeatedly unless it is destroyed within the timer event’s callback
function after the first time it executes.

See the Multiple Thread Example with Timer and Message Events on page 264 for
an example of using timer events.

This table summarizes the SmartSockets functions used for timer events:

See the TIBCO SmartSockets Application Programming Interface for more
information on these functions.

Function Name Purpose

TipcEventCreateTimer Registers a timer event with a dispatcher. The
event’s execution is triggered every time a set
number of seconds, defined by
TipcEventSetInterval, has elapsed.

TipcEventDestroy Removes a timer event from a dispatcher.

TipcEventGetDispatcher Returns the identifier of the dispatcher where a
timer event is registered.

TipcEventGetInterval Returns the number of seconds set for a timer
event.

TipcEventGetType Returns the type of an event. When used for a
timer event, the returned value is
T_IPC_EVENT_TIMER.

TipcEventSetInterval Defines the number of seconds to wait between
executing the timer event.
TIBCO SmartSockets User’s Guide

Using a Dispatcher | 263
User Events

An RTclient communicates between its threads with user events. A dispatcher
always executes a user event immediately when the event becomes the next in
line for the dispatcher’s attention. Unlike the other kinds of events, there is no
triggering condition to be met before it is executed.

Unlike connection, message, socket, and timer events, which persist until
removed with TipcEventDestroy, a user event is temporary. A user event must be
registered each time it is required because after the user event executes, it is
automatically destroyed.

Life Cycle of One User Event:

1. Thread 1 registers a user event in Thread 2’s dispatcher. The user event
becomes the third item in the dispatcher’s queue, behind a connection event
(CERead) and a timer event that executes every 5 seconds (TE-5).

2. During the current time period for TipcDispatcherMainLoop to run, the
dispatcher is able to check all three events in its queue. A trigger has not
occurred for CERead, so the dispatcher goes to the next event in line, TE-5.
Five seconds have elapsed since the last time TE-5 ran so the dispatcher
directs it to run again.

3. After TE-5 executes, the next event in line, UE-T1, is the user event registered
by Thread 1. The dispatcher executes it immediately because the event does
not require a trigger. UE-T1 is destroyed upon its completion.

This table summarizes the SmartSockets functions used for user events:

See the TIBCO SmartSockets Application Programming Interface for more
information on these functions.

Function Name Purpose

TipcEventCreate Registers a user event with a dispatcher.

TipcEventGetData The user-defined data associated with the user
event when it was registered with the dispatcher.

TipcEventGetDispatcher Returns the identifier of the dispatcher where a
user event was registered.

TipcEventGetType Returns the type of an event. When used for a user
event, the returned value is T_IPC_EVENT_USER.
 TIBCO SmartSockets User’s Guide

264 | Chapter 3 Publish-Subscribe
Multiple Thread Example with Timer and Message Events
The following example uses timer and message events. Here is what takes place:

• Three threads are created in RTclient A (Example 22), each running a
dispatcher.

• The main thread in RTclient A connects to an RTserver and adds the
connection to its dispatcher.

• Two timer events are registered with the main thread’s dispatcher. One timer
event sends a T_MT_CLIENT_REQUEST message to RTclient B every second.
The other timer event sends a T_MT_SERVER_REQUEST message to RTclient
B every 5 seconds. These request messages result in response messages from
RTclient B of type T_MT_CLIENT_RESPONSE or
T_MT_SERVER_RESPONSE.

RTclient B is presented in Example 23 on page 268.

• RTclient A has two detached threads, each with its own dispatcher. A message
event is registered with each of these dispatchers. One event processes
message type T_MT_CLIENT_RESPONSE and the other processes message
type T_MT_SERVER_RESPONSE. The message events are triggered by an
incoming message’s type.

• When the main thread’s dispatcher receives a message from RTclient B of
message type T_MT_CLIENT_RESPONSE, it sends the message to the
appropriate dispatcher. The receiving dispatcher executes the message event
to process the message. The same action occurs when message type
T_MT_SERVER_RESPONSE is received.

Even if a response message takes a long time to process by one message event,
the main thread is not blocked.
TIBCO SmartSockets User’s Guide

Using a Dispatcher | 265
Example 22 Code for RTclient A

#include <rtworks/ipc.h>

#define T_MT_CLIENT_REQUEST 101
#define T_MT_CLIENT_RESPONSE 201

#define T_MT_SERVER_REQUEST 102
#define T_MT_SERVER_RESPONSE 202

/* ---*/
static void T_ENTRY clientRequestEventTimerFunc
(
 T_IPC_EVENT event,
 T_IPC_EVENT_DATA data,
 T_PTR arg
)
{
 /* ---
 * This is the callback function invoked whenever the associated timer event is triggered. The timer event sends
 * a type T_MT_CLIENT_REQUEST message to RTclient B. A message event in RTclient A processes the
 * type T_MT_CLIENT_RESPONSE message returned from RTclient B in response to the T_MT_CLIENT_
 * REQUEST message.
 */ --

 TutOut("%s: CLIENT REQUEST - sending\n", TutGetWallTimeStr());

 /* --
 * Send the RTclient request message.
 */ --
 TipcSrvMsgWrite("/request", TipcMtLookupByNum(T_MT_CLIENT_REQUEST),
 T_TRUE, T_NULL);
 TipcSrvFlush();

} /* clientRequestEventTimerFunc */

/* --*/
static void T_ENTRY serverRequestEventTimerFunc
(
 T_IPC_EVENT event,
 T_IPC_EVENT_DATA data,
 T_PTR arg
)
{
 /* ---
 * This is the callback function invoked whenever the associated timer event is triggered. It sends a type
 * T_MT_SERVER_REQUEST message to RTclient B. A message event in RTclient A processes the
 * type T_MT_SERVER_RESPONSE message returned from RTclient B in response to the T_MT_SERVER_
 * REQUEST message.
 */ --

 TutOut("%s: SERVER REQUEST - sending\n", TutGetWallTimeStr());

 /* --
 TIBCO SmartSockets User’s Guide

266 | Chapter 3 Publish-Subscribe
 * Send the server request message.
 */ --
 TipcSrvMsgWrite("/request", TipcMtLookupByNum(T_MT_SERVER_REQUEST),
 T_TRUE, T_NULL);
 TipcSrvFlush();

} /* serverRequestEventTimerFunc */
/* ---*/
static void T_ENTRY clientResponseEventMsgTypeFunc
(
 T_IPC_EVENT event,
 T_IPC_EVENT_DATA data,
 T_PTR arg
)
{
 /* --
 * This is the callback function invoked whenever the associated message event is triggered. It processes a type
 * T_MT_CLIENT_RESPONSE message from RTclient B.
 */ --

 TutOut("%s: CLIENT RESPONSE - processing\n", TutGetWallTimeStr());

} /* clientResponseEventMsgTypeFunc */

/* --*/
static void T_ENTRY serverResponseEventMsgTypeFunc
(
 T_IPC_EVENT event,
 T_IPC_EVENT_DATA data,
 T_PTR arg
)
{
 /* ---
 * This is the callback function invoked whenever the associated message event is triggered. It processes a
 * type T_MT_SERVER_RESPONSE message from RTclient B.
 */ --

 TutOut("%s: SERVER RESPONSE - processing\n", TutGetWallTimeStr());

} /* serverResponseEventMsgTypeFunc */

/* -- */
int main
(
 int argc,
 char **argv
)
{
 T_IPC_SRV srv;
 T_IPC_DISPATCHER main_disp;
 T_IPC_DISPATCHER client_response_disp;
 T_IPC_DISPATCHER server_response_disp;
TIBCO SmartSockets User’s Guide

Using a Dispatcher | 267
 /* ---
 * Make the SmartSockets libraries thread-safe.
 */ ---
 TipcInitThreads();

 /* --
 * Parse the command file if available.
 */ --
 TutCommandParseFile("request.cm");

 /* ---------------------------------
 * Create the message types.
 */ ---------------------------------
 TipcMtCreate("client request", T_MT_CLIENT_REQUEST, "verbose");
 TipcMtCreate("client response", T_MT_CLIENT_RESPONSE, "verbose");

 TipcMtCreate("server request", T_MT_SERVER_REQUEST, "verbose");
 TipcMtCreate("server response", T_MT_SERVER_RESPONSE, "verbose");

 /* --
 * Create a connection to the RTserver.
 */ --
 TipcSrvCreate(T_IPC_SRV_CONN_FULL);

 /* ---
 * Get the connection's T_IPC_SRV object.
 */ --
 TipcSrvGetSrv(&srv);

 /* -----------------------
 * Create a dispatcher.
 */ -----------------------
 main_disp = TipcDispatcherCreate();

 /* ---
 * Add the connection for the RTserver to the dispatcher.
 */ --
 TipcDispatcherSrvAdd(main_disp, srv);

 /* --
 * Add two timer events to the dispatcher, one for each type of request message
 */ ---
 TipcEventCreateTimer(main_disp,
 1.0,
 clientRequestEventTimerFunc,
 T_NULL);
 TipcEventCreateTimer(main_disp,
 5.0,
 serverRequestEventTimerFunc,
 T_NULL);
 TIBCO SmartSockets User’s Guide

268 | Chapter 3 Publish-Subscribe
 /* --
 * Create two dispatchers, each running in their own thread, to process two types of response messages.
 * Response messages are read from the RTserver connection in the main thread and handed off to one of the two
 * background threads for processing. This allows for concurrent processing of messages based on message
 * type, T_MT_CLIENT_RESPONSE or T_MT_SERVER_RESPONSE. A similar setup could be used
 * to processes messages based on subject.
 */ --
 client_response_disp = TipcDispatcherCreateDetached();
 TipcEventCreateMsgType(client_response_disp,
 srv,
 TipcMtLookupByNum(T_MT_CLIENT_RESPONSE),
 clientResponseEventMsgTypeFunc,
 T_NULL);

 server_response_disp = TipcDispatcherCreateDetached();
 TipcEventCreateMsgType(server_response_disp,
 srv,
 TipcMtLookupByNum(T_MT_SERVER_RESPONSE),
 serverResponseEventMsgTypeFunc,
 T_NULL);

 /* --
 * Dispatch the timer events and wait for messages from the RTserver.
 */ ---
 TipcDispatcherMainLoop(main_disp, T_TIMEOUT_FOREVER);

 TutExit(T_EXIT_SUCCESS);
} /* main */

Example 23 Code for RTclient B

#include <rtworks/ipc.h>

#define T_MT_CLIENT_REQUEST 101
#define T_MT_CLIENT_RESPONSE 201

#define T_MT_SERVER_REQUEST 102
#define T_MT_SERVER_RESPONSE 202

/* -- */
static void T_ENTRY clientRequestCbFunc
(
 T_IPC_CONN conn,
 T_IPC_CONN_PROCESS_CB_DATA data,
 T_CB_ARG arg
)
{
 T_STR sender;

 TipcMsgGetSender(data->msg, &sender);

 TutOut("%s: CLIENT REQUEST - received\n", TutGetWallTimeStr());
TIBCO SmartSockets User’s Guide

Using a Dispatcher | 269
 /* --
 * Respond to the RTclient request message with an RTclient response message.
 */ ---
 TipcSrvMsgWrite(sender, TipcMtLookupByNum(T_MT_CLIENT_RESPONSE),
 T_TRUE, T_NULL);
 TipcSrvFlush();
} /* clientRequestCbFunc */

/* -- */
static void T_ENTRY serverRequestCbFunc
(
 T_IPC_CONN conn,
 T_IPC_CONN_PROCESS_CB_DATA data,
 T_CB_ARG arg
)

{
 T_STR sender;

 TipcMsgGetSender(data->msg, &sender);

 TutOut("%s: SERVER REQUEST - received\n", TutGetWallTimeStr());

 /* --
 * Respond to the RTserver request message with an RTserver response message.
 */ ---
 TipcSrvMsgWrite(sender, TipcMtLookupByNum(T_MT_SERVER_RESPONSE),
 T_TRUE, T_NULL);
 TipcSrvFlush();
} /* serverRequestCbFunc */
/* -- */
int main
(
 int argc,
 char **argv
)
{
 /* ---
 * Parse the command file if available.
 */ --
 TutCommandParseFile("response.cm");

 /* --------------------------------
 * Create the message types.
 */ ---------------------------------
 TipcMtCreate("client request", T_MT_CLIENT_REQUEST, "verbose");
 TipcMtCreate("client response", T_MT_CLIENT_RESPONSE, "verbose");

 TipcMtCreate("server request", T_MT_SERVER_REQUEST, "verbose");
 TipcMtCreate("server response", T_MT_SERVER_RESPONSE, "verbose");

 /* --
 * Create a connection to the RTserver.
 */ --
 TipcSrvCreate(T_IPC_SRV_CONN_FULL);
 TIBCO SmartSockets User’s Guide

270 | Chapter 3 Publish-Subscribe
 /* --------------------------------------
 * Subscribe to /request messages.
 */ --------------------------------------
 TipcSrvSubjectSetSubscribe("/request", T_TRUE);
 TipcSrvFlush();

 /* ---
 * Add two callbacks, one for each type of request messages.
 */ ---
 TipcSrvProcessCbCreate(TipcMtLookupByNum(T_MT_CLIENT_REQUEST),
 clientRequestCbFunc,
 T_NULL);
 TipcSrvProcessCbCreate(TipcMtLookupByNum(T_MT_SERVER_REQUEST),
 serverRequestCbFunc,
 T_NULL);

 /* --
 * Process messages from the RTserver.
 */ --
 TipcSrvMainLoop(T_TIMEOUT_FOREVER);

 TutExit(T_EXIT_SUCCESS);
} /* main */
TIBCO SmartSockets User’s Guide

Message Compression | 271
Message Compression

SmartSockets allows messages to be compressed before they are sent. There are
three ways to compress a message:

• Compress on a message-by-message basis.

• Compress all messages of a certain message type.

• Compress all messages sent over a connection. This is called connection level
compression.

Compression and decompression of messages is CPU time intensive, and should
only be used when:

• message size is very large

• sending string-based or text messages, such as XML documents

• sending messages over a WAN, to conserve bandwidth

The compression library provided by SmartSockets is ZLIB (version 1.1.4). ZLIB is
a general-purpose data compression library that provides in-memory
compression and decompression, including integrity checks of the decompressed
data. For more information on ZLIB, see the official ZLIB website, at
http://www.gzip.org/zlib/.

To read a compressed message, the receiver must use the same compression
library as was used to compress the message. If a message consumer receives a
compressed message that it cannot decompress, usually through a TipcMsgNext*
function call, the function fails with error:

• T_ERR_DOESNT_EXIST if the compression library could not be loaded, or

• T_ERR_VAL_INVALID if the compression libraries do not match.
 TIBCO SmartSockets User’s Guide

272 | Chapter 3 Publish-Subscribe
Compressing by Message Type
Message type compression allows you to specify that any message of a particular
type, such as all STRING_DATA messages, be compressed before it is sent to
RTserver. Only the SmartSockets message payload, or user-data, is compressed.

The message is not decompressed until the first attempt is made to access the
payload. In other words, the message remains compressed until the message
receiver attempts to read the message. RTserver does not decompress the
message; compression and decompression only takes place end-to-end, not at
every hop.

Compression does not always result in a smaller payload. When compression
yields a larger payload, SmartSockets prints a warning and sends the message
uncompressed.

Enable or disable message type compression with the function
TipcMtSetCompression. When compression is set, you can change the
compression level with the Compression_Args option. For more information on
TipcMtSetCompression, see the TIBCO SmartSockets Application Programming
Interface.

Compressing a Single Message

You can always override the default message type compression setting for a given
message with the function TipcMsgSetCompression. If compression for a message
type is enabled but you wish to send a message uncompressed, use
TipcMsgSetCompression to change the compression setting for that message only.

For more information on TipcMsgSetCompression, see the TIBCO SmartSockets
Application Programming Interface.

If compression is enabled for a message but SmartSockets cannot load the
compression library, it prints a warning and sends the message uncompressed.
TIBCO SmartSockets User’s Guide

Message Compression | 273
Compressing at the Connection Level
Connection level compression causes all data sent across a connection
(peer-to-peer, RTclient-RTserver, or RTserver-RTserver) to be compressed at the
sender and decompressed at the receiver. Connection level compression is only
available on point-to-point connections such as TCP, and is not available for PGM.

Connection level compression, as implemented by ZLIB, builds a rich dictionary
and, over time, achieves higher compression ratios. The more messages you send
over a connection, the better compression becomes. With connection level
compression, the message header and payload are both compressed, and
messages are decompressed at every hop.

Connection level compression is enabled with the SmartSockets Compression
option. You can configure the compression setting by using an extended logical
connection name (LCN), and with the options Compression_Args,
Compression_Name, and Compression_Stats. Both sides of the connection must
have the same Compression and Compression_Name option values in order for a
connection to be made.

Using the Logical Connection Name

Connection level compression can be fully enabled and configured with
SmartSockets options. However, you can also change compression settings with
an extended logical connection name (LCN). Compression settings given in the
LCN override options settings. For example, you can use the Compression option
to enable compression across all connections by default, then use an extended
LCN to disable compression for a specific connection.

LCNs are described in more detail in Logical Connection Names on page 101 and
also in Logical Connection Names for RT Processes on page 192.

This section describes only the extended portion that is used to configure
connection level compression.
 TIBCO SmartSockets User’s Guide

274 | Chapter 3 Publish-Subscribe
The extended logical connection name has the form:

protocol:node:address[?name=value[&name=value]]

where:

If no compression settings are specified in the LCN, SmartSockets compression is
determined by the Compression option. By default, compression is disabled.
Including the compression=true property in the LCN enables compression for
the connection. This is an example of enabling compression for one of two
connections in the RTserver:

setopt Conn_Names tcp:_node:5998, tcp:_node:5999?compression=true

You can also disable compression for a connection:

setopt Compression true
setopt Conn_Names tcp:_node:5998?compression=false, tcp:_node:5999

Both sides of the connection must have the same compression and compression_name
property values in order for a connection to be made.

protocol is the IPC protocol type

node is a computer node name

address is a protocol-specific IPC location, such as a TCP port number

name represents the connection property to be set. Properties that configure
connection level compression are:

• compression — enables or disables compression for the connection. If
this property is omitted, the compression setting defined by the
SmartSockets Compression option is used.

• compression_name — specifies the compression library to use. If this
property is omitted then the compression name defined by the
SmartSockets Compression_Name option is used.

• compression_args — lists the arguments to pass to the compression
library. If this property is omitted then the compression arguments
defined by the SmartSockets Compression_Args option is used.

value is the value assigned to the connection property. Supported values for
connection level compression properties are:

• if name is compression, use TRUE to enable compression; FALSE
otherwise.

• if name is compression_name, use ZLIB. The compression library
provided by SmartSockets is ZLIB.

• if name is compression_args, the value is determined by the
compression library. For the ZLIB compression library, this is an integer
value from 1 to 9.
TIBCO SmartSockets User’s Guide

Security | 275
Security

SmartSockets offers username- and password-based security. This allows the
RTserver to authenticate and authorize an RT process by:

• verifying that the connecting RT process is who it claims to be

• determining whether the connecting RT process is authorized to perform an
action or access a resource

This is offered with Basic Security.

To enable Basic Security, edit the command file rtserver.cm, adding this line to
set the SmartSockets option Sm_Security_Driver to basic:

setopt sm_security_driver basic

This command instructs the server to load the security command file sdbasic.cm.
The file sdbasic.cm sets options for the Basic Security driver, such as the tracing
level for logging security activity.

When Basic Security loads, it also reads and loads the access control list (ACL)
configuration files. The ACL files are cached for the amount of time set in the
Sd_Basic_Acl_Timeout option, then read again. If you make any changes to the
ACL files after loading Basic Security, they do not take effect until the time
specified in the Sd_Basic_Acl_Timeout option has passed, at which time the ACL
files are reloaded.
 TIBCO SmartSockets User’s Guide

276 | Chapter 3 Publish-Subscribe
Basic Security
SmartSockets Basic Security allows the RTserver to authenticate a user by
requiring a username and password before accepting a connection. RTserver can
also restrict access to resources by authorizing only certain users to access them.
Basic Security uses a permission scheme to manage authorization. By setting
permissions, you can control:

• server connections — which RT processes, or users, can connect to RTserver

• subject subscriptions — which users can subscribe to a subject

• subject publications — which users can publish to a subject

Basic Security can also provide auditing information, written to file or standard
output (stdout). This information gives details on which users passed or failed
authentication and which users were granted or denied access to resources. See
Sd_Basic_Trace_Level on page 557 for more information.

Basic Security is managed through access control lists (ACLs). The ACL
configuration files contain the usernames and passwords, group definitions, and
permissions. The ACL files are stored in a file local to the machine which RTserver
runs on, in the directory $RTHOME/acl. There are three configuration files:

• users.cfg — lists the username and password for each user authorized to
connect to RTserver

• groups.cfg — defines groups, or categories, of users

• acl.cfg — sets the user and group permissions

To change the configuration files, you must edit them directly.

The ACL files are cached for the amount of time set in the Sd_Basic_Acl_Timeout
option, then read again. If you make any changes to the ACL files after loading
Basic Security, they do not take effect until the time specified in the
Sd_Basic_Acl_Timeout option has passed, at which time the ACL files are
reloaded.
TIBCO SmartSockets User’s Guide

Security | 277
Editing the Users File

The users.cfg file lists the username and password of each user authorized to
connect to RTserver. The users list has this syntax:

users password_type {
 username password
}

where:

There are two default users in the users.cfg file, admin and anonymous. admin
uses the password smartsockets, while anonymous does not require a password.
For example:

users plain {
 admin smartsockets
 anonymous ""
}

To add new users, add the username and password to the list:

users plain {
 jdoe txY3s3
 mfrank foobar
 admin smartsockets
 anonymous ""
}

password_type represents how the password is stored. The only available storage is
plain, meaning the password is stored in plain text.

username identifies an individual user. Each username is restricted to 64
characters.

password is the password used to authenticate username. The password size is
unlimited. To specify no password, use empty quotation marks ("").
 TIBCO SmartSockets User’s Guide

278 | Chapter 3 Publish-Subscribe
Editing the Groups File

The groups.cfg file defines groups of users that can share permission values.
Group definitions simplify maintenance of permissions. For example, you might
create a group for all developers, dev, knowing that all developers require the
same set of permissions.

The groups list has this syntax:

group name {
 username
}

where:

There is one predefined group, the admin group:

group admin {
 admin
}

The only member of the admin group is the user admin.

You can have more than one group. For example:

group dev {
 jdoe
 mfrank
 anonymous
}

group admin {
 jdoe
}

In this example, there is only one member of the admin group, jdoe. The dev
group includes two users plus the anonymous user.

name is the name of the group.

username identifies a user as a member of the group. The username must be listed in
the users.cfg file before it can be added to a group.
TIBCO SmartSockets User’s Guide

Security | 279
The Admin Group

The admin group is reserved for users with administrative privileges, and
prevents unauthorized users from publishing messages with the message type
CONTROL. Only users who are included in the admin group can publish
CONTROL messages. CONTROL messages are commonly used to send
commands to other processes.

By default, the only user in the admin group is admin. Add or remove users from
the group by editing the groups.cfg file. You can further define the admin group
permissions in the acl.cfg file. You can restrict access to other message types
with the option Sd_Basic_Admin_Msg_Types. See Sd_Basic_Admin_Msg_Types
on page 555 for more information.

Editing the Permissions File

The acl.cfg file sets the permissions for each user or group.

All permissions use this syntax:

permission allow|deny user|group name host resource

where:

Permissions are read from the bottom up. The first permission that applies to a
user when the file is read is enforced.

permission is the type of permission set. Valid settings are:

• server — establishes which RTservers are permitted to connect.

• client — defines which RTclients are permitted to connect
connection.

• membership — establishes which user-groups, primarily multicast
groups, an RTclient can join.

• subscribe — defines which subjects an RTclient can subscribe to.

• publish — defines which subjects an RTclient can publish to.

allow|deny indicates whether the permission setting grants or denies
authorization.

user|group designates whether the permission applies to a user or a group.

name is the user or group whose permission is being defined. An asterisk
applies to all users or groups.
 TIBCO SmartSockets User’s Guide

280 | Chapter 3 Publish-Subscribe
The order of permissions is very important. Permissions are read from the bottom
up. The first permission that applies to a user when the file is read is enforced.
This is an example of a client connection permission:

client allow user * * rtworks
client deny user jdoe * rtworks

The top line allows all users to connect to the rtworks project. The bottom line
prevents user jdoe from accessing that project. Notice that user jdoe matches
both permissions. However, because the permissions are read from the bottom
up, the last permission is enforced. jdoe is not permitted to connect to the
rtworks project.

host is the TCP/IP address of the host being granted access. host must be a
numeric address in a series of numbers separated by periods (.). For
example, 10.105.42.4. To indicate all hosts, use an asterisk (*). Use a
partial address, such as 10.105. to indicate all hosts whose address
begins with 10.105.

resource is specific to the permission being set:

• when permission is server, no resource is defined; you must use an
asterisk.

• when permission is client, use the name of the SmartSockets project.
An asterisk indicates all projects.

• when permission is membership, use the user-group name. An
asterisk indicates all user-groups.

• when permission is subscribe, use the subject being subscribed to.
To indicate all subjects, use ... or /...

• when permission is publish, use the subject being published to. To
indicate all subjects, use ... or /...

You must authorize the RTclients’ unique subject, because the unique subject is
not automatically authorized. If an RTclient is not authorized to receive messages
sent to its unique subject, it will not receive administrative messages sent by
RTserver. To allow all subscriptions to all RTclients’ default unique subjects you
can use the permission:

subscribe allow user * * /_*_*
TIBCO SmartSockets User’s Guide

Security | 281
Using Wildcards

Wildcards (* or ...) can be used in permissions files to indicate multiple users or
groups, connections, hosts, and subjects. A wildcard component using an asterisk
(*) never matches more than one component. Use ellipsis (... or /...) to indicate
multiple levels of components.

For example, if subscribe permissions are granted on subject /dev/*, the client
has permission to subscribe to /dev/misc but does not have permission to
subscribe to /dev or /dev/misc/src. To specify all subjects use /.... If the
subject is not absolute, the RTserver’s default subject prefix is used to prefix the
subject.

Example 24 Example Permission File

This is an example acl.cfg file:

/* Server Permissions */
/* */
/* 1: allow all RTservers from all hosts to connect */
server allow user * * *

/* Client Permissions */
/* */
/* 1: allow all users in group admin when connecting from */
/* TCP/IP addresses beginning with 10.105. to any project */
/* 2: allow all users in group dev from all hosts to any project */
client allow group admin 10.105. *
client allow group dev * *

/* Subscription Permissions */
/* */
/* 1: allow all users from all hosts to subscribe to all subjects */
/* 2: deny all users from subscribing to /admin/... */
/* 3: allow users in group admin to subscribe to /admin/... */
subscribe allow user * * /...
subscribe deny user * * /admin/...
subscribe allow group admin * /admin/...

/* Publish Permissions */
/* */
/* 1: allow users in group dev to publish to /dev/... */
/* 2: deny user jdoe from from publishing to /dev/... */
publish allow group admin * /admin/...
publish deny user jdoe * /admin/...
 TIBCO SmartSockets User’s Guide

282 | Chapter 3 Publish-Subscribe
Setting the Username and Password

Connecting RT processes must know the username and password assigned to
them in the RTserver’s users.cfg file. The username and password are set
differently in daemon processes than they are in RTclients.

With RTclients, the username and password are set with the
TipcSrvSetUsernamePassword function. With daemon processes such as RTserver
and RTmon, you set the username and password by using two new command
line arguments, -username and –password.

This example starts the RTserver and assigns the username server and password
foobar:

rtserver –username server –password foobar

An alternative to the command line argument and the
TipcSrvSetUsernamePassword function is to use file-based credentials and the
Auth_Data_File option. Set this option to a file containing the credentials you
wish to send. File-based credentials are created with the RTacl tool.

For more information on the TipcSrvSetUsernamePassword function, see the
TIBCO SmartSockets Application Programming Interface.

The RTacl Process

RTacl is a utility function provided as a debugging aid for users with complex
access control list (ACL) permission files. RTacl is used to:

• evaluate ACL configuration files

• evaluate user permissions

• create credential files, when used with the Auth_Data_File option

RTacl has an interactive interface. To start RTacl, type at the command line:

$ rtacl

RTacl displays the ACL> prompt, at which you can execute RTacl commands. To
exit from RTacl and return to the operating system prompt, enter quit at the RTacl
command prompt. For a full list of commands supported by RTacl, see RTacl
Commands on page 589.

On platforms that support both 32- and 64-bit, use the rtserver64 command to
run the 64-bit version of RTserver.
TIBCO SmartSockets User’s Guide

Security | 283
RTacl must load the ACL files before running any commands that require an ACL,
such as evaluate, groups, or permissions. Use the load command to specify the
ACL configuration and verify its syntax. For example:

ACL> load $RTHOME/acl

Once the ACL is loaded, use RTacl to evaluate the ACL files. For example, you can
use RTacl to discover:

• Whether a user has permission to subscribe to a particular subject (evaluate
command).

• Which users are included in the ACL (users command).

• What groups are set and which users belong to each group (groups
command).
 TIBCO SmartSockets User’s Guide

284 | Chapter 3 Publish-Subscribe
Starting and Stopping RTserver

The rtserver command, described in detail in the TIBCO SmartSockets Utilities
reference, is used to start and stop an RTserver. To start an RTserver, you can
simply enter:

rtserver

at the operating system prompt. An optimized version of RTserver is started.

The command must be entered with no filename extensions. Do not use
rtserver.x or rtserver.exe. Using these extensions will prevent RTserver from
running in the background and may cause other problems.

To start and use an RTserver, you must have a license for that RTserver. The
license information must appear in the TIBCO license file or else the RTserver
must be branded. For more information, see the TIBCO SmartSockets Installation
Guide.

This is the syntax for the rtserver and rtserver64 commands:

rtserver arg_list

where arg_list is optional and can consist of one or more of these command
arguments, separated by a space:

On platforms that support both 32- and 64-bit, use the rtserver64 command to
run the 64-bit version of RTserver.

-check starts the non-optimized version of RTserver, which
performs additional validations and checking. If you do
not specify -check, by default the optimized version of
RTserver is started. The optimized version is faster
because validation and checking is turned off. However,
without the validation and checking, it is harder to
debug any problems. When developing your
applications or testing RTserver in your development or
production environments, always start RTserver with
the -check argument.

-command filename causes RTserver to look for a file named filename in the
current directory (the directory from which RTserver is
being run) and use that as a startup command file.
Values for options specified in that file override values
for the same options specified in the system-level or
user-level startup command file.

-help causes RTserver to print a brief synopsis and exit.
TIBCO SmartSockets User’s Guide

Starting and Stopping RTserver | 285
-install -demandstart
 -autostart

installs the RTserver process as a Windows service. You
can specify either -demandstart or -autostart as the
startup mode of the service. This option is supported
only on Windows systems.

-license displays license information about your RTserver. This
is useful for finding out your license number when you
need to contact TIBCO Product Support. Or you can
display license information by using the rtlic shell
script, described in the TIBCO SmartSockets Utilities
reference.

-no_console specifies not to display a Windows console associated
with the detached process. This argument is ignored if
you specify -no_daemon.

-no_daemon specifies not to start RTserver as a background process
and instead run in the foreground.

-node node_name starts RTserver on a remote node. A remote shell
command is used with rsh (remsh on HP-UX) to start
RTserver on the remote node.

-password pword provides the password used by RTserver, along with a
username, to connect to other RTservers when Basic
Security is enabled. Use with the -username argument.

pword size is unlimited. To specify no password, use
empty quotation marks ("")

-server_names
names_list

specifies the value or values to use for the option
Server_Names. names_list is a list of logical connection
names separated by commas. It allows you to override
the value or values specified in a startup command file.
The values you specify here must use the same syntax
as any value set for the Server_Names option.

-stop specifies that a single RTserver should be stopped. The
RTclients that are connected to that RTserver continue to
run, eventually detect that RTserver has stopped, and
try to find or start a new RTserver.

-stop_all specifies that one RTserver, all RTservers connected to
that RTserver, and all RTclients connected to all of the
above RTservers should all be stopped. The RTclients
are stopped by sending them a CONTROL message
with a destination subject of _all and containing the
command quit force.
 TIBCO SmartSockets User’s Guide

286 | Chapter 3 Publish-Subscribe
-stop_clients specifies that one RTserver and all RTclients connected
to that RTserver should be stopped. The RTclients are
stopped by sending them a CONTROL message with a
destination subject of _all and containing the
command quit force.

-stop_servers specifies that one RTserver as well as all RTservers
connected to that RTserver should be stopped. The
RTclients that are connected to those RTservers continue
to run, eventually detect that RTserver has stopped, and
try to find or start a new RTserver.

-threads n specifies whether the RTserver should start in MP
multithread mode, and the number of threads to use. If
you do not specify this argument, the default is 1 and
RTserver starts in normal mode. If you specify a value
greater than 1, the process checks to see if this RTserver
was licensed for the MP option. If yes, the RTserver is
started in multi-thread mode with the number of
threads you specified for n. If no, you receive a warning
message and the RTserver is started in single-thread
mode.

We do not recommend setting n to a large number. For
more information, see Server_Num_Threads, page 569.

The value you specify for -threads overrides the value
specified for the Server_Num_Threads option in any of
the RTserver startup command files.

-trace_file filename specifies the name of the file where the RTserver puts
debug information. The default, if you do not specify
this argument, is the standard output (stdout) which is
printed to the console.
TIBCO SmartSockets User’s Guide

Starting and Stopping RTserver | 287
Notes:

• All the arguments for the rtserver command are optional.

• When you specify any of the -stop arguments, any other arguments, except
-server_names, in the command are ignored.

• Previous releases supported the -cmd_mode argument, which started the
RTserver in interactive command mode, but this mode is no longer supported,
and so the -cmd_mode argument has been eliminated.

-trace_level level specifies the amount of information the RTserver puts in
the debug file (the file you specified in -trace_file).
These are the values you can specify for level:

• never, no information is put in a debug file

• error, only error messages put in debug file

• warning, error and warning messages are put in
debug file. This is the default setting.

• info

• info_1, provides thread information for
multi-threading

• info_2

• verbose

• verbose_1

• verbose_2

• debug, provides the maximum amount of
information

-uninstall removes the RTserver as a Windows service. This option
is only supported on Windows systems.

-username name provides the username used by RTserver, along with a
password, to connect to other RTservers when Basic
Security is enabled. Use with the -password argument.

name size is restricted to 64 characters.
-verbose is the same as specifying -trace_level info. The

-verbose argument is provided for backwards
compatibility. The preferred method for specifying the
amount of information for RTserver to provide is to use
the -trace_level argument.

-version causes RTserver to print version and revision levels.
 TIBCO SmartSockets User’s Guide

288 | Chapter 3 Publish-Subscribe
Starting RTserver
RTserver runs as a background process (on OpenVMS and Windows this is
known as a detached process, on MVS RTserver can run as a started task) without
an interactive command interface. RTserver can be started manually from the
operating system prompt, or it can be started automatically when an RTclient first
tries to connect to RTserver. If you want RTclient to be able to start RTserver
automatically, you must use one of the non-default start prefixes. See Start Prefix
on page 195 for more on start prefixes.

On Windows, if RTserver was installed as a Windows service, the proper
environment variable must be set before an RTclient can automatically start an
RTserver when it attempts to connect. Set the RTSERVER_CMD environment
variable to:

net start "SmartSockets RTserver"

For details on invoking RTserver, see the rtserver reference information in the
TIBCO SmartSockets Utilities reference.

Here are the steps to start RTserver:

1. Change to the directory in which RTserver will run.

2. Create or edit startup command files, if applicable (see Startup Command
Files, page 498).

3. Invoke the RTserver executable.

The first thing you must do to begin running RTserver is to change from the
current working directory to the one that contains the RTserver command file,
rtserver.cm. If no rtserver.cm file is needed, then RTserver can be started from
any directory.

To change directories, use:

UNIX:
$ cd directory

OpenVMS:
$ SET DEFAULT [directory]

Windows:
$ cd directory

Automatic starting of 64-bit RTserver on Windows is not supported at this time.
TIBCO SmartSockets User’s Guide

Starting and Stopping RTserver | 289
To start RTserver on UNIX systems, type this command at the operating system
prompt:

$ rtserver

You should see the SmartSockets banner information and a line saying that the
RTserver was started successfully.

To start RTserver on Windows systems, go to the Start menu, select Programs, and
select the SmartSockets program folder. Select RTserver. Or, type this command at
the SmartSockets command prompt:

$ rtserver

If RTserver started successfully, the window is automatically minimized. Check
your bottom bar for the RTserver process and click on it to expand the window. In
the window, you should see a message saying that the RTserver was started
successfully.

Stopping RTserver
To stop a running RTserver process, use the rtserver command with the -stop
argument on the computer that RTserver is running on (add the command-line
arguments -server_names node to stop RTserver on a remote node). This mode
connects to a running RTserver and requests that RTserver gracefully shut down.
It should normally never be necessary to stop and restart RTserver.

Here is an example:

$ rtserver -stop

When RTserver receives a stop request, it first uses the value of the option
Enable_Stop_Msgs to check if stopping RTserver is enabled, and if allowed,
RTserver then exits. Note that the rtserver -stop command shuts down
RTserver even if there is a project running. To stop RTserver and all RTclients that
are connected to that RTserver, use rtserver with the -stop_clients argument.
To stop RTserver and all RTserver processes that are connected to that RTserver,
use rtserver with the -stop_servers argument. To stop RTserver, all RTclients
that are connected to that RTserver, and all RTserver processes that are connected
to that RTserver, use rtserver with the -stop_all argument. See
Enable_Stop_Msgs, page 534 for details on how to properly configure RTserver
shutdown security.

On platforms that support both 32- and 64-bit, use the rtserver64 command to
run the 64-bit version of RTserver.
 TIBCO SmartSockets User’s Guide

290 | Chapter 3 Publish-Subscribe
Working with RTserver

The following sections discuss how RTserver works and how to configure
RTserver. RTserver does not have any API functions that you can use, but it
provides many options and commands for customizing the behavior of RTserver.

Setting Options
The primary way of configuring RTserver is through options in startup command
files. This is especially important for RTserver, as RTserver can be automatically
started by RTclient. If RTserver is not configured properly, it may not run correctly
or even start at all. All RTserver startup command files and options are discussed
in detail in Chapter 8, Options Reference.

Creating Connections
RTserver creates two distinct groups of connections. The first group of
connections is specified in the option Conn_Names. These connections are server
connections that are used by other processes (both RTclient and RTserver) to find
this RTserver. The second group of connections is specified in the option
Server_Names. These connections are client connections that are used to find
other RTservers.

The maximum number of RTclients allowed to connect to an RTserver is specified
by the RTserver option Max_Client_Conns. This option is useful for limiting the
amount of publish-subscribe connection resources that each RTserver must
provide.

Logical Connection Names
An RTserver uses logical connection names much like an RTclient. Because the
usage is similar, only the differences in function are discussed in this section.

RTserver uses logical connection names in the options Conn_Names and
Server_Names. RTserver uses the option Default_Protocols differently for
Conn_Names. If a protocol is not listed in a name, then RTserver traverses the
protocols in Default_Protocols and creates a server connection using each
protocol. RTserver does not use any of the logical connection name modifiers of
the type start prefix in either Conn_Names or Server_Names. RTserver never
starts any RTclients or RTservers. RTserver supports _random, just like RTclient.
TIBCO SmartSockets User’s Guide

Working with RTserver | 291
Logical Connection Name Modifiers

Each logical connection name in RTserver may be prefixed with one or more
modifiers. The modifiers can be in any order and must be separated by a colon.
For example:

modifier:modifier:protocol:node:address

The modifier can be a keyword or a name-value pair, as in
keyword:name=value:protocol:node:address. There are several logical connection name
modifiers supported by RTserver including: connect modifier and connection cost
modifier. RTclient supports the start prefix modifier.

Controlling How RTserver Connects to Other RTservers

Each logical connection name in RTserver can also have a connect modifier
prefixed. A connect modifier is a keyword modifier. For example:

connect_modifier:protocol:node:address

The connect modifier controls how an RTserver process tries to connect to other
RTservers. When an RTserver connects to another RTserver process listed in the
Server_Names option, the other RTserver responds with a list of other RTservers
that the first RTserver may also connect to. The valid keywords for a connect
modifier are:

If no connect modifier is specified in a logical connection name in the
Server_Names option in RTserver, the connect modifier from the option
Default_Connect_Prefix is used. The default value for Default_Connect_Prefix is
connect_one.

connect_all also connect to all RTservers to which the other RTserver is
connected

connect_one connect only to the other RTserver, and not to all the
RTservers to which it is connected

connect_all_stop also connect to all RTservers to which the other RTserver is
connected, and stop traversing Server_Names if the first
connection succeeds

connect_one_stop connect only to the other RTserver, not to all the RTservers
to which it is connected, and stop traversing Server_Names
if the first connection succeeds
 TIBCO SmartSockets User’s Guide

292 | Chapter 3 Publish-Subscribe
Assigning a Cost to RTserver to RTserver Connections

Each logical connection name in RTserver can also have a cost modifier prefixed.
A cost modifier is a name-value modifier.

For the purposes of dynamic message routing, each RTserver to RTserver
connection is given a cost of one by default. This can be thought of as one hop
between the RTservers at each end of the connection. However, the physical
connections between two RTservers can vary greatly in terms of bandwidth, load,
reliability and other attributes. A logical connection name listed in Server_Names
can assign a cost to the physical connection that it represents. A cost of one is the
default and is the least expensive cost that can be assigned to a connection. A cost
greater than one will be factored into the lowest cost path message routing
algorithm and will result in more message traffic being routed through other, less
expensive, available connections. A cost is assigned to a connection by preceding
a logical connection name with a cost modifier of the form cost=n, where n is a
positive integer, separated by a colon:

cost=n:protocol:node_address

For example, suppose the option Server_Names for RTserver on node shemp is set
to:

cost=5:tcp:larry:8001,cost=2:tcp:curly:8001,cost=10:tcp:moe:8001

If the RTservers are running on larry, curly and moe and do not attempt to
connect to shemp then the RTserver on shemp would establish connections to
RTservers on tcp port 8001 on the nodes larry, curly and moe. The RTserver
connection between shemp and larry would be assigned a cost of five, the
connection between shemp and curly a cost of two and the connection between
shemp and moe a cost of ten.

If both RTservers on the ends of a connection try to assign a different cost to the
connection, the results will be indeterminate. While traversing the Server_Names
list, each RTserver will attempt to create the connection by making a connect
request. One RTserver should connect successfully. The other RTserver should
issue a successful accept. The second RTserver’s connect attempt will fail because
the connection will already exist at that point. The RTserver whose connect
succeeds will assign the cost to the connection. The cost will be one or the other
cost, but it is indeterminate which one. So the RTserver that successfully initiates
the connection has precedence if the two RTservers on each end of the connection
try to assign different costs to the connection. See Lowest Cost Message Routing
on page 301 for more information.
TIBCO SmartSockets User’s Guide

Working with RTserver | 293
Finding Other RTserver Processes
Because RTserver never starts any other RTclients or RTservers, it does not need
any of the Server_Start_* options to control how it finds other RTservers. RTserver
traverses the list of logical connection names in Server_Names once and uses each
name to attempt to create a client connection to another RTserver process. If
RTserver can connect to another RTserver process, it joins the existing group of
multiple RTservers (see Multiple RTserver Processes on page 298 for more details
on this group). The RTserver connect and disconnect commands can be used to
dynamically join and leave the group of multiple RTservers, and create and
destroy connections to other RTservers.

Reconnecting to Other RTserver Processes
If an RTserver loses its connection or cannot connect to another RTserver process
listed in the Server_Names option, it will automatically try to reconnect at a
regular interval specified by the Server_Reconnect_Interval. Only the RTserver
that makes the initial connection attempt will try the reconnect, otherwise
temporary deadlock could occur if both RTservers simultaneously try to connect
to each other. The automatic reconnection feature can be disabled by setting the
option Server_Reconnect_Interval to 0.0.

Receiving and Processing Messages from RTclient
For most messages that RTserver receives from RTclient, RTserver looks at the
destination property (a subject name) of the message and routes the message on
to the RTclients subscribing to that subject. A few message types are processed
locally, though. Table 13 lists the message types for which RTserver creates a
process callback on the connections to RTclients.

Table 13 Message Types that RTserver Processes from RTclient

Message Type Description

CONTROL RTserver executes command if the message
destination is _server, otherwise RTserver
routes the message.

SUBJECT_SET_SUBSCRIBE RTclient wants to start or stop subscribing to a
subject.

DISCONNECT current value of Server_Disconnect_Mode
option; also provides for a more graceful
disconnect (RTserver does not have to detect
end-of-file (EOF).
 TIBCO SmartSockets User’s Guide

294 | Chapter 3 Publish-Subscribe
Processing CONTROL Messages From RTclient

When RTserver receives a CONTROL message from RTclient, RTserver looks at
the destination property (a subject name) of the message and routes the message
on to the RTclients subscribing to that subject unless the destination is the unique
subject of some RTserver or _server. If the destination is the unique subject of an
RTserver, then the message is routed to that RTserver. If the destination is
_server, RTserver uses the value of the option Enable_Control_Msgs to check if
the command is enabled, and if allowed, then RTserver executes the command in
the CONTROL message by calling the function TutCommandParseStr. This
method allows RTserver to both route CONTROL messages and receive remote
commands from RTclient. CONTROL and ADMIN_SET messages are the only
message types that RTclient can explicitly publish to an RTserver. See
Enable_Control_Msgs, page 533 for details on how to properly configure
CONTROL message security.

GMD_ACK GMD acknowledgment of successful delivery

GMD_DELETE request to terminate GMD for a specific
message

GMD_INIT_CALL request to initialize GMD or load balancing
accounting in RTserver for a subject to which
messages will be published

GMD_STATUS_CALL request for current GMD status of a specific
message

MON_*_SET_WATCH

(11 message types)

see Chapter 5, Project Monitoring

MON_*_POLL_CALL

(21 message types)

see Chapter 5, Project Monitoring

SERVER_STOP_CALL RTclient wants to stop RTserver

Table 13 Message Types that RTserver Processes from RTclient (Cont’d)

Message Type Description
TIBCO SmartSockets User’s Guide

Working with RTserver | 295
Message File Logging
As described in Message File Logging Categories on page 211, RTclient can log
three categories of messages (data, status, and internal) to message files for
incoming and outgoing messages. RTserver has a similar capability, but the
message types are divided into only two categories:

• client — messages sent to and received from RTclients

• server — messages sent to and received from other RTservers

Both standard and user-defined message types are logged, but user-defined
message types are always logged using the verbose format (see Grammar on
page 32 for more information on the verbose message file format).

Logging Messages

RTserver starts and stops logging messages in the logging categories by setting
these options:

To Log These Messages: Use this Option:

Incoming from clients Log_In_Client

Outgoing to clients Log_Out_Client

Incoming from servers Log_In_Server

Outgoing to servers Log_Out_Server
 TIBCO SmartSockets User’s Guide

296 | Chapter 3 Publish-Subscribe
Dynamic Message Routing

Because of the high performance publish-subscribe message routing features of
RTserver, a single RTserver often is sufficiently powerful for small
workgroup-sized projects. Large-scale distributed systems for the intranet,
extranet, and Internet, however, need the benefit of enterprise-wide
publish-subscribe capabilities. Dynamic message routing offers the scalability and
flexibility these large systems require.

Dynamic message routing has these features.

• multiple RTservers can be grouped in any arbitrary connection topology with
or without redundant routes

• optimized lowest cost routing of messages including same-first hop
optimizations

• connections within the topology can be configured with different costs for
improved message routing

• automatic rerouting of messages upon topology changes (that is, whenever an
RTserver connects or disconnects)

• a distributed publish-subscribe database model where each RTserver only
knows what it needs to know to operate successfully

• RTserver itself can subscribe to subjects to provide more efficient subject
routing and reduce network chatter
TIBCO SmartSockets User’s Guide

Dynamic Message Routing | 297
Why is Dynamic Message Routing Needed?
When in a WAN environment such as the Internet, TCP/IP has many
sophisticated, evolving technologies to ensure reliable delivery of network
packets. Internet standards such as Domain Naming Service (DNS) and Open
Shortest Path First (OSPF) routing all help TCP/IP scale to the levels it has
reached today. As described in Why is GMD Needed?, page 312, though, there are
gaps in this reliability that any large distributed system must overcome. In
addition, there are areas such as publish-subscribe and real-time directory
services updating that TCP/IP simply does not address (other products such as
DCE and X.500 do not address real-time updates, either).

It might seem redundant for SmartSockets publish-subscribe to offer dynamic
message routing when TCP/IP has many seemingly similar dynamic routing
features at the network packet level. The global TCP/IP-based Internet is
inherently a peer-to-peer system, such as the Web, FTP, email, or Telnet client
connecting to the Web, FTP, email, or Telnet server on a specific machine, and
does not have the flexible one-to-many publish-subscribe capabilities required for
large-scale distributed systems.

 Dynamic message routing takes full advantage of TCP/IP’s dynamic routing
capabilities and extends them with the power of publish-subscribe. Dynamic
message routing is also needed for mixed protocol networks where not every
computer supports TCP/IP. TCP/IP can also be used as the backbone, and yet
dynamic message routing can deliver messages off to the interconnected
networks running Netware or any other protocol.
 TIBCO SmartSockets User’s Guide

298 | Chapter 3 Publish-Subscribe
Multiple RTserver Processes
In addition to routing messages among RTclients, multiple RTservers also
dynamically route messages to each other. Multiple RTservers can distribute the
load of publish-subscribe message routing. If a project is partitioned so that most
of the messages being sent are routed among processes on the same node, then
the use of multiple RTservers can reduce the consumption of network bandwidth
(processes on the same node can use the non-network local IPC protocol).

The RTclients that are directly connected to an RTserver are called direct RTclients,
and, likewise, the RTclients directly connected to other RTservers are called
indirect RTclients. Similar terminology is used for direct RTservers and indirect
RTservers.

Figure 25 Process Connectivity With RTserver Cloud

Figure Notes:

• RTclients A and B are direct RTclients of RTserver 1.

• RTclients C and D are indirect RTclients of RTserver 1.

• RTservers 2 and 3 are direct RTservers of RTserver 1.

• RTserver 4 is an indirect RTserver of RTserver 1.

• RTservers 1, 2, 3, and 4 form a group. They do not form a matrix.

RTclient

RTclient

RTserver
2RTclient

B

RTclient
C

RTclient
D

RTservers use interior
message to communicate

RTservers use exterior messages
to communicate with RTclients

RTserver
3

RTserver
4

RTclient

RTclient

RTclient
A

RTserver
1

RTclient
TIBCO SmartSockets User’s Guide

Dynamic Message Routing | 299
Multiple RTservers can form a group that allows SmartSockets projects great
flexibility, scalability, and robustness. A group is an arbitrary topology of
interconnected RTservers, which is represented with an undirected graph and
uses graph algorithms to calculate lowest cost path between two RTservers.
Figure 25 shows an example of a group with four RTservers. There can be more
than one RTserver group on a network, but each group is self-contained. Just as
RTclients in different projects cannot publish messages to each other, RTservers in
different groups cannot send messages to each other.

Figure 26 RTserver Groups Connected Using Gateways over a WAN

Figure 26 shows a typical RTserver group where some of the communication must
occur over a WAN. Rather than have all the RTservers interconnected, RTserver 2
and RTserver 8 act as gateways to the WAN and limit the number of connections
occurring over the WAN.

The group approach decreases the number of connections (and thus operating
system resources such as socket file descriptors) each RTserver needs, but
publish-subscribe message routing for SmartSockets becomes more complex.
However, the message routing is handled completely transparently and in real
time. The RTservers in the group send messages among themselves to update
each other regarding subscribes and unsubscribes. When RTclient connected to
RTserver subscribes to a subject, that RTserver is also conceptually subscribing to
that subject from the other RTservers. When no RTclients connected to RTserver
are subscribing to a subject, then that RTserver does not receive any messages for
that subject from other RTservers in the group (this can be overridden for greater
efficiency as described in RTserver Subscribes on page 303).

The speed at which a message is routed and delivered depends on many factors
including how many connections the message has to pass through and also how
fast those connections are. For example, local connections on UNIX and MVS are
always much faster than TCP/IP network connections. Each RTserver manages
the majority of publish-subscribe message routing for its direct RTclients. It is
transparent to RTclients how many RTservers are in the group. From the

RTserver
1

RTserver
4

RTserver
5

RTserver
8

WAN RTserver
6

RTserver
7

RTserver
3

RTserver
2

 TIBCO SmartSockets User’s Guide

300 | Chapter 3 Publish-Subscribe
standpoint of RTclient, the group is a virtual RTserver cloud that happens to span
several nodes. RTclient simply needs to connect to a single RTserver in the cloud
and can then send a message to or receive a message from any RTclients
connected to the cloud.

Distributed Publish-Subscribe Database
In a large distributed publish-subscribe system, if every RTserver knows about all
the RTclients and all subject subscriptions, the system experiences scalability
problems due to network chatter that occurs each time the state of the system
changes (subscription and RTclient changes). In SmartSockets, RTserver does not
have complete knowledge. Instead the RTserver group can be viewed as a
distributed real-time database or directory service of publish-subscribe
information. The limited information maintained by each RTserver makes
SmartSockets publish-subscribe work easily and efficiently, and scale to very large
projects. Because the information is distributed, there is no single point of failure
in the system.

Just as RTserver only routes messages to RTclients that are subscribed to a subject,
RTserver only routes messages to other RTservers that have at least one direct
RTclient subscribing to a subject. In general, when RTserver receives a message
from another RTserver, it routes the message to its direct RTclients and sometimes
also to other specific RTservers. When RTserver receives a message from a direct
RTclient, it might route that message to both direct RTclients and other direct
RTservers.
TIBCO SmartSockets User’s Guide

Dynamic Message Routing | 301
Lowest Cost Message Routing
The RTserver group uses interior messages to communicate and synchronize with
each other. The exterior messages are those routed for RTclients (normal
publish-subscribe). The monitoring messages described in Chapter 5, Project
Monitoring, have characteristics of both interior and exterior messages. These
interior messages use a form of memory-only GMD, complete with
acknowledgments and resends, to ensure delivery and ordering so as to prevent
corruption of the RTserver distributed database. When there is a topology change
in the group of RTservers (due to a new connection being created or an existing
connection being destroyed), all appropriate GMD messages are resent in
sequence number order to prevent out-of-order delivery and message loss.

RTserver uses lowest cost routing, where each RTserver only knows the first-hop
to a destination RTserver, which simplifies accounting. Dijkstra’s shortest-path
algorithm is used. Each RTserver runs the same-first hop calculation in parallel. It
follows that each RTserver does know about all RTservers in the group.

Figure 27 RTserver Cloud with Default Connection Costs

Figure 27 shows a SmartSockets application with multiple RTservers and
RTclients. All RTserver-to-RTserver connections have the default connection cost
of one. In Figure 27 a message going from RTclient A to RTclient B would go
through one RTserver. A message going from RTclient A to RTclient C travels
through two RTservers, RTserver1 and RTserver2. A message going from RTclient
A to RTclient D travels through three RTservers, namely RTserver1, RTserver3 and
RTserver4.

RTclient
D

RTserver
3

RTserver
4

RTclient
A

RTserver
1

cost = 1

cost = 1

cost = 1

cost = 1

RTclient
B

RTclient
C

RTserver
2

 TIBCO SmartSockets User’s Guide

302 | Chapter 3 Publish-Subscribe
Routing is dynamic in that it can change at any time. Whenever a new RTserver
becomes available or an existing RTserver goes down, routing tables in the
RTservers are updated in real time to reflect the new topology. Lowest cost
routing can be made even more efficient by changing the relative costs of RTserver
to RTserver connections to closely match available bandwidth, load conditions,
and so on, and by using RTserver subscribes as shown in the next section.

Figure 28 RTserver Cloud with Non-Default Connection Costs

Figure 28 shows a SmartSockets application with multiple RTservers and
RTclients. Two RTserver-to-RTserver connections have non-default connection
costs. In Figure 28, there are two possible routes for a message going from
RTclient A to RTclient B. The route starting at RTserver1 going through RTserver2
and finally through RTserver4 has a cost of 2+1=3. The alternate route starting at
RTserver1 going through RTserver3 and finally through RTserver4 has a cost of
5+1=6. With this configuration, all messages going from RTclient A to RTclient B
will be routed along the first route, going from RTserver1 to RTserver2 and on to
RTserver 4 because that is the lowest cost route. If the connection between
RTserver1 and RTserver2 becomes unavailable, then the messages going from
RTclientA to RTclientB will be routed using the RTserver1 to RTserver3 to
RTserver4 route.

When a message is routed from one RTserver to several other RTservers, only the
minimum necessary copies of messages are sent between the RTservers. That is, if
a message is sent to several other RTservers through the same first-hop
connection, then the message is marked as needing to be delivered to several
RTservers, and one copy, not several, is sent through the proper first hop. This is
superior to a flooding algorithm when there are loops in the group topology and
the same message could be sent over and over.

RTserver
3

RTserver
2

RTclient
A

RTserver
1 RTclient

B

RTserver
4

cost =2

cost=5
cost=1

cost=1
TIBCO SmartSockets User’s Guide

Dynamic Message Routing | 303
RTserver Subscribes
SmartSockets provides many mechanisms to allow projects to scale to large
numbers of machines. One important technique is to minimize network chatter
whenever possible. One method of doing this is through the use of RTserver
subscribes, which are specified through the RTserver subscribe command.

This is useful where there is a network bandwidth problem or a usage problem,
such as:

• very large projects where you have many RTclients or many subjects

• projects where some of the network connections are slow or expensive

The subscribe command can be executed from a command file, from the
RTserver command line, or it can be sent to RTserver from another process
through a CONTROL message. The general syntax of the subscribe command is:

subscribe project subject

For example, to subscribe to all subjects underneath /stocks in the
stock_trader project, this subscribe command is used:

subscribe stock_trader /stocks/...

Additional subscribes are additive. For example, if you issue a command to
subscribe to the subject "/stocks/ford", and then issue a second command to
subscribe to "/stocks/gm", the RTserver then subscribes to both subjects. There is
an associated unsubscribe command to have RTserver unsubscribe from a
subject. See subscribe, page 626 for more details.

RTserver subscribes allow any number of RTclient subscribes to be combined into
a single update. This can greatly reduce the amount of network traffic that occurs
as RTclients connect and disconnect and as they subscribe and unsubscribe to
subjects. The scalable power of SmartSockets publish-subscribe is realized by the
power of the hierarchical subject namespace combined with the RTserver
subscribes to efficiently cover hundreds or thousands of RTclient subscribes.
 TIBCO SmartSockets User’s Guide

304 | Chapter 3 Publish-Subscribe
For example, consider the simple environment shown in Figure 29. There are
1,000 RTclients connected to a single RTserver, each subscribed to a single subject,
such as "/stocks/ford".

Figure 29 Benefits of RTserver Subscribes
.

This adds up to 1,000 subscription messages for the RTserver to send to all other
RTservers, which can cause a significant amount of network message traffic if
there are many RTservers, or the RTclients are starting/stopping or
subscribing/unsubscribing frequently. If this RTserver itself subscribes to
"/stocks/...", then the RTserver matches all of the 1,000 RTclient subscribes,
and there is only one subscription message, not 1,000 being sent to all other
RTservers.

It is important to note that the primary purpose of RTserver subscribes is to
increase the efficiency of the distributed system. In all cases, SmartSockets
publish-subscribe, GMD, and monitoring all work in any RTserver topology
without any manual configuration. Using RTserver subscribes, it is possible that a
message may travel all the way to the subscribed RTserver before being discarded
if there is no direct RTclient subscribed to the subject.

/stocks/ford /stocks/gm /stocks/ibm /stocks/oracle

. . .

RTserver Cloud

/stocks/...

RTserver

RTclient
1000

RTclient
3

RTclient
2

RTclient
1

TIBCO SmartSockets User’s Guide

Network Considerations | 305
Network Considerations

Controlling Network Bandwidth and Usage
It can be useful to regulate the amount of bandwidth used by server processes
such as the RTserver and RTgms in your system. To regulate RTserver and RTgms
bandwidth usage, a token bucket algorithm is used as a model. Tokens are
accumulated steadily as time passes. The amount of data the RTserver or RTgms
process is permitted to pass into the network for a particular connection is
indicated by the number of tokens that have accumulated for that connection.
Each token is a byte of data.

Bandwidth Rate Control Options

Several options have been added to implement this model. For each type of
connection that an RTserver has (to an RTclient, to another RTserver, to an RTgms
process), there is:

• an option that specifies the rate at which tokens accumulate for the connection

• an option that specifies the maximum number of tokens allowed to
accumulate for the connection

• an option that specifies the amount of time RTserver waits, after it runs out of
tokens, for more tokens to accumulate before resuming the sending of data

When you set these options for an RTserver, they apply to the data and messages
RTserver sends across the specific type of connection. They do not apply to data
or messages received by the RTserver.

These options also exist for RTgms, for the group channel between an RTgms
process and an RTserver. When you set these options for RTgms, they apply only
to the data and multicast messages RTgms sends up the group channel to an
RTserver.

For more information, see the reference material on these options in Chapter 8,
Options Reference:

• Client_Burst_Interval

• Client_Max_Tokens

• Client_Token_Rate

• Group_Burst_Interval

• Group_Max_Tokens

• Group_Token_Rate
 TIBCO SmartSockets User’s Guide

306 | Chapter 3 Publish-Subscribe
• Server_Burst_Interval

• Server_Max_Tokens

• Server_Token_Rate

Setting Bandwidth Rate Control Options

For connections from the RTserver, these options are set in the RTserver startup
command file(rtserver.cm) and apply to all connections of each type (RTclient,
RTserver, RTgms). To set the options for an individual connection, you can set
them dynamically with the T_MT_ADMIN_SET_OUTBOUND_RATE_PARAMS
message.

For the group channel from an RTgms process to an RTserver, these options are set
in the RTgms startup command file (rtgms.cm) and apply to all group
connections. To set the options for an individual group connection, you can set
them dynamically with the
T_MT_GRP_ADMIN_SET_OUTBOUND_RATE_PARAMS message.

When you send an ADMIN_SET message to a particular RTserver or RTgms
process, the options apply to outbound data sent on the specified connection.

For example, if there is a group channel between an RTserver and an RTgms
process, using T_MT_ADMIN_SET_OUTBOUND_RATE_PARAMS and
specifying a group name sets the options for RTserver for that group channel,
controlling the data the RTserver sends to RTgms.

If you use T_MT_GRP_ADMIN_SET_OUTBOUND_RATE_PARAMS and specify
the same group name, the options are set for RTgms, and control the data the
RTgms sends to RTserver on that same group channel. To control the bandwidth
in both directions for a group channel, you must set bandwidth rate control
options for both the RTserver and the RTgms.

For a description of the ADMIN_SET message for RTserver, see RTserver Options,
page 495 in Chapter 8, Options Reference. For a description of the ADMIN_SET
message for RTgms, see RTgms Options, page 650 in Chapter 10, Using Multicast.
TIBCO SmartSockets User’s Guide

Network Considerations | 307
Handling Network Failures In Publish Subscribe
RTserver and RTclient can take full advantage of the features of connections that
detect and recover from network failures. For an introduction to these features,
see Handling Network Failures In Publish Subscribe on page 307.

Many of the RTserver and RTclient features already discussed in this chapter help
to add fault tolerance to SmartSockets:

• RTclient can automatically start RTserver if one is not already running (see
Finding and Starting RTserver on page 197). Note: to allow RTclient to
automatically start RTserver, you must use one of the non-default start
prefixes described in Start Prefix on page 195.

• RTclient can restart RTserver and reconnect if an error occurs (see
Automatically Reconnecting to RTserver on page 201). There are also APF
authorization considerations for automatic start and restart on MVS.

• RTclient can run with a warm connection to RTserver if the RTserver is
temporarily unavailable, such as when a remote node crashes and needs
several minutes to reboot (see Warm Connection to RTserver on page 235).

• RTclient can monitor projects, subjects, RTclients, and RTservers for problems.
If a problem is detected, the RTclient makes the appropriate decision to correct
the problem (see Chapter 5, Project Monitoring).

• RTclient and RTserver can use a list of logical connection names to search for
other processes (see Logical Connection Names for RT Processes on page 192).

• RTclient and RTserver have many options, providing a large degree of control
over how many times certain operations are attempted, such as
Server_Start_Max_Tries, and how long of a period of time those operations
have to complete, such as Server_Start_Timeout, (see Creating a Connection to
RTserver on page 189).

• A backup RTclient can use the option Server_Msg_Send to receive incoming
messages but not send any outgoing messages (see Sending Messages on
page 208).

• RTserver can reconnect to other RTservers if an error occurs (see Reconnecting
to Other RTserver Processes on page 293).

• Dynamic message routing handles many network failures, such as rerouting
around RTservers that fail (see Dynamic Message Routing on page 296).

• Load balancing enables publish-subscribe to have redundant RTclients for
processing messages (see Load Balancing on page 215).

In addition to the above features, both RTclient and RTserver have several
additional options that can be easily configured to add fault tolerance.
 TIBCO SmartSockets User’s Guide

308 | Chapter 3 Publish-Subscribe
RTclient Options

In addition to the already mentioned fault tolerance features, these convenient
options can be used to help RTclient check for network failures:

• Server_Keep_Alive_Timeout — controls the keep alive timeout property of
the connection to RTserver

• Server_Read_Timeout — controls the read timeout property of the connection
to RTserver

• Server_Write_Timeout — controls the write timeout property of the
connection to RTserver

RTserver Options

In addition to the already mentioned fault tolerance features, these options can be
used to help RTserver check for network failures:

• Client_Connect_Timeout — controls how long RTserver waits when trying to
read a CONNECT_CALL message from a new RTclient that has just connected

• Client_Max_Buffer — controls how many bytes of data RTserver buffers for an
RTclient before deciding the RTclient has failed (this is needed instead of keep
alives because RTclient is not required to process messages from RTserver at
regular intervals)

• Server_Connect_Timeout — controls how long RTserver waits when trying to
read a SRV_CONNECT_CALL message from a new RTserver process that has
just connected

• Server_Keep_Alive_Timeout — controls the keep alive timeout property of
the connections to other RTservers

• Server_Read_Timeout — controls the read timeout property of the
connections to other RTservers

• Server_Reconnect_Interval — controls the rate at which RTserver tries to
reconnect to other RTservers
TIBCO SmartSockets User’s Guide

| 309
Chapter 4 Guaranteed Message Delivery

Under normal operation in SmartSockets, all messages sent through connections
are delivered successfully and processed in a timely manner. If a network failure
occurs, though, data can be lost. For some applications, such as bank transactions
or Internet commerce, missed messages or duplicate messages are unacceptable.
The features described in Handling Network Failures on page 149 allow
connections to detect network failures and initiate recovery. Guaranteed message
delivery (GMD) fully recovers from these failures and ensures that messages are
transmitted as needed.

The first part of this chapter describes the features of connections that implement
GMD. The second part of this chapter describes the additional features you get
when you use GMD with publish-subscribe. For a discussion of the GMD features
specific to RTserver and RTclient that add more function, such as RTserver
continuing to buffer messages for RTclient processes that have temporarily failed,
see Publish-Subscribe and GMD on page 344.

Topics

• Features of GMD, page 311

• Why is GMD Needed?, page 312

• File-Based and Memory-Based GMD, page 314

• GMD Composition, page 315

• Working With GMD, page 322

• Configuring GMD, page 331

• Sending Messages, page 336

• Receiving Messages, page 337

• Acknowledging Messages, page 338

• Resending Messages, page 339

• Handling GMD Failures, page 341

• Limitations of GMD, page 343
 TIBCO SmartSockets User’s Guide

310 | Chapter 4 Guaranteed Message Delivery
• Publish-Subscribe and GMD, page 344

• RTclient GMD Considerations, page 350

• RTserver GMD Considerations, page 354

• Combining GMD and Monitoring, page 356

• Handling GMD Failures with RTclients and RTservers, page 357
TIBCO SmartSockets User’s Guide

Features of GMD | 311
Features of GMD

In general, GMD has these features:

• easy configuration with the options Unique_Subject and Ipc_Gmd_Directory

• easy usage by setting the delivery mode property of a message with the
functions TipcMsgSetDeliveryMode and TipcMtSetDeliveryMode, or delivery
timeout property of a message with the functions
TipcMsgSetDeliveryTimeout and TipcMtSetDeliveryTimeout

• persistence of messages in disk files in case a program crashes and is restarted

• transparent operation with automatic file management and acknowledgment
of delivery

• notification when GMD fails, to allow flexible user-defined recovery
procedures

• performance is limited only by performance of local file system and network
 TIBCO SmartSockets User’s Guide

312 | Chapter 4 Guaranteed Message Delivery
Why is GMD Needed?

As discussed in Sockets on page 85, connections use (stream) sockets to transmit
messages. Sockets have several well-defined, useful features that connections
build upon. For example, sockets buffer a fixed amount of data for better
performance. The API functions for working with sockets provide an inherently
synchronous model. For example, the receive operation by default blocks the
receiving process until data is available. The operating system underneath the
API is usually very asynchronous. For example, it has interrupt-driven methods
to move the socket data from one buffer over the network to another buffer.

Loss of Data When Sockets Fail
When data is sent through a socket, the send operation by default returns as soon
as the operating system buffers the data for future delivery over the physical
network. The data that is delivered successfully is received in the order it was
sent. If there is a network failure, which requires the socket to be closed, such as a
node crashing, there is no way for the sending process to know how much, if any,
of the data was lost! SmartSockets GMD builds upon the useful properties of
sockets and overcomes the deficiencies caused by the limitations of sockets.

Acknowledgment of Delivery
Because of the internally asynchronous nature of stream sockets, GMD needs
some way to determine when a message has been successfully delivered. At the
socket level, reliable protocols like TCP/IP are built on top of unreliable physical
networks where data can be lost, such as Ethernet or serial lines. These network
protocols ensure an ordered byte stream by:

• sending their own acknowledgment packets to notify the sending operating
system of successful reception by the receiving operating system

• resending lost data

• resequencing packets that arrive out of order

Sockets do not provide any capability to notify the sending process that the
receiving process has successfully received the data and acted on it. Sockets are
thus reliable except when a serious error occurs that requires the socket to be
closed. It is this situation where a network programmer most needs to know what
data was lost.
TIBCO SmartSockets User’s Guide

Why is GMD Needed? | 313
GMD also uses acknowledgments in the form of acknowledgment messages. The
connection-level acknowledgment messages are different from the socket-level
acknowledgment packets, but serve the same purpose: the connection-level
function notifies the connection, and the socket-level function is for the operating
system. From this point on, the term acknowledgment is used to refer to a
SmartSockets-level acknowledgment message, not a socket-level
acknowledgment packet.

Alternatives to Stream Sockets
Using stream sockets for any IPC development has both advantages and
disadvantages, but in general the advantages greatly outweigh the disadvantages.
In TCP/IP networks, the alternative to TCP stream sockets are UDP datagram
sockets. UDP is a thin layer on top of IP, which does not provide data
retransmission, data acknowledgment, delivery order, or guaranteed delivery.
UDP does handle data integrity by adding a checksum to each packet.

It might seem counterproductive to use TCP for SmartSockets GMD because
connections have to send acknowledgment messages in addition to the
underlying acknowledgment packets going on with TCP. TCP has been deployed
for twenty years, though, and many networking experts have worked very hard
to tune TCP for optimal performance. If connections used UDP datagram sockets
instead of TCP stream sockets, connections would have to reimplement much of
TCP. Using reliable network protocols like TCP simplifies GMD because GMD
only has to resend messages when network failures occur. Under normal
operation, the simpler GMD connection provides good performance because
TCP/IP does the job for which it was designed. When network failures occur,
connections can not only detect these failures but also use GMD to totally recover
from them.
 TIBCO SmartSockets User’s Guide

314 | Chapter 4 Guaranteed Message Delivery
File-Based and Memory-Based GMD

There are two types of GMD:

• memory-based GMD

• file-based GMD

Memory-based GMD works well for transient network problems, but it does not
protect an RTclient from system crashes. Because it stores the messages only in
memory, a system crash before the message is delivered can cause the message to
be lost.

File-based GMD writes the messages to a file, which can be accessed for
re-delivery if there is a system crash. This means file-based GMD is much more
reliable, but slower than memory-based GMD. For any software product,
performance is slower when data is written to disk frequently and that
performance depends on the speed of your local file system. However, writing
crucial information, such as a message, to disk is still the best way to ensure
system reliability.

When deciding whether to use GMD, you need to decide what is most important
for your system, balancing performance and reliability, and determining your
tolerance for missed or duplicate messages in the event of network and system
crashes.
TIBCO SmartSockets User’s Guide

GMD Composition | 315
GMD Composition

Guaranteed message delivery is implemented with several components in
messages and connections:

• sequence number message property

• GMD area connection property

• delivery mode message property

• GMD message types

• delivery timeout message property

Most of these components are discussed in detail in Connection Composition on
page 71 and Message Composition on page 2. This section gives an overview of
how these separate features are integrated in GMD.

Sequence Number
One of the simplest but most important parts of GMD is message sequence
numbers. As described in Sequence Number on page 24, the sequence number
uniquely identifies the message for GMD so that duplicate messages can be
detected by the receiver. Each time a message is sent with GMD, a per-connection
outgoing sequence number is incremented, copied to the message sequence
number, and saved to the GMD area. Each GMD area also stores the highest
sequence number that has been received and acknowledged by this process from
each sending process. In the case of a peer-to-peer connection, there is only one
sending process.

If recovery is necessary, the sender and receiver can restart exactly where they left
off and not use incorrect sequence numbers. Processes performing recovery start
with the old sequence numbers to avoid reprocessing messages they have already
processed once. This is the main reason that file-based GMD is the recommended
type of GMD. Memory-only GMD is useful, though, for small impromptu
processes such as prototypes or a debugging session with RTmon.

Note that sequence numbers are not used or needed to detect gaps in streams of
messages sent through connections. The underlying reliable network protocols,
such as TCP/IP, used by connections already take care of preventing lost data.
Connections only need to resend messages for GMD when a network failure
occurs.
 TIBCO SmartSockets User’s Guide

316 | Chapter 4 Guaranteed Message Delivery
GMD Area
The GMD area property of a connection holds guaranteed message delivery
information for both incoming and outgoing messages. There are two types of
GMD:

• file-based GMD

File-based GMD stores the GMD information in files for reliable operation
even when network failures occur. Once the data is written to the GMD area
files, GMD can recover from many failures to the process, the process’s node,
or the network (but the files do need to be available for recovery to occur). For
example, if a process crashes and is restarted, the restarted process can reopen
the file-based GMD area and recover its GMD state, consisting of which
messages need to be resent and which messages have already been processed.

• memory-based GMD

Memory-based GMD stores GMD information in a GMD area that is held in
memory and is faster than file-based GMD. It protects your messages against
network failures and lost connections that do not affect memory. However, if a
system failure wipes out memory, such as when a program crashes and
restarts, the GMD messages stored in memory in the GMD area are lost.

There is an option, Ipc_Gmd_Type, that sets whether file-based or memory-based
GMD is initially attempted.

Sender

When a message is sent with GMD through a connection, the message sequence
number is set to an incremented counter, and then a copy of the message is saved
in the sender’s connection GMD area. The copy is removed when
acknowledgment of delivery is received by the sender from the receiving
processes.

The sender stores complete messages into the GMD area, which therefore can use
large amounts of disk or memory resources if the receiving process falls behind.
See Limiting GMD Resources on page 335 for details on how to constrain GMD
resources.

For recovery from network failures, the burden of recovery is on the sender. The
sender can reopen the file-based GMD area and simply resend all messages in the
GMD area. When messages are resent with GMD, their sequence numbers are not
changed. The sender does not have to worry about deciding which message to
resend because the receiver discards the duplicate messages that it has already
processed.
TIBCO SmartSockets User’s Guide

GMD Composition | 317
Receiver

When a GMD message is acknowledged by the receiver, the sequence number of
the message is saved in the receiver’s connection GMD area as the highest
sequence number received. When a resent message is read from a connection, the
message sequence number is checked against the highest sequence number in the
receiver’s connection GMD area. This allows duplicate messages to be detected
and discarded.

The receiver only stores highest sequence numbers into the GMD area, which
does not usually require much disk or memory resources. RTclient receiver
processes store one highest sequence number for each sending RTclient process,
however.

Asynchronous Operation For High Performance

Just as operating systems use data buffers and asynchronous techniques to ensure
good performance, GMD is generally asynchronous in the sense that processes do
not block waiting for GMD operations to complete. Sending processes do not wait
for acknowledgment of successful delivery from receiving processes. Most failure
notifications (through GMD_FAILURE messages) also occur asynchronously.

Accessing the GMD Area

The GMD area is not directly accessible. The function TipcConnMsgSend adds a
message to a connection’s GMD area. The function TipcConnRead removes a
message from a connection’s GMD area when acknowledgment is received
indicating successful delivery. TipcConnRead also checks for duplicate messages
based on the highest sequence number information stored in the GMD area. The
function TipcConnGmdMsgDelete removes a message from a connection’s GMD
area as a result of GMD failure. The function TipcConnGetGmdNumPending gets
the number of messages within the GMD area. The function
TipcConnGmdResend reads all messages from the GMD area and resends them.
The function TipcMsgAck updates the GMD area with highest sequence number
information.
 TIBCO SmartSockets User’s Guide

318 | Chapter 4 Guaranteed Message Delivery
Creating the GMD Area

TipcConnGmdFileCreate creates the GMD area on disk for file-based GMD. It
checks the Ipc_Gmd_Directory option to determine in what directory to create the
GMD area. Each particular GMD area is created once with
TipcConnGmdFileCreate:

if (!TipcConnGmdFileCreate(conn)) {
 /* error */
}

Once the GMD area is created, it cannot be changed or destroyed except by
destroying the connection. The function TipcConnSetGmdMaxSize can be used to
set the maximum size (in bytes) of a connection GMD area. See Limiting GMD
Resources on page 335 for more details.

Delivery Mode
As described in Delivery Mode on page 9, the delivery mode of a message
controls what level of guarantee is used when the message is sent through a
connection (always with TipcConnMsgSend). The available delivery modes are:
T_IPC_DELIVERY_BEST_EFFORT In this mode, no special actions, such ACKs,

are taken to ensure delivery of sent messages.
The message is delivered unless network
failures or process failures cause the message
to be lost. If the message is not delivered,
there is no way for the sender to know that
delivery failed. When there is a failure, it is
possible for some messages to be lost or to be
delivered in a different order than they were
published.

This is the default mode.

T_IPC_DELIVERY_ORDERED In this mode, no special actions, such as
ACKs, are taken to ensure delivery of sent
messages. Messages can still be lost in the
event of a failure, but this mode ensures that
messages are delivered in the order in which
they were published. This is useful for
applications where order is critical, but the
overhead required by GMD results in
unacceptable performance degradation.
TIBCO SmartSockets User’s Guide

GMD Composition | 319
T_IPC_DELIVERY_SOME In this mode, the sending process saves a
copy of the message in the connection GMD
area until the message is successfully
delivered, and the sender can also resend the
message if necessary. Delivery is considered
successful if the sent message is
acknowledged by at least one receiving
process.

T_IPC_DELIVERY_ALL In this mode, the sending process saves a
copy of the message in the connection GMD
area until the message is successfully
delivered, and the sender can also resend the
message if necessary. Delivery is not
considered successful until all receiving
processes acknowledge the sent message.

For two processes communicating using a
non-RTclient and non-RTserver
T_IPC_CONN connection,
T_IPC_DELIVERY_SOME and
T_IPC_DELIVERY_ALL are identical,
because there is only one process receiving
the message. For RTclient processes, the two
modes do differ if more than one RTclient
process is subscribing to the subject in the
destination of the message.
 TIBCO SmartSockets User’s Guide

320 | Chapter 4 Guaranteed Message Delivery
GMD Message Types
As described in Acknowledgment of Delivery, GMD needs some form of
acknowledgment to know when a message has been successfully delivered.
Connections, RTclient, and RTserver use several different message types to
implement GMD:

The message types GMD_DELETE, GMD_NACK, GMD_STATUS_CALL, and
GMD_STATUS_RESULT are not used by connection GMD, only by RTclient and
RTserver GMD. These message types are discussed in detail in GMD Message
Types on page 347.

GMD_ACK

GMD_ACK messages are sent by a receiving process to acknowledge successful
delivery of a message with GMD. GMD_ACK messages are sent automatically
when a message is destroyed, but can be sent manually instead. GMD_ACK
messages are automatically processed by connections so that the SmartSockets
programs are not cluttered with having to read and process one GMD_ACK
message for each outgoing message sent with GMD.

GMD_ACK Sent by receiver to acknowledge successful GMD.

GMD_FAILURE Notification of GMD failure (constructed and
processed by sender).

GMD_DELETE Sent by RTclient to notify RTserver to cancel GMD for a
message.

GMD_NACK Sent by RTserver to notify RTclient of certain types of
GMD failure.

GMD_STATUS_CALL Sent by RTclient to query RTserver for GMD status.

GMD_STATUS_RESULT Sent by RTserver to RTclient with GMD status
information.
TIBCO SmartSockets User’s Guide

GMD Composition | 321
GMD_FAILURE

GMD handles most network failures, but there are some that GMD cannot
overcome on its own, such as a receiving process which goes into an infinite loop.
Unlike sockets, which do not provide a way to tell how much data was lost, GMD
explicitly notifies a sending process that a GMD failure has taken place. When
most types of GMD failure happen, a GMD_FAILURE message is delivered back
to the sender process. Each GMD_FAILURE message contains several fields,
including the failed message and an error number indicating the type of failure.

For connection GMD, the only GMD_FAILURE error number possible is a
delivery timeout, which occurs if a sender does not get acknowledgment of
successful delivery within a specified period of time, which is configurable with
the message, message type, and connection delivery timeout properties.

A GMD_FAILURE message indicates the message could not be delivered with
GMD successfully within the parameters, such as delivery timeout, set by the
application. When a GMD failure occurs, it is up to the sender to decide what to
do and then take some user-defined action if recovery is feasible. Unfortunately,
this level of recovery is very application-specific, and SmartSockets cannot
perform it on its own. Recovering from GMD failures is discussed further in
Handling GMD Failures.

Delivery Timeout

The Delivery Timeout property specifies how long GMD has to deliver a message
and it works together with the value set for the Server_Read_Timeout option. The
connection delivery timeout property is used as a default for messages with no
preset delivery timeout. The delivery timeout is specific to GMD.

Delivery timeouts are checked only when data is received from the RTserver. If no
messages are being received, the RTclient uses the value set for
Server_Read_Timeout as the interval for sending a keep alive message to the
RTserver. When the RTserver replies, then the delivery timeouts are checked. If
the delivery timeout is set to a value smaller than the value for
Server_Read_Timeout, the actual timeout used is the Server_Read_Timeout
because the delivery timeouts are not checked until after the
Server_Read_Timeout interval has triggered a keep alive message.
 TIBCO SmartSockets User’s Guide

322 | Chapter 4 Guaranteed Message Delivery
Working With GMD

This section discusses how to configure and use GMD with connections. To learn
more about working with the basic features of connections, see Working With
Connections on page 89. The following example programs show the code used to
send messages with GMD between two processes through a connection. The
programs also show the inner workings of GMD. There are two parts to the
example: a server process and a client process.

The source code files for these examples are located in these directories:

UNIX:
$RTHOME/examples/smrtsock/manual

OpenVMS:
RTHOME:[EXAMPLES.SMRTSOCK.MANUAL]

Windows:
%RTHOME%\examples\smrtsock\manual

The online source files have additional #ifdefs to provide C++ support. These
#ifdefs are not shown to simplify the example.

Example 30 Common Header Source Code

/* conngmd.h -- common header for connections GMD example */

#include <rtworks/ipc.h>

#define GMD_CONN_NAME "tcp:_node:5252"

void create_conn_cb();
TIBCO SmartSockets User’s Guide

Working With GMD | 323
Example 31 Common Callback Source Code

/* conngmdu.c -- connections GMD example utilities */

#include "conngmd.h"

/* === */
/*..cb_conn_msg -- connection msg callback */
void T_ENTRY cb_conn_msg(

T_IPC_CONN conn,
T_IPC_CONN_MSG_CB_DATA data,
T_CB_ARG arg) /* really (T_STR) */

{
 T_IPC_MT mt;
 T_STR name;
 T_INT4 seq_num;
 T_STR info;

 /* This example callback function is not intended to show any */
 /* useful processing, only how GMD works. */
 TutOut("%s: ", (T_STR)arg);

 /* print out the name of the type of the message */
 if (!TipcMsgGetType(data->msg, &mt)) {
 TutOut("Could not get message type from message: error
<%s>.\n",
 TutErrStrGet());
 return;
 }
 if (!TipcMtGetName(mt, &name)) {
 TutOut("Could not get name from message type: error <%s>.\n",
 TutErrStrGet());
 return;
 }
 TutOut("type %s, ", name);
 /* print out the sequence number of the message to show how inner */
 /* workings of GMD operate */
 if (!TipcMsgGetSeqNum(data->msg, &seq_num)) {
 TutOut("Could not get sequence number from msg: error <%s>.\n",
 TutErrStrGet());
 return;
 }
 TutOut("seq_num %d\n", seq_num);
 TIBCO SmartSockets User’s Guide

324 | Chapter 4 Guaranteed Message Delivery
 /* print the first field of the message (INFO or GMD_ACK) */
 if (mt == TipcMtLookupByNum(T_MT_INFO)) {
 if (!TipcMsgSetCurrent(data->msg, 0)
 || !TipcMsgNextStr(data->msg, &info)) {
 TutOut("Could not get field from INFO message: error
<%s>.\n",
 TutErrStrGet());
 return;
 }
 TutOut(" INFO field: %s\n", info);
 }
 else if (mt == TipcMtLookupByNum(T_MT_GMD_ACK)) {
 if (!TipcMsgSetCurrent(data->msg, 0)
 || !TipcMsgNextInt4(data->msg, &seq_num)) {
 TutOut("Could not get field from GMD_ACK msg: error <%s>.\n",
 TutErrStrGet());
 return;
 }
 TutOut(" GMD_ACK field: %d\n", seq_num);
 }

} /* cb_conn_msg */

/* === */
/*..create_conn_cb -- create example callbacks */
void T_ENTRY create_conn_cb(conn)
T_IPC_CONN conn;
{
 /* create callbacks to be executed when certain operations occur */
 TutOut("Create callbacks.\n");

 /* create read callback to show received messages */
 if (TipcConnReadCbCreate(conn, NULL, cb_conn_msg, "read") ==
NULL) {
 TutOut("Could not create read cb: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* create write callback to show sent messages */
 if (TipcConnWriteCbCreate(conn, NULL, cb_conn_msg, "write")
 == NULL) {
 TutOut("Could not create write cb: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* create default callback to show processed messages */
 if (TipcConnDefaultCbCreate(conn, cb_conn_msg, "default") ==
NULL) {
 TutOut("Could not create default cb: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
} /* create_conn_cb */
TIBCO SmartSockets User’s Guide

Working With GMD | 325
Example 32 Server Source Code

/* conngmds.c -- connections GMD example server */
/*
This server process waits for a client to connect to it, creates some callbacks to show how GMD
works, and then loops receiving and processing messages.
*/
#include "conngmd.h"

/* === */
/*..accept_client -- accept connection from new client */
T_IPC_CONN accept_client(server_conn)
T_IPC_CONN server_conn;
{
 T_IPC_CONN client_conn; /* connection to client */

 client_conn = TipcConnAccept(server_conn);
 if (client_conn == NULL) {
 TutOut("Could not accept client: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 create_conn_cb(client_conn); /* to show inner workings of GMD */
 return client_conn;
} /* accept_client */

/* === */
/*..main -- main program */
int main()
{
 T_IPC_CONN server_conn; /* used to accept client */
 T_IPC_CONN client_conn; /* connection to client */

 TutOut("Configuring server to use file-based GMD.\n");
 TutCommandParseStr("setopt unique_subject conngmds");

 TutOut("Creating server connection to accept clients on.\n");
 server_conn = TipcConnCreateServer(GMD_CONN_NAME);
 if (server_conn == NULL) {
 TutOut("Could not create server connection: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 /* accept one client */
 TutOut("Waiting for client to connect.\n");
 client_conn = accept_client(server_conn);

 /* destroy server conn: it’s not needed anymore */
 TutOut("Destroying server connection.\n");
 if (!TipcConnDestroy(server_conn)) {
 TutOut("Could not destroy server connection: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 TIBCO SmartSockets User’s Guide

326 | Chapter 4 Guaranteed Message Delivery
 TutOut("Delete old GMD files.\n");
 if (!TipcConnGmdFileDelete(client_conn)) {
 TutOut("Could not delete old GMD files: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 TutOut("Read and process messages.\n");
 if (!TipcConnMainLoop(client_conn, T_TIMEOUT_FOREVER)
 && TutErrNumGet() != T_ERR_EOF) {
 TutOut("Could not read and process messages: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (!TipcConnDestroy(client_conn)) {
 TutOut("Could not destroy client connection: error <%s>.\n",
 TutErrStrGet());
 }
 TutOut("Server process exiting successfully.\n");
 return T_EXIT_SUCCESS; /* all done */
} /* main */

Example 33 Client Source Code

/* conngmdc.c -- connections GMD example client */

/*
The client process connects to the server process and sends two
messages with GMD to the server.
*/

#include "conngmd.h"

/* === */
/*..connect_to_server -- create connection to server process */
T_IPC_CONN connect_to_server()
{
 T_IPC_CONN conn; /* connection to server */

 conn = TipcConnCreateClient(GMD_CONN_NAME);
 if (conn == NULL) {
 TutOut("Could not create connection to server: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 create_conn_cb(conn); /* to show inner workings of GMD */

 return conn;
} /* connect_to_server */
TIBCO SmartSockets User’s Guide

Working With GMD | 327
/* === */
/*..main -- main program */
int main()
{
 T_IPC_CONN conn; /* connection to server */
 T_IPC_MT mt; /* message type for messages */
 T_IPC_MSG msg; /* message to send */
 T_INT4 num_pending; /* number of messages still pending */

 TutOut("Configuring client to use file-based GMD.\n");
 TutCommandParseStr("setopt unique_subject conngmdc");

 TutOut("Creating connection to server process.\n");
 conn = connect_to_server();

 if (!TipcConnSetTimeout(conn, T_IPC_TIMEOUT_DELIVERY, 1.5)) {
 TutOut("Could not set conn delivery timeout: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 TutOut("Delete old GMD files.\n");
 if (!TipcConnGmdFileDelete(conn)) {
 TutOut("Could not delete old GMD files: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 TutOut("Create GMD area.\n");
 if (!TipcConnGmdFileCreate(conn)) {
 TutOut("Could not create GMD area: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 TutOut("Constructing and sending an INFO message.\n");
 mt = TipcMtLookupByNum(T_MT_INFO);
 if (mt == NULL) {
 TutOut("Could not look up INFO message type: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 msg = TipcMsgCreate(mt);
 if (msg == NULL) {
 TutOut("Could not create INFO message: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 if (!TipcMsgSetDeliveryMode(msg, T_IPC_DELIVERY_ALL)) {
 TutOut("Could not set message delivery mode: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 TIBCO SmartSockets User’s Guide

328 | Chapter 4 Guaranteed Message Delivery
 if (!TipcMsgAppendStr(msg, "GMD test #1")) {
 TutOut("Could not append field to INFO message: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 if (!TipcConnMsgSend(conn, msg)) {
 TutOut("Could not send INFO message: error <%s>.\n",
 TutErrStrGet());
 }

 if (!TipcMsgDestroy(msg)) {
 TutOut("Could not destroy message: error <%s>.\n",
 TutErrStrGet());
 }

 /* use convenience functions this time */
 TutOut("Send another INFO message with GMD.\n");
 if (!TipcConnMsgWrite(conn, mt,
 T_IPC_PROP_DELIVERY_MODE,
 T_IPC_DELIVERY_ALL,
 T_IPC_FT_STR, "GMD test #2",
 NULL)) {
 TutOut("Could not send 2nd INFO message: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 TutOut("Read data until all acknowledgments come in.\n");
 do {
 if (!TipcConnMainLoop(conn, 1.0)) {
 TutOut("Could not read from conn: error <%s>.\n",
 TutErrStrGet());
 break;
 }
 if (!TipcConnGetGmdNumPending(conn, &num_pending)) {
 TutOut("Could not get pending message count: error <%s>.\n",
 TutErrStrGet());
 break;
 }
 } while (num_pending > 0);

 if (!TipcConnDestroy(conn)) {
 TutOut("Could not destroy connection: error <%s>.\n",
 TutErrStrGet());
 }
 TutOut("Client process exiting successfully.\n");
 return T_EXIT_SUCCESS; /* all done */
} /* main */
TIBCO SmartSockets User’s Guide

Working With GMD | 329
Compiling, Linking, and Running
To compile, link, and run the example programs, first you must either copy the
programs to your own directory or have write permission in these directories:

UNIX:
$RTHOME/examples/smrtsock/manual

OpenVMS:
RTHOME:[EXAMPLES.SMRTSOCK.MANUAL]

Windows:
%RTHOME%\examples\smrtsock\manual

Step 1 Compile and link the programs

UNIX:
$ rtlink -o conngmds.x conngmds.c conngmdu.c
$ rtlink -o conngmdc.x conngmdc.c conngmdu.c

OpenVMS:
$ cc conngmds.c, conngmdc.c, conngmdu.c
$ rtlink /exec=conngmds.exe conngmds.obj, conngmdu.obj
$ rtlink /exec=conngmdc.exe conngmdc.obj, conngmdu.obj

Windows:
$ nmake /f cngsw32m.mak
$ nmake /f cngcw32m.mak

To run the programs, start the server process first in one terminal emulator
window and then the client process in another terminal emulator window or in
the background (batch).

Step 2 Start the server program in the first window

UNIX:
$ conngmds.x

OpenVMS:
$ run conngmds.exe

Windows:
$ conngmds.exe
 TIBCO SmartSockets User’s Guide

330 | Chapter 4 Guaranteed Message Delivery
Step 3 Start the client program in the second window

UNIX:
$ conngmdc.x

OpenVMS:
$ run conngmdc.exe

Windows:
$ conngmdc.exe

This is a sample of the output from the server program:

Configuring server to use file-based GMD.
Creating server connection to accept clients on.
Waiting for client to connect.
Create callbacks.
Destroying server connection.
Delete old GMD files.
Read and process messages.
read: type info, seq_num 1
 INFO field: GMD test #1
read: type info, seq_num 2
 INFO field: GMD test #2
default: type info, seq_num 1
 INFO field: GMD test #1
write: type gmd_ack, seq_num 0
 GMD_ACK field: 1
default: type info, seq_num 2
 INFO field: GMD test #2
write: type gmd_ack, seq_num 0
 GMD_ACK field: 2
Server process exiting successfully.

This a sample of the output from the client program:

Configuring client to use file-based GMD.
Creating connection to server process.
Create callbacks.
Delete old GMD files.
Create GMD area.
Constructing and sending an INFO message.
write: type info, seq_num 0
 INFO field: GMD test #1
Send another INFO message with GMD.
write: type info, seq_num 0
 INFO field: GMD test #2
Read data until all acknowledgments come in.
read: type gmd_ack, seq_num 0
 GMD_ACK field: 1
read: type gmd_ack, seq_num 0
 GMD_ACK field: 2
Client process exiting successfully.
TIBCO SmartSockets User’s Guide

Configuring GMD | 331
Configuring GMD

If you want to use the default configuration for GMD, there is little configuration
required. File-based GMD, rather than memory-only GMD, is the recommended
way to use GMD because of its ability to recover from process failures. The main
configuration required for file-based GMD is to set the option Unique_Subject to a
value other than the default, to a unique and consistent name that no other
process on the node is using.

To configure GMD, you set the GMD-related options using the setopt command.
Many of these options are not required unless you want to use a value other than
the default setting. The GMD options for peer-to-peer connections are the same as
the GMD options for RTclients. For more detailed information about the options,
see Chapter 8, Options Reference.

Here are the options you can set to change your GMD configuration:
Ipc_Gmd_Auto_Ack specifies whether automatic acknowledgment of

received GMD messages is enabled or disabled.

Ipc_Gmd_Auto_Ack_Policy specifies when a received GMD message is
automatically acknowledged. Automatic
acknowledgement must be enabled.

Ipc_Gmd_Directory specifies the location of the GMD area on disk for
file-based GMD. This option does not apply to
memory-based GMD. The default values are:

• UNIX: /tmp/rtworks

• Windows: %TEMP%\rtworks

• OpenVMS: sys$scratch

Ipc_Gmd_Type specifies whether file-based or memory-based GMD
is first attempted. The default value is default,
which means file-based GMD is attempted. Or you
can specify memory, which means memory-based
GMD is used regardless of the value set for
Unique_Subject.

Server_Delivery_Timeout specifies the time in seconds that the sending process
waits for all receiving processes to acknowledge
delivery of a guaranteed message. If you set the
value to 0.0, this option is disabled, and the sending
process never times out. The default is 30 seconds.

Unique_Subject specifies the unique subject to use. For file-based
GMD, you must set this to a value other than the
default of _Node_Pid.
 TIBCO SmartSockets User’s Guide

332 | Chapter 4 Guaranteed Message Delivery
Notes on File-Based GMD

• File-based GMD is only attempted if both are true:

— Unique_Subject is set to a value other than its default, and

— Ipc_Gmd_Type is set to default

If Ipc_Gmd_Type is set to memory, memory-based GMD occurs even if you set
a value for Unique_Subject. However, if you did not set a value for
Unique_Subject, memory-based GMD is used even if Ipc_Gmd_Type is set to
default.

• When Unique_Subject is set, and Ipc_Gmd_Type is default, SmartSockets
attempts file-based GMD, but sometimes must revert to memory-based GMD.
See Reverting to Memory-Based GMD on page 333.

• Although you specify file-based GMD, memory-based GMD is used
whenever file-based GMD is attempted unsuccessfully. This provides a
measure of safety, because even though file-based GMD might fail, your
messages are still protected under GMD.

• The default value for Unique_Subject is _Node_Pid, where Node is the network
node name of the computer on which the process is running, and Pid is the
operating system process identifier of the process. The default _Node_Pid
usually changes if the program is restarted, because of the new value for Pid.
This prevents the restarted program from finding the old GMD files, and is
why Unique_Subject must be explicitly set to use file-based GMD.

For RTclient and RTserver processes, the option Unique_Subject must be set to
an RTserver group-wide unique name. Keep in mind that for connection
programs, Unique_Subject does not really specify a subject, only a unique
name for GMD.

For example:

TutCommandParseStr("setopt unique_subject conngmdc");
TIBCO SmartSockets User’s Guide

Configuring GMD | 333
Reverting to Memory-Based GMD
When Unique_Subject is set, and Ipc_Gmd_Type is default, SmartSockets
attempts file-based GMD. If file-based GMD cannot be carried out, SmartSockets
reverts to memory-based GMD for the message. Generally, when SmartSockets
reverts from file-based to memory-based GMD, it is because the file-based GMD
area could not be written to, for example, due to a permissions problem.

If file-based GMD cannot be used, a warning is issued and the process switches to
memory-only GMD. For example:

WARNING: Could not create GMD file(s) with base name
<tcp__node_5252_conngmdc>
for connection <server:tcp:_node:5252:1>.
The option Unique_Subject must be set to a value other than the
default (_himalia.talarian.com_10783).
WARNING: Switching to memory-only GMD.

To check if a process is properly configured for file-based GMD, use the function
TipcGetGmdDir. For example:

if (TipcGetGmdDir() == NULL) {
 /* process is not configured properly */
}

TipcGetGmdDir attempts to create the needed directories if they do not exist.

Deleting Files From an Old GMD Area
When a process creates a connection, the process may not want to use the
file-based GMD information from a previous connection with the same GMD
configuration. Some applications, for example, may want to have the concept of a
complete restart where all old GMD information is purged. The function
TipcConnGmdFileDelete can be used to delete the old GMD files. For example:

if (!TipcConnGmdFileDelete(conn)) {
 /* error */
}

When a process using GMD creates a client connection with
TipcConnCreateClient or accepts a connection from a client with
TipcConnAccept, it typically does one of two things:

• discards old GMD information by calling TipcConnGmdFileDelete

• resends old GMD information by calling TipcConnGmdResend (see
Resending Messages on page 339)
 TIBCO SmartSockets User’s Guide

334 | Chapter 4 Guaranteed Message Delivery
Creating a GMD Area
Before any messages can be sent or received with GMD, a GMD area must be
created with the function TipcConnGmdFileCreate. For example:

if (!TipcConnGmdFileCreate(conn)) {
 /* error */
}

If the GMD area files already exist on disk, TipcConnGmdFileCreate reads in the
contents of the old GMD area. The functions TipcConnRead and
TipcConnMsgSend automatically call TipcConnGmdFileCreate to create a GMD
area for a connection that needs one. For example, the server example program
conngmds.c does not explicitly call TipcConnGmdFileCreate, but instead lets
TipcConnMainLoop, which eventually calls TipcConnRead, take care of it. For
most applications, both ways are equivalent.

Specifying Ipc_Gmd_Directory

File-based GMD places all files it creates under the directory specified in the
option Ipc_Gmd_Directory, which defaults to these locations:

UNIX:
/tmp/rtworks

OpenVMS:
sys$scratch

Windows:
%TEMP%\rtworks

The directory specified in Ipc_Gmd_Directory should be on a local file system for
best performance. File-based GMD also uses Unique_Subject to generate
pathnames for the GMD area. See the reference page for TipcConnGmdFileCreate
in the TIBCO SmartSockets Application Programming Interface reference for full
details on GMD area pathnames.
TIBCO SmartSockets User’s Guide

Configuring GMD | 335
Limiting GMD Resources
The resources used by GMD can be constrained by storage used, by elapsed time,
or by both.

GMD Area Maximum Size

A connection GMD area uses disk files or memory to store the information
needed for GMD. A GMD area has a maximum size (in bytes) that can be used to
limit the amount of disk space or memory that a GMD area can use. The default
connection GMD area maximum size is 0, which means that no maximum size
limit checking is performed. Use the TipcConnGetGmdMaxSize function to get
the GMD area maximum size. For example:

if (!TipcConnGetGmdMaxSize(conn, &gmd_max_size)) {
 /* error */
}

The function TipcConnSetGmdMaxSize is used to set the GMD area maximum
size. For example:

/* limit GMD area to one megabyte */
if (!TipcConnSetGmdMaxSize(conn, 1000000)) {
 /* error */
}

If the connection GMD area maximum size is exceeded, then no further messages
can be sent with GMD until some unacknowledged, previously-sent messages are
acknowledged. This is one of the few synchronous notifications of a GMD-related
failure, compared to the asynchronous GMD_FAILURE messages.

Delivery Timeout

The connection delivery timeout property can be used to limit the amount of time
that GMD has to deliver each message. This can be useful for real-time
applications that need to be notified if a certain action does not take place within a
certain period of time. If a different timeout is required for an individual message,
the message’s delivery timeout property can instead be set directly.
 TIBCO SmartSockets User’s Guide

336 | Chapter 4 Guaranteed Message Delivery
Sending Messages

Sending messages with GMD is very easy. The message delivery mode must first
be set to T_IPC_DELIVERY_ALL or T_IPC_DELIVERY_SOME, and then the
message can be sent as usual with TipcConnMsgSend. For example:

if (!TipcMsgSetDeliveryMode(msg, T_IPC_DELIVERY_ALL)) {
 /* error */
}
if (!TipcConnMsgSend(conn, msg)) {
 /* error */
}

TipcConnMsgSend automatically calls TipcConnGmdFileCreate if necessary. For
GMD, TipcConnMsgSend increments an internal per-connection outgoing
sequence number, sets the message sequence number to the incremented value,
saves a copy of the message in the connection GMD area, and saves the current
wall clock time in the GMD area (for detecting a delivery timeout). Note that the
message sequence number is set after the connection write callbacks are called, as
illustrated by this output from the example client program (the sequence number
is zero in the write callback):

Constructing and sending an INFO message.
write: type info, seq_num 0
 INFO field: GMD test #1
Send another INFO message with GMD.
write: type info, seq_num 0
 INFO field: GMD test #2

If all outgoing messages of a certain type need to be sent with GMD, the function
TipcMtSetDeliveryMode can be used once instead of calling
TipcMsgSetDeliveryMode for each message of that type.
TIBCO SmartSockets User’s Guide

Receiving Messages | 337
Receiving Messages

Receiving messages with GMD is even easier than sending messages with GMD;
no code changes are needed. TipcConnRead automatically calls
TipcConnGmdFileCreate if necessary. For GMD, TipcConnRead recognizes a
message resent with GMD (through an internal message resend property) and
checks if the resent message has a sequence number lower than the highest
sequence number already acknowledged from the sending process. The check
also handles long-running processes that may overflow and wrap around the
four-byte sequence number. If the resent message has already been
acknowledged, then TipcConnRead immediately destroys the message, which
acknowledges it again so that the sender is notified this time of successful
delivery.

TipcConnRead ignores any duplicate (resent) messages that are sent to it while
the application is processing the message and has not yet sent an
acknowledgement. This means that TipcConnRead keeps all received but
unacknowledged GMD messages, and discards any subsequent GMD messages
with the same sequence number and from the same publisher as long as the
original GMD message remains unacknowledged. All other non-resent GMD
messages are allowed to pass through regardless of their sequence number. This
allows flexibility and correct behavior when some processes use
TipcConnGmdFileDelete and others do not (thus continuing to use old sequence
numbers).

TipcConnRead also handles GMD_ACK messages directly so that the application
code never has to worry about taking care to read and process one GMD_ACK
message for each outgoing message sent with GMD. When a GMD_ACK message
is received, the corresponding message is removed from the connection GMD
area. The following output from the example client program shows how
GMD_ACK messages are visible to the connection read callbacks but not to the
connection process or default callbacks:

Read data to allow acknowledgments time to come in.
read: type gmd_ack, seq_num 0
 GMD_ACK field: 1
read: type gmd_ack, seq_num 0
 GMD_ACK field: 2
 TIBCO SmartSockets User’s Guide

338 | Chapter 4 Guaranteed Message Delivery
Acknowledging Messages

Acknowledging messages with GMD is also very easy. TipcMsgDestroy
automatically calls TipcMsgAck to acknowledge the message for GMD.
TipcMsgAck can also be called manually to acknowledge a message. For example:

if (!TipcMsgAck(msg)) {
 /* error */
}

TipcMsgAck constructs a GMD_ACK message containing the sequence number
of the message to be acknowledged and sends the GMD_ACK message through
the connection that the message to be acknowledged was received on.
TipcMsgAck knows which connection to use through an internal message
property containing the connection the message was received on.

You can disable the automatic acknowledgement of GMD messages with the
Ipc_Gmd_Auto_Ack option. When automatic acknowledgment is disabled, it
becomes the user’s responsibility to acknowledge receipt of the GMD message by
calling TipcMsgAck.

Waiting for Completion of GMD
GMD senders must read messages occasionally to receive the acknowledgments.
If a connection process both sends and receives messages at regular intervals, no
extra actions are needed because the acknowledgments travel with the normal
flow of messages. A short-running or sending-only process can accomplish this
by calling TipcConnMainLoop or TipcConnRead before the program exits. A
sending process can also check how many outgoing GMD messages are still
pending with TipcConnGetGmdNumPending. This is useful for waiting until all
acknowledgments arrive. For example:

TutOut("Read data until all acknowledgments come in.\n");
do {
 if (!TipcConnMainLoop(conn, 1.0)) {
 /* error */
 break;
 }
 if (!TipcConnGetGmdNumPending(conn, &num_pending)) {
 /* error */
 break;
 }
} while (num_pending > 0);
TIBCO SmartSockets User’s Guide

Resending Messages | 339
Resending Messages

If a program detects an error, such as TipcConnMainLoop or TipcConnFlush fails,
recovery is typically initiated by creating a new connection and then calling
TipcConnGmdResend to resend the old GMD messages. For example:

if (!TipcConnFlush(conn)) {
 TutOut("Lost connection to server process.\n");
 /* destroy old connection and create new one */
 if (!TipcConnDestroy(conn)) {
 /* error */
 }
 conn = connect_to_server();
 /* resend messages from GMD area (N/A for memory-only GMD) */
 if (!TipcConnGmdResend(conn)) {
 /* error */
 }
}

TipcConnGmdResend automatically calls TipcConnGmdFileCreate if necessary.
TipcConnGmdResend reads all messages from the connection GMD area,
preserves their sequence numbers, marks them as being resent (through an
internal message resend property), and sends them with TipcConnMsgSend.
Resending GMD messages does not change their timestamps used to detect
delivery timeouts; this prevents repetitive resends from hiding delivery timeout
detection. Note that with memory-only GMD there can be no resending, as the
GMD area is lost when the old connection is destroyed.

When a process using GMD creates a client connection with
TipcConnCreateClient or accepts a connection from a client with
TipcConnAccept, it typically does one of two things:

• discards old GMD information by calling TipcConnGmdFileDelete (see
Deleting Files From an Old GMD Area on page 333), or

• resends old GMD information by calling TipcConnGmdResend

Both the publishing client and the RTserver have a GMD area and GMD messages
are stored in both. If the RTserver goes down, the publishing client has all the
GMD messages in its own GMD area and can resend those messages when it
connects back into the RTserver cloud.
 TIBCO SmartSockets User’s Guide

340 | Chapter 4 Guaranteed Message Delivery
Receiving Duplicate Messages
As described in Receiving Messages on page 337 and Resending Messages on
page 339, when duplicate messages are received, they are always messages that
have been resent. Resent messages always have their sequence numbers checked
against the highest sequence number stored in the connection GMD area.

In the previous example, if the server program was sent the two INFO messages
twice, the second set of messages produces this output:

read: type info, seq_num 1
 INFO field: GMD test #1
write: type gmd_ack, seq_num 0
 GMD_ACK field: 1
read: type info, seq_num 2
 INFO field: GMD test #2
write: type gmd_ack, seq_num 0
 GMD_ACK field: 2

Note how acknowledgments are sent immediately to notify the sender that the
receiver has already processed these messages.
TIBCO SmartSockets User’s Guide

Handling GMD Failures | 341
Handling GMD Failures

With connections there are two types of GMD-related failures possible:

• A synchronous error such as TipcConnFlush returning FALSE and setting the
global SmartSockets error number to T_ERR_EOF or
T_ERR_FAILURE_DETECTED. These errors are easy to detect and handle,
such as call TipcConnDestroy and then TipcConnCreateClient.

• An asynchronous GMD_FAILURE error such as a delivery timeout. The
causes of these errors are very application-specific.

As discussed in GMD_FAILURE on page 321, recovery from GMD_FAILURE
messages is very application-specific, and SmartSockets cannot perform it on its
own. The GMD_FAILURE message notifies the process that there is a problem,
and the process can take whatever user-defined action is necessary. SmartSockets
by default outputs a warning, terminates GMD for the failed message, and
continues.

GMD_FAILURE Messages
When GMD fails asynchronously, a GMD_FAILURE message is created internally
by SmartSockets and TipcConnMsgProcess is called to process the message and
thus notify the sender that there has been a GMD failure. GMD programs can
create connection process callbacks for the GMD_FAILURE message type to
execute their own recovery procedures. The failed message is left in the
connection GMD area, and it is up to the GMD_FAILURE process callbacks to
delete the message (and thus terminate GMD for that message) or resend the
message.

Each GMD_FAILURE message contains four fields:

• a MSG message field containing the message sent by this process where GMD
failed

• a STR string field containing the name of the receiving process where GMD
failed (actually the value of the receiving process’s Unique_Subject option)

• an INT4 integer field containing a SmartSockets error number describing how
GMD failed

• a REAL8 numeric field containing the wall clock time the failed message was
originally sent
 TIBCO SmartSockets User’s Guide

342 | Chapter 4 Guaranteed Message Delivery
Delivery Timeout Failures
As described in GMD_FAILURE on page 321, the only type of GMD_FAILURE
message produced for non-RTclient/non-RTserver GMD is a delivery timeout
failure: the third field of a GMD_FAILURE message is
T_ERR_GMD_SENDER_TIMEOUT. Connections automatically check for
delivery timeouts whenever data is read from the connection with TipcConnRead,
or the connection is checked to see if data can be read with TipcConnCheck. Thus
it is important to use TipcConnRead and TipcConnCheck frequently enough and
with timeout parameters that are not larger than the connection delivery timeout
property or the delivery timeout of an individual message.

Default Processing of GMD_FAILURE Messages
All connections by default have a process callback for GMD_FAILURE messages
that use TipcCbConnProcessGmdFailure as the callback function.
TipcCbConnProcessGmdFailure outputs a warning and deletes the message from
the connection GMD area.

TipcCbConnProcessGmdFailure is intended as a sample callback that is designed
only to warn the user that guaranteed delivery of a message has failed. More
sophisticated applications should destroy the callback that uses
TipcCbConnProcessGmdFailure and create their own process callbacks for
GMD_FAILURE messages to perform actions such as user-defined recovery
procedures. See the reference page for TipcCbConnProcessGmdFailure in the
TIBCO SmartSockets Application Programming Interface reference for full details on
this callback.

When a GMD_FAILURE message is processed by a sender, one of two actions is
typically performed:

• the sender process does not want to resend the message, and thus uses
TipcConnGmdMsgDelete to terminate GMD for the message

• the sender process does want to resend the message, and thus takes some kind
of user-defined action to correct the problem and then uses
TipcConnGmdMsgResend to resend the message

Resending a Message
A single message can be resent with TipcConnGmdMsgResend. For example:

if (!TipcConnGmdMsgResend(conn, msg)) {
 /* error */
}

TipcConnGmdMsgResend usually is only used from a GMD_FAILURE
connection process callback.
TIBCO SmartSockets User’s Guide

Limitations of GMD | 343
Deleting a Message
A single message can be deleted from the connection GMD area with
TipcConnGmdMsgDelete. For example:

if (!TipcConnGmdMsgDelete(conn, msg)) {
 /* error */
}

TipcConnGmdMsgDelete usually is only used from a GMD_FAILURE connection
process callback.

Limitations of GMD

GMD can recover from most network failures, but there are a few scenarios to be
aware of when using GMD:

• If a sending process crashes before an outgoing message can be completely
saved to the GMD area, the message cannot be recovered.

• If a receiving process crashes after processing a message but before the highest
sequence number can be updated in the GMD area, the message can
potentially be processed twice.

• Mixing GMD and message priorities can cause the highest sequence number
in the GMD area to be updated in non-sequential order. If the receiving
process crashes while processing messages in non-increasing sequence
number order, the resent messages can potentially be skipped.

These conditions are very unlikely, but can happen if a node or disk crashes at
exactly the wrong time.

It is highly recommended that all GMD messages sent from the same publisher
have the same priority setting, or they can be read out of order. Messages read out
of order can result in message loss.
 TIBCO SmartSockets User’s Guide

344 | Chapter 4 Guaranteed Message Delivery
Publish-Subscribe and GMD

RTserver and RTclient can take full advantage of the GMD of connections. In
addition to the connection GMD capabilities, both RTclient and RTserver have
several additional features related to GMD.

• Delivery can be guaranteed to all subscribing RTclients or to at least one
subscribing RTclient.

• RTserver manages the gathering of acknowledgments from the necessary
subscribers and sends a single acknowledgment back to the publisher.

• RTclient automatically resends unacknowledged GMD messages when it
connects or reconnects to RTserver.

• RTserver can maintain warm RTclient information to prevent GMD messages
from being lost if an RTclient crashes and restarts.

• RTserver keeps GMD messages in memory so it can easily resend them
without having to notify or wait for the original sending RTclient.

• RTclient can query RTserver for the delivery status of a message sent with
GMD.

Figure 34 illustrates the successful processing of a guaranteed message.

Figure 34 Steps Involved in GMD Successful Delivery

Sender

RTserver

Receiver

GMD Area
GMD Area1

4

3

6

2

5

7

File or Memory

File or Memory
TIBCO SmartSockets User’s Guide

Publish-Subscribe and GMD | 345
1. Message is saved to GMD area.

2. Message is sent to RTserver.

3. Message is sent to Receiver.

4. After processing message, highest sequence number is updated in the
receiver’s GMD area.

5. Acknowledgment message is sent to RTserver.

6. Acknowledgment message is sent to Sender.

7. Message is deleted from GMD area.

Working with GMD in RTserver and RTclient is very similar to working with
GMD in peer-to-peer connections, and thus no complete source code example is
shown. The source code files rtclgmds.c and rtclgmdr.c illustrate the most
probable GMD failures and are located in these directories:

UNIX:
$RTHOME/examples/smrtsock/manual

OpenVMS:
RTHOME:[EXAMPLES.SMRTSOCK.MANUAL]

Windows:
%RTHOME%\examples\smrtsock\manual

Delivery Mode in Publish-Subscribe Model
As discussed in Delivery Mode on page 318, in peer-to-peer connections the GMD
delivery modes T_IPC_DELIVERY_SOME and T_IPC_DELIVERY_ALL are the
same because there is only one receiving process. With the RTserver and RTclient
GMD, T_IPC_DELIVERY_SOME is a subset of T_IPC_DELIVERY_ALL. With
T_IPC_DELIVERY_ALL, delivery is not considered successful until all
subscribing RTclients acknowledge delivery. With T_IPC_DELIVERY_SOME,
delivery is considered successful as soon as at least one subscriber acknowledges
delivery. This is useful for programs where it is acceptable to continue after at
least one subscriber, such as an operator console, receives notification of an event.
 TIBCO SmartSockets User’s Guide

346 | Chapter 4 Guaranteed Message Delivery
Warm RTclient in RTserver
A warm RTclient in RTserver is somewhat analogous to a warm connection to
RTserver in RTclient, although there are many differences. As described in Warm
Connection to RTserver on page 235, a warm connection to RTserver is a subset of
a full connection that allows messages, including messages sent without GMD, to
be buffered for later sending.

A warm RTclient in RTserver, however, is used only for GMD. With a warm
RTclient, the only thing RTserver remembers is the name of the RTclient and the
GMD-using subjects to which the RTclient was subscribing when that RTclient
disconnected. RTserver then tracks the GMD messages that this warm RTclient
should receive and acknowledge (see How GMD Works in RTserver for a full
discussion of how RTserver operates for GMD). RTserver does not buffer any
non-GMD messages for the RTclient (those with a delivery mode of
T_IPC_DELIVERY_BEST_EFFORT or T_IPC_DELIVERY_ORDERED).

RTclient informs RTserver to keep warm RTclient information for itself by setting
the Server_Disconnect_Mode option to warm before calling either TipcSrvCreate
or TipcSrvDestroy (both of these functions send the value of
Server_Disconnect_Mode to RTserver). In this warm mode, if an RTclient
disconnects for any reason, such as crashes or simply calls TipcSrvDestroy, all
necessary RTservers (those with direct GMD publishing RTclients) keep warm
RTclient information.

The warm RTclient is not considered to be associated with any RTserver, and it can
later reconnect to any RTserver in the same multiple RTserver group. Until the
warm RTclient reconnects or the timeout specified in the RTserver option
Client_Reconnect_Timeout is reached, each RTserver continues to buffer GMD
messages sent by its own direct RTclients that have a destination subject being
subscribed to by the warm RTclient. If the warm RTclient reconnects in time, then
all RTservers resend the proper GMD messages to the reconnected RTclient in the
proper order. RTclient can even switch from one RTserver to another, and the
RTserver takes care of all the necessary rerouting for GMD.

Note that no warm RTserver-to-RTserver information is needed for GMD. An
RTserver does route the messages for GMD, but it is the subjects to which the
RTclient is subscribing that are really important. Therefore, warm RTclient
information is needed in RTserver for GMD, but not warm RTserver information.
TIBCO SmartSockets User’s Guide

Publish-Subscribe and GMD | 347
GMD Message Types
There are six message types used to implement GMD in connections, RTservers,
and RTclients. GMD_ACK and GMD_FAILURE are used in all GMD, while the
other four are used only by an RTserver and RTclient. This section describes how
these message types are used in RTclient/RTserver GMD.

GMD_ACK

GMD_ACK messages are used by RTclient and RTserver much as they are by
peer-to-peer connections. When an RTclient publishes a message with GMD, the
subscribing RTclients all send a GMD_ACK message to acknowledge delivery.
The original publishing RTclient does not get these acknowledgments, however.
RTserver manages the gathering of acknowledgments from the necessary
subscribers and sends a single acknowledgment back to the original publisher.
This greatly simplifies GMD for the publishing RTclient.

GMD_DELETE

The function TipcSrvGmdMsgServerDelete sends a GMD_DELETE message to
RTserver to inform RTserver to terminate GMD for a specific message, which
allows RTserver to reclaim the memory for the message.
TipcSrvGmdMsgServerDelete is usually only used from a connection process
callback for a GMD_FAILURE message, but it can be called at any time by
advanced programs that wish to poll for GMD status.

GMD_FAILURE

GMD_FAILURE messages are used to notify RTclient of asynchronous GMD
failures much as they are for peer-to-peer connections. In addition to the
T_ERR_GMD_SENDER_TIMEOUT error code described in Delivery Timeout
Failures on page 342, RTclients should be prepared to handle these additional
error codes:

Table 14 GMD Failure Error Numbers

Error Number Description

T_ERR_GMD_RECEIVER_TIMEOUT A receiving RTclient (whose
Server_Disconnect_Mode option is set
to warm) disconnects before
acknowledging the message and does
not reconnect to RTserver in time.
 TIBCO SmartSockets User’s Guide

348 | Chapter 4 Guaranteed Message Delivery
GMD_NACK

GMD_NACK messages are sent from RTserver to RTclient, indicating that a GMD
failure occurred. RTclient automatically builds a GMD_FAILURE message from
the information in the GMD_NACK message and processes the GMD_FAILURE
message. RTclients should not try to process GMD_NACK messages and should
only manipulate callbacks for GMD_FAILURE messages. The GMD_NACK
message type is documented for completeness and to illustrate how GMD
operates.

GMD_STATUS_CALL

The function TipcSrvGmdMsgStatus sends a GMD_STATUS_CALL message to
RTserver to poll RTserver for the current GMD status of a specific message. If
RTserver is aware of the message, it sends back a GMD_STATUS_RESULT
message with the requested information. TipcSrvGmdMsgStatus is intended to be
used from a connection process callback for a GMD_FAILURE message.

T_ERR_GMD_RECEIVER_EXIT A receiving RTclient (whose
Server_Disconnect_Mode option is set
to gmd_failure) disconnects before
acknowledging the message.

T_ERR_GMD_NO_RECEIVERS No RTclients are subscribing to the
destination subject of the message,
and the option
Zero_Recv_Gmd_Failure in RTserver
is set to TRUE.

Table 14 GMD Failure Error Numbers

Error Number Description
TIBCO SmartSockets User’s Guide

Publish-Subscribe and GMD | 349
GMD_STATUS_RESULT

GMD_STATUS_RESULT messages are sent from RTserver to RTclient as the result
of a query with TipcSrvGmdMsgStatus. Each GMD_STATUS_RESULT message
contains these four fields:

• an INT4 integer field containing the sequence number property of the
message

• a STR_ARRAY string array field containing the names of the RTclients that
have acknowledged successful delivery of the message

• a STR_ARRAY string array field containing the names of the RTclients where
GMD failed for the message

• a STR_ARRAY string array field containing the names of the RTclients where
delivery is still pending for the message

The polling RTclient acquires the GMD_STATUS_RESULT message after calling
TipcSrvGmdMsgStatus, using functions like TipcSrvMsgSearchType.
 TIBCO SmartSockets User’s Guide

350 | Chapter 4 Guaranteed Message Delivery
RTclient GMD Considerations

Configuring RTclient for GMD
The configuration of GMD for the RTclient is similar to the configuration for
peer-to-peer connections. The same options apply:

• Ipc_Gmd_Auto_Ack

• Ipc_Gmd_Auto_Ack_Policy

• Ipc_Gmd_Directory

• Ipc_Gmd_Type

• Server_Delivery_Timeout

• Unique_Subject

The settings for these options have the same effect for GMD with RTclients as for
GMD with peer-to-peer connections. For an RTclient, you can specify the values
for the options in the RTclient’s startup command file or by calling the API
function TutCommandParseStr, or by calling one of the TutOptionSetType API
functions.

For more information, see Configuring GMD on page 331.

In addition to these options, you can also specify the option
Server_Disconnect_Mode for the RTclient. The Server_Disconnect_Mode option
specifies the action RTserver should take when RTclient disconnects from
RTserver. The possible values are:

Setting Server_Disconnect_Mode to warm is useful when RTclient must run
continuously and not lose any messages even if it crashes or accidentally
terminates. In this mode, RTserver remembers the subjects being subscribed to by
the disconnecting RTclient and buffers guaranteed messages. When an RTclient
with the same value for the option Unique_Subject reconnects to RTserver,
RTserver resends the guaranteed messages to RTclient. The option
Client_Reconnect_Timeout in RTserver controls the maximum amount of time (in

warm RTserver saves subject information about RTclient for guaranteed
message delivery so that no messages are lost.

gmd_failure RTserver destroys all information about RTclient and causes
pending guaranteed message delivery to fail.

gmd_success RTserver destroys all information about RTclient and causes
pending guaranteed message delivery to succeed.
TIBCO SmartSockets User’s Guide

RTclient GMD Considerations | 351
seconds) RTclient has to reconnect. If RTclient does not reconnect to RTserver
within Client_Reconnect_Timeout seconds, then RTserver clears the guaranteed
messages that have not been acknowledged by this RTclient and sends a
GMD_NACK message back to the sender of these messages.

Setting Server_Disconnect_Mode to gmd_failure is useful for short-lived
operation. In this mode, RTserver clears the guaranteed messages that have not
been acknowledged by this RTclient and sends a GMD_NACK message back to
the sender of these messages.

Setting Server_Disconnect_Mode to gmd_success is useful for short-lived
operation or when RTclient wants to exit cleanly without causing GMD failure in
the publishing process. In this mode, RTserver clears the guaranteed messages
that have not been acknowledged by this RTclient and sends a GMD_ACK
message back to the sender of these messages.

DISCONNECT Message Type
When RTclient creates a full connection to RTserver by calling
TipcSrvCreate(T_IPC_SRV_CONN_FULL), the value of the RTclient option
Server_Disconnect_Mode is sent to RTserver in a CONNECT_CALL message.
Server_Disconnect_Mode specifies the action RTserver should take when RTclient
disconnects from RTserver. To allow RTclient to change Server_Disconnect_Mode
before disconnecting, the function TipcSrvDestroy tries to send the value of
Server_Disconnect_Mode to RTserver in a DISCONNECT message. This allows
an RTclient to easily change Server_Disconnect_Mode before disconnecting
(otherwise RTclient would have to disconnect, change the option, reconnect, and
then disconnect again).

The DISCONNECT message is not sent if TipcSrvDestroy is being called as the
result of a nonrecoverable error on the connection to RTserver. When a
nonrecoverable error occurs, no more messages can be sent or received.

Server_Disconnect_Mode and the DISCONNECT message type are somewhat
related to warm connections in RTclient, but they control how RTserver handles
GMD for a disconnecting RTclient. This provides more robustness for GMD in
RTserver, as RTserver does not care if RTclient crashes or exits cleanly; all
disconnects are treated the same.
 TIBCO SmartSockets User’s Guide

352 | Chapter 4 Guaranteed Message Delivery
GMD Area
The internal full pathnames used for the RTclient file-based GMD area are simpler
than they are for peer-to-peer connections, because the connection to RTserver has
a fixed purpose. See the reference page for TipcSrvGmdFileCreate in the TIBCO
SmartSockets Application Programming Interface reference for full details on RTclient
GMD area pathnames.

RTclient GMD area holds one highest sequence number for each sending RTclient
it has received a message (sent with GMD) from. This enables each receiving
RTclient to differentiate the sequence numbers from all sending RTclients. The
sending RTclients are identified by the value of their Unique_Subject option.

With peer-to-peer connections, messages must be resent with GMD by calling the
function TipcConnGmdResend; RTclient does this resending automatically. Both
TipcSrvCreate and TipcSrvDestroy(T_IPC_SRV_CONN_WARM) call
TipcSrvGmdResend to resend messages from the GMD area. With a warm
connection to RTserver, this is needed to prime the warm connection with old
GMD messages so as to preserve the proper outgoing message order. It should
almost never be necessary to call TipcSrvGmdResend explicitly; it is provided for
completeness only.

This automatic resending helps RTclients, especially SmartSockets Modules such
as RTie, to use GMD more easily without requiring any extra coding. The only
disadvantage of the automatic use of TipcSrvGmdResend is that if
TipcSrvGmdFileDelete is used, it must be called before calling TipcSrvCreate.

The TipcSrvCreate function does not create the file-based GMD area directories
until they are needed. This helps to prevent large numbers of unused directories
from being created for large publish-subscribe projects.
TIBCO SmartSockets User’s Guide

RTclient GMD Considerations | 353
File-based GMD and Connections to Multiple RTservers
For normal global connections, you must set the Unique_Subject option to a value
other than the default to use file-based GMD. For multiple connections that
connect to multiple RTservers from a single RTclient, you must also set a unique
subject for each connection, but not using the Unique_Subject option. Instead, you
set a connection’s unique subject using named options or by specifying the
unique subject as an argument when you create the connection. Connections are
allowed to share the same unique subject only if their projects are different or if
they connect to different RTserver clouds.

When you specify file-based GMD, a sub-directory is created in which the
messages are written, to be stored in case they need to be resent due to a failure.
By default, this sub-directory is named after the RTclient’s unique subject. If you
have connections that share the same unique subject, you must specify different
GMD sub-directories for each of them, or else they both attempt to use the same
GMD sub-directory and cause file conflicts.

To specify a GMD sub-directory for a connection, set the named option
Server_Gmd_Dir_Name for the connection or call the
TipcSrvConnSetGmdDirName function.
 TIBCO SmartSockets User’s Guide

354 | Chapter 4 Guaranteed Message Delivery
RTserver GMD Considerations

How GMD Works in RTserver
RTserver does not keep any GMD information in files. The publishing RTclient
has full responsibility for maintaining a persistent copy of the message. This
speeds up and simplifies GMD, as only the publishing process performs the
majority of disk file operations. If RTserver crashes and restarts, the publishing
RTclient can resend the messages from its GMD area.

When an RTclient publishes the first message using GMD to a subject, RTserver
starts collecting subject subscription information from the appropriate other
RTservers to accurately track GMD accounting. This increases the scalability of
publish-subscribe GMD due to the fact that only the relevant RTservers
dynamically exchange GMD information. The RTclient API function
TipcSrvSubjectGmdInit can also be used to manually initialize GMD accounting
for a subject to which messages will be published. The RTserver option
Gmd_Publish_Timeout specifies the amount of time RTserver continues to
maintain GMD accounting for a subject that has not been recently published to
with GMD; when this timeout is reached, the inter-RTserver GMD information is
no longer accumulated.

RTserver does keep GMD information in memory, although not the same way as a
memory-only GMD area. When a direct RTclient sends a message with GMD, the
RTserver creates a record containing:

• the message itself is saved so it can be resent easily (by incrementing the
message reference count, so that no extra memory management is needed)

• the list of all RTclients (both direct and indirect) that are currently subscribing
to the destination subject; this is the list of expected receivers

• an empty list of the RTclients that have acknowledged delivery successfully

• an empty list of the RTclients for which GMD has failed

RTserver then routes the message normally by sending a copy of the message to
all appropriate direct RTclients and RTservers. As the subscribing RTclients
receive, process, and acknowledge the message, they send GMD_ACK messages,
which are routed back to the original RTserver.

When the original RTserver receives an acknowledgment, it removes the receiving
RTclient from the list of expected receivers and adds it to the list of successes. If
failures occur, such as an expected receiver RTclient, whose
Server_Disconnect_Mode option is set to gmd_failure, disconnects without
acknowledging the message, the failed RTclient is moved from expected list to the
TIBCO SmartSockets User’s Guide

RTserver GMD Considerations | 355
failed list, and a GMD_NACK message is sent to the original RTclient publisher.
The publishing RTclient receives the GMD_NACK message, then builds and
processes a GMD_FAILURE message to notify the program of an asynchronous
GMD failure.

By keeping the original GMD message in memory, RTserver can easily and
quickly resend the message to reconnecting warm RTclients without having to
notify or wait for the original publishing RTclient. This speeds up recovery and
also ensures that the reconnecting warm RTclient receives the old messages first
before receiving any new messages. RTserver also uses the list of expected
receivers to prevent resends from going to RTclients that start subscribing to the
subject after the original message was sent.

If RTserver receives a GMD_DELETE message, it destroys the in-memory GMD
record about the message, effectively terminating GMD for the message (or at
least terminating resending of the message). If RTserver receives a
GMD_STATUS_CALL message, it constructs and returns a
GMD_STATUS_RESULT message containing the lists of successful, failed, and
pending subscribers.

When RTserver receives enough acknowledgment messages (one in the case of
T_IPC_DELIVERY_SOME and all of them in the case of T_IPC_DELIVERY_ALL),
RTserver destroys the in-memory GMD record about the message and sends a
GMD_ACK message to the original RTclient that sent the message. This simplifies
GMD for the publisher, which does not have to track multiple acknowledgments.

Configuring RTserver for GMD
To configure an RTserver for GMD, set the GMD-related options in the RTserver
startup command file or using a CONTROL message. If you want to use the
default configuration, you do not need to reset the options from their default
values. These are the GMD options for RTserver:

For more information on these options, see Chapter 8, Options Reference.

Client_Reconnect_Timeout specifies the maximum amount of time, in seconds,
to allow a warm RTclient to reconnect. The default
value is 30 seconds.

Gmd_Publish_Timeout specifies the amount of time, in seconds, to maintain
GMD accounting information after the last publish
with GMD as a subject. The default value is 300
seconds.

Zero_Recv_Gmd_Failure specifies how guaranteed message delivery should
complete when there are no RTclients subscribing to
the destination subject of the message (that is, the
subject membership list is empty).
 TIBCO SmartSockets User’s Guide

356 | Chapter 4 Guaranteed Message Delivery
Combining GMD and Monitoring

Guaranteed message delivery and monitoring are both powerful features in the
SmartSockets publish-subscribe architecture, and when combined, they enable
the easy development of robust, fault-tolerant programs. When using GMD,
monitoring is especially useful to help make decisions when recovering from
GMD failures.

The only restriction when using GMD with monitoring is that the delivery modes
T_IPC_DELIVERY_SOME and T_IPC_DELIVERY_ALL should not be used with
the MON_* message types. RTserver handles all the MON_* message types
internally, and does not support routing acknowledgments for these message
types.
TIBCO SmartSockets User’s Guide

Handling GMD Failures with RTclients and RTservers | 357
Handling GMD Failures with RTclients and RTservers

As discussed in Handling GMD Failures on page 341, recovery from
GMD_FAILURE messages is very application-specific, and thus SmartSockets
cannot provide a generic solution on its own. For example, when processing a
GMD_FAILURE message, the sender could cancel a transaction by sending
another message to all the RTclients that did receive the message. RTclient
recovery can be more complicated because each message sent is routed to all
RTclients subscribing to the destination subject. However, through the use of the
monitoring capabilities described in Chapter 5, Project Monitoring, a sending
RTclient can easily probe the state of the project and make recovery decisions
based on the monitoring information. In any case, it is essential that the reason for
the failure be ascertained by either the application or the administrator before the
message is re-sent. Re-sending the message before the cause of the failure is fixed
will only compound the failure.

In addition to the GMD_FAILURE connection process callback
TipcCbConnProcessGmdFailure that is created for all connections, RTclient’s
connection to RTserver by default has a process callback for GMD_FAILURE
message that uses TipcCbSrvProcessGmdFailure as the callback function.
TipcCbSrvProcessGmdFailure calls TipcSrvGmdMsgServerDelete to terminate
GMD in RTserver for the failed message.

TipcCbSrvProcessGmdFailure is intended as a sample callback that is designed
only to reclaim memory in RTserver when GMD fails. More sophisticated
programs should create their own process callbacks for GMD_FAILURE messages
to perform actions such as user-defined recovery procedures. See the reference
page for TipcCbSrvProcessGmdFailure in the TIBCO SmartSockets Application
Programming Interface reference for full details on this callback.

From a GMD_FAILURE process callback, the function
TipcSrvGmdMsgServerDelete can be used to notify RTserver to terminate GMD
for a specific message. For example:

if (!TipcSrvGmdServerDelete(msg)) {
 /* error */
}

 TIBCO SmartSockets User’s Guide

358 | Chapter 4 Guaranteed Message Delivery
From a GMD_FAILURE process callback, the function TipcSrvGmdMsgStatus can
be used to query RTserver for the GMD status of a specific message. For example:

if (!TipcSrvGmdMsgStatus(msg)) {
 /* error */
}

/* wait up to 10 seconds for RTserver to respond */
mt = TipcMtLookupByNum(T_MT_GMD_STATUS_RESULT);
if (mt == NULL) {
 /* error */
}
status_msg = TipcSrvMsgSearchType(10.0, mt);
if (status_msg == NULL) {
 /* error */
}
/* access fields from msg and make recovery decisions */
TIBCO SmartSockets User’s Guide

| 359
Chapter 5 Project Monitoring

The publish-subscribe architecture of SmartSockets allows RTclient processes to
easily send messages to each other, independent of where they reside on the
network. In addition to enabling easy development of distributed applications,
RTserver, RTmon, and RTclient processes also have monitoring capabilities and
naming services. These additional services help you to examine detailed
information about your project and determine where processes are located in
your network.

Topics

• Monitoring Overview, page 360

• Monitoring Composition, page 361

• Polling, page 382

• Watching, page 408

• Advanced Monitoring, page 426
 TIBCO SmartSockets User’s Guide

360 | Chapter 5 Project Monitoring
Monitoring Overview

From within an RTclient, hundreds of pieces of information can be gathered in
real time about all parts of a running SmartSockets project:

• RTclients — names, extension data, message buffers, message traffic statistics,
message types, options, CPU usage, memory usage, node, options, current
time, subscribed subjects, and so on

• RTservers — names, message buffers, message traffic statistics, connections,
options, CPU usage, memory usage, node, options, current time, and so on

• Subjects — names, RTclients that are subscribing, and so on

• Projects — names

This information can be polled once to provide a one-time snapshot of
information or watched to provide asynchronous updates when changes occur. A
monitoring request can specify either a specific object or all objects matching a
wildcard scope filter. The information is delivered to the requesting program in
standard message types, prefixed with T_MT_MON_ (for brevity, the T_MT_
portion is omitted from this point on). The fields of these monitoring message
types contain the information the RTclient is interested in.

Monitoring is built into SmartSockets, requiring no user-defined code. Just as
RTserver and RTclient are layered on top of the function of connections,
monitoring is layered on top of the RTserver and RTclient architecture. There is no
monitoring available for peer-to-peer connections or for programs that do not use
the SmartSockets API or C++ Class Library.

This chapter describes SmartSockets process monitoring, watching and polling
for information, and using the monitoring API, TipcMon*. The focus of this
chapter is on RTclients and RTservers using global connections. In rare cases, an
RTclient might need to use multiple connections to RTservers, using special
multiple connections instead of a single global connection. Monitoring this type
of connection requires the use of the TipcSrvMon*API instead of TipcMon*.
Although the monitoring tasks and concepts are similar to those described in this
chapter, an entirely different set of APIs is used. For more information on this type
of monitoring, see the TIBCO SmartSockets API Quick Reference and the TIBCO
SmartSockets Application Programming Interface reference.
TIBCO SmartSockets User’s Guide

Monitoring Composition | 361
Monitoring Composition

All monitoring of a SmartSockets project goes through RTserver. Typically, a
request for particular information is sent to RTserver, then RTserver proceeds in
one of these ways:

• RTserver accesses the information in its internal tables and sends it back to the
requesting RTclient.

• RTserver forwards the request to another RTclient or RTserver, which retrieves
the information and sends it back to the first RTserver (to be delivered back to
the requesting RTclient).

• RTserver notifies RTclient or RTserver to send the information whenever it
changes. When it does change, RTserver receives the information and sends it
to the RTclient that made the original request.

A request is initiated either:

• through the TipcMon* API functions, designed for monitoring the global
connection between an RTclient and RTserver

The TipcMon* functions can be used in conjunction with any of the other Tipc*
API functions that work with the global connection. They make it simple for
an RTclient to monitor a project, as well as exchange messages with other
RTclients.

• through the TipcSrvMon* API functions, designed for monitoring special
multiple connections between an RTclient and RTserver

The TipcSrvMon* functions can be used in conjunction with any of the other
Tipc* API functions designed to work with multiple connections, such as the
TipcSrvConn* APIs. For more information on using the TipcSrvMon* APIs to
monitor multiple connection projects, see the TIBCO SmartSockets API Quick
Reference and the TIBCO SmartSockets Application Programming Interface
reference.

• through an RTmon command

RTmon is a standard RTclient for monitoring that provides both a visual
point-and-click interface and access to monitoring information through a
command interface. Using RTmon is described in Chapter 6, Using RTmon,
on page 445.

Issuing a command in RTmon or calling a monitoring API function results in a
message, specifying the request, being sent to RTserver. These standard messages
for requesting information should never be constructed. You should always use
an API function or RTmon command to initiate a monitoring message.
 TIBCO SmartSockets User’s Guide

362 | Chapter 5 Project Monitoring
To initiate a monitoring request in an RTclient, call one of the functions in the
TipcMon* API. This sends a message of type MON_*_SET_WATCH (if watching)
or MON_*_POLL_CALL (if polling) to RTserver. The information is returned to
the program by an RTserver using a MON_*_STATUS or MON_*_POLL_RESULT
message. When the information returns, an RTclient message process callback
(created with TipcSrvProcessCbCreate) can be used to process the message.
Complete examples of polling and watching for information are shown in the
sections Polling on page 382 and Watching on page 408.

Where Monitoring Information Resides
The requested information resides in either an RTserver or an RTclient.
Information that resides in an RTserver, to which your client is directly connected,
is expected to be returned quickly. These are examples of the information that
reside in an RTserver:

• project names

• subjects in existence, and which RTclients are subscribed to them

• RTserver message buffer-related information

• generic RTserver process information (such as CPU time or memory usage)

• nodes on which all processes are running

• names and values of the options in RTserver

• connections between RTservers

These are examples of information that resides in an RTclient:

• extension data, which is data created by an RTclient

• RTclient message buffer-related information

• generic RTclient process information (such as CPU time or memory usage)

• names and values of the options in RTclient

• message types RTclient has defined

Information that resides in an RTclient or an indirect RTserver may or may not
come back quickly, depending on how busy the RTclient or the RTserver is. If
many incoming messages are buffered for an RTclient, the monitoring request
message is put on the queue of RTclient in priority order and is processed just like
any other message. If the queue is long, it can be some time before the request is
serviced and the results returned to the requesting program. The best way to
ensure that monitoring requests are serviced quickly is to assign high priorities to
the monitoring message types.
TIBCO SmartSockets User’s Guide

Monitoring Composition | 363
By default, all monitoring message types are initialized to the message type
priority (if set) or to the value of the option Default_Msg_Priority (if the message
type priority is unknown). If nothing is done to change the priority of a
monitoring message type, all monitoring requests are issued with priority zero
(the default value of the Default_Msg_Priority option in the RTclient issuing the
request). This can be changed using the TipcMtSetPriority API call, as described
in Priority on page 18, to change the priority of the MON_*_POLL_CALL and
MON_*_SET_WATCH message types. In a similar manner, the information
returned can be given higher priority by changing the priority on the
MON_*_POLL_RESULT and MON_*_STATUS message types, which are
described in detail later in this chapter.

Specifying Items to be Monitored
In TipcMon*Poll or TipcMon*SetWatch functions, common parameters are the
names of the RTclient, RTserver, subject, message type, or option to monitor. The
parameter can be the name of a specific type of object to monitor, a wildcarded
subject name to select multiple objects (for RTclient and RTserver names only), or
the constant T_IPC_MON_ALL. T_IPC_MON_ALL is used to specify all objects
of a certain type or all objects matching the wildcarded value in the option
Monitor_Scope (see the next section for details). In addition, the TipcMon*
functions with no parameters (such as TipcMonServerNamesPoll) also can be
thought of as having an implicit parameter, which is always T_IPC_MON_ALL.

The name parameter should be specified as a string (T_STR) and follow these
rules:

• when specifying a client_name, use either:

— the unique subject of the RTclient to monitor

— a wildcarded subject name to match many RTclients

— T_IPC_MON_ALL to monitor all RTclients in the project matching
Monitor_Scope

Here are examples:

/* EXAMPLE 1: Get general information on the RTclient
 identified by the unique subject "my_program" */
if (!TipcMonClientGeneralPoll("/my_program")) ...

/* EXAMPLE 2: Get general information on all RTclients */
if (!TipcMonClientGeneralPoll("/...")) ...
 TIBCO SmartSockets User’s Guide

364 | Chapter 5 Project Monitoring
• when specifying a server_name, use either:

— the unique subject of the RTserver to monitor

— a wildcarded subject name to match many RTservers

— T_IPC_MON_ALL to monitor all RTservers in the RTserver group
matching Monitor_Scope

• when specifying a subject_name, use the name of the subject to monitor or
T_IPC_MON_ALL to monitor all subjects in the project matching
Monitor_Scope

• when specifying a msg_type, use the name of the message type to monitor or
T_IPC_MON_ALL to monitor all message types created in the RTclient

• when specifying an option_name, use the name of the option to monitor or
T_IPC_MON_ALL to monitor all options in RTclient or RTserver

When a wildcarded value or the T_IPC_MON_ALL value is used, the request is
sent to all matching RTclients and RTservers that hold the information. In this
case, there are multiple responses and an RTclient message process callback
should be used to process the results.

If a poll is initiated on an item that does not exist (for example, no subject exists
that matches subject_name), the poll fails and no message is returned. If a watch is
initiated on an item that does not exist, RTserver or RTclient saves the request and
services it once the item becomes available. In both polls and watchs, it is
dangerous to block indefinitely and wait for the result of a poll or watch to come
back. Always give a finite timeout when waiting for monitoring results to return.
TIBCO SmartSockets User’s Guide

Monitoring Composition | 365
Monitor Scope and T_IPC_MON_ALL
The Monitor_Scope option specifies the level of interest for SmartSockets
monitoring in those monitoring categories with no parameters (such as RTclient
names poll) or an RTclient or RTserver parameter of T_IPC_MON_ALL (such as
RTclient time watch). Monitor_Scope acts as a filter that prevents a large project
from overloading a monitoring program. The default is "/*", which matches all
subject names at the first level of the hierarchical subject namespace. All
monitoring information is enabled (all filtering is disabled) if Monitor_Scope is
set to "/...", which matches all names. The value "/..." should be used with
caution on large projects, as this gathers monitoring information for the entire
project, and may cause noticeable performance degradation.

RTclient and RTserver monitoring parameters allow a wildcard subject name to be
used for matching because the unique subject of an RTserver or RTclient cannot be
a wildcarded value. Subject monitoring parameters do not allow a wildcard
subject name to be used for matching because subject names can use wildcards,
and thus wildcard subject names in monitoring requests are treated literally and
are not expanded to all matching subjects. For example, a monitoring request to
watch all subscribers to the subject "/stocks/..." is ambiguous (that is, does the
monitoring request want only the subscribers for the wildcard subject
"/stocks/..." or the subscribers for all subjects matching "/stocks/..."?).
There is a way to get a matching list for subject monitoring through the use of the
T_IPC_MON_ALL value, in which case all subjects matching the value of the
option Monitor_Scope are used.

The Monitor_Scope option is not used for option names and message type names,
but these two types instead use T_IPC_MON_ALL to indicate that all objects
should be monitored. T_IPC_MON_ALL has two meanings:

• for subject names, RTclient names, and RTserver names, T_IPC_MON_ALL
means to use the value of the Monitor_Scope option

• for all other names, such as option names and message type names,
T_IPC_MON_ALL means to use all values

The Monitor_Scope option makes it easy to write programs with
T_IPC_MON_ALL to monitor a certain portion of the hierarchical subject
namespace. Simply by changing Monitor_Scope (for example, from
"/stocks/computers/..." to "/stocks/auto/..."), the entire
T_IPC_MON_ALL-using program can change its monitoring focus without any
code changes.
 TIBCO SmartSockets User’s Guide

366 | Chapter 5 Project Monitoring
Watching or Polling: When to Use
As described earlier, information is either polled or watched. Polling should be
used in these situations:

• Collect information that cannot be watched (such as an RTclient’s message
types or RTclient extension data).

• Collect information that the program must have before continuing. An
example of this is to ensure that the needed RTclients are running in a project
before continuing.

• Collect information that only needs to be monitored occasionally or at regular
intervals, not every time it changes (for example, if you only want to see the
names of all subjects once for each minute).

Watching, on the other hand, should be used in these situations:

• Collect information that cannot be polled (for example, the messages that an
RTclient is receiving).

• Collect information that needs to be looked at whenever it changes (for
example, when an RTclient subscribes or unsubscribes to a subject).

• Collect information that may or may not be available. If you do not know that
the RTclient that holds the information of interest is available, watching
should be used as RTserver maintains the watch information and primes the
RTclient with the proper settings when it becomes available.

Of course, watching and polling can be used together within the same RTclient to
gather information as needed.
TIBCO SmartSockets User’s Guide

Monitoring Composition | 367
Monitoring Message Types
The core of SmartSockets monitoring is the message types. The message types can
be thought of as describing the monitoring protocol function. These message
types are accessible through various bindings: a C API, a C++ API, and the
RTmon command interface.

These message types fall into one of these general categories:

• MON_*_POLL_CALL — initiates a poll request

• MON_*_POLL_RESULT — holds results of a poll request

• MON_*_SET_WATCH — initiates a watch request

• MON_*_STATUS — holds results of a watch request

The table lists the monitoring message types and their associated grammar. The
T_MT_ prefix is omitted from the message types for the sake of brevity.

Message Type (T_MT_ is omitted) Grammar

MON_CLIENT_BUFFER_POLL_CALL str /*client_name*/

MON_CLIENT_BUFFER_POLL_RESULT str /*client_name*/

int4 /*msg_queue_count*/

int4 /*msg_queue_byte_count*/

int4 /*read_buffer_count*/

int4 /*write_buffer_count*/

MON_CLIENT_BUFFER_SET_WATCH str /*client_name*/

bool /*watch_status*/

MON_CLIENT_BUFFER_STATUS str /*client_name*/

int4 /*msg_queue_count*/

int4 /*msg_queue_byte_count*/

int4 /*read_buffer_count*/

int4 /*write_buffer_count*/

MON_CLIENT_CB_POLL_CALL str /*client_name*/
 TIBCO SmartSockets User’s Guide

368 | Chapter 5 Project Monitoring
MON_CLIENT_CB_POLL_RESULT str /*client_name*/

int4 /*num_global_read_cb*/

int4 /*num_global_write_cb*/

int4 /*num_global_process_cb*/

int4 /*num_global_queue_cb*/

int4 /*num_default_cb*/

int4 /*num_error_cb*/

int4 /*num_server_create_cb*/

int4 /*num_server_destroy_cb*/

MON_CLIENT_CONGESTION_SET_WATCH str /*client_name*/

int4 /*high_water*/

int4 /*low_water*/

bool /*watch_status*/

MON_CLIENT_CONGESTION_STATUS int4 /*size*/

int4 /*threshold*/

str /*client_name*/

bool /*high_water*/

MON_CLIENT_CPU_POLL_CALL str /*client_name*/

MON_CLIENT_CPU_POLL_RESULT str /*client_name*/

real4 /*cpu_utilization*/

MON_CLIENT_EXT_POLL_CALL str /*client_name*/

MON_CLIENT_EXT_POLL_RESULT str /*client_name*/

int4 /*number of named fields*/

{named_field}

MON_CLIENT_GENERAL_POLL_CALL str /*client_name*/

Message Type (T_MT_ is omitted) Grammar
TIBCO SmartSockets User’s Guide

Monitoring Composition | 369
MON_CLIENT_GENERAL_POLL_RESULT str /*client_name*/

str /*ident*/

str /*node_name*/

str /*user_name*/

int4 /*pid*/

str /*project*/

str /*server_name*/

str /*arch*/

int4 /*current_sbrk*/

int4 /*sbrk_delta_since_startup*/

int2 /*int_format*/

int2 /*real_format*/

str /*logical_conn_name_to_server*/

int4_array /*counted_licenses*/

str_array /*extra_licenses*/

str_array /*subject_subscribe*/

MON_CLIENT_INFO_POLL_CALL str /*client_name*/

Message Type (T_MT_ is omitted) Grammar
 TIBCO SmartSockets User’s Guide

370 | Chapter 5 Project Monitoring
MON_CLIENT_INFO_POLL_RESULT str /*client_name*/

str /*ident*/

str /*node_name*/

str /*user_name*/

int4 /*pid*/

str /*project*/

str /*server_name*/

str /*arch*/

int4 /*current_sbrk*/

int4 /*sbrk_delta_since_startup*/

int2 /*int_format*/

int2 /*real_format*/

str /*logical_conn_name_to_server*/

int4 /*num_subscribes*/

real4 /*cpu_utilization*/

MON_CLIENT_MSG_RECV_SET_WATCH str /*client_name*/

str /*msg_type_name*/

bool /*watch_status*/

MON_CLIENT_MSG_RECV_STATUS str /*client_name*/

msg /*recv_msg*/

bool /*insert_flag*/

int4 /*queue_pos*/

binary /*msg_id*/

binary /*queue_msg_id_array*/

MON_CLIENT_MSG_SEND_SET_WATCH str /*client_name*/

str /*msg_type_name*/

bool /*watch_status*/

Message Type (T_MT_ is omitted) Grammar
TIBCO SmartSockets User’s Guide

Monitoring Composition | 371
MON_CLIENT_MSG_SEND_STATUS str /*client_name*/

msg /*send_msg*/

MON_CLIENT_MSG_TRAFFIC_POLL_CALL str /*client_name*/

MON_CLIENT_MSG_TRAFFIC_POLL_RESULT str /*client_name*/

int4 /*total_msg_send*/

int4 /*total_msg_recv*/

int4 /*total_byte_send*/

int4 /*total_byte_recv*/

int8 /*total_msg_send_8*/

int8 /*total_msg_recv_8*/

int8 /*total_byte_send_8*/

int8 /*total_byte_recv_8*/

MON_CLIENT_MSG_TYPE_EX_POLL_CALL str /*client_name*/

str /*msg_type_name*/

Message Type (T_MT_ is omitted) Grammar
 TIBCO SmartSockets User’s Guide

372 | Chapter 5 Project Monitoring
MON_CLIENT_MSG_TYPE_EX_POLL_RESULT str /*client_name*/

str_array /*msg_type_name*/

int4_array /*num*/

str_array /*grammar*/

int4_array /*priority_known*/

int2_array /*priority*/

int4_array /*delivery_mode*/

int4_array /*user_prop*/

int4_array /*num_read_cb*/

int4_array /*num_write_cb*/

int4_array /*num_process_cb*/

int4_array /*num_queue_cb*/

int8_array /*total_msg_send*/

int8_array /*total_msg_recv*/

int8_array /*total_byte_send*/

int8_array /*total_byte_recv*/

MON_CLIENT_MSG_TYPE_POLL_CALL str /*client_name*/

str /*msg_type_name*/

Message Type (T_MT_ is omitted) Grammar
TIBCO SmartSockets User’s Guide

Monitoring Composition | 373
MON_CLIENT_MSG_TYPE_POLL_RESULT str /*client_name*/

{str /*msg_type_name*/

int4 /*num*/

str /*grammar*/

int4 /*priority_known*/

int2 /*priority*/

int4 /*delivery_mode*/

int4 /* user_prop*/

int4 /*num_read_cb*/

int4 /*num_write_cb*/

int4 /*num_process_cb*/

int4 /*num_queue_cb*/

int4 /*total_msg_send*/

int4 /*total_msg_recv*/

int4 /*total_byte_send*/

int4 /*total_byte_recv*/}

MON_CLIENT_NAMES_NUM_POLL_CALL /*empty*/

MON_CLIENT_NAMES_NUM_POLL_RESULT int4 /*num_clients*/

MON_CLIENT_NAMES_POLL_CALL /*empty*/

MON_CLIENT_NAMES_POLL_RESULT str_array /*client_names*/

str_array /*client_info_strs*/

str_array /*server_names*/

MON_CLIENT_NAMES_SET_WATCH bool /*watch_status*/

Message Type (T_MT_ is omitted) Grammar
 TIBCO SmartSockets User’s Guide

374 | Chapter 5 Project Monitoring
MON_CLIENT_NAMES_STATUS str_array /*client_names*/

str_array /*client_info_strs*/

str_array /*server_names*/

str /*created_client*/

str /*destroyed_client*/

str /*reason_for_disconnect*/

MON_CLIENT_OPTION_POLL_CALL str /*client_name*/

str /*option_name*/

MON_CLIENT_OPTION_POLL_RESULT str /*client_name*/

{str /*option_name*/

int2 /*type*/

str /*value_str*/

bool /*required*/

str_array /*legal_vals*/}

MON_CLIENT_SUBJECT_EX_POLL_CALL str /*client_name*/

str /*subject_name*/

MON_CLIENT_SUBJECT_EX_POLL_RESULT str /*client_name*/

str_array /*subject_name*/

int8_array /*total_msg_send*/

int8_array /*total_msg_recv*/

int8_array /*total_byte_send*/

int8_array /*total_byte_recv*/

MON_CLIENT_SUBJECT_POLL_CALL str /*client_name*/

str /*subject_name*/

Message Type (T_MT_ is omitted) Grammar
TIBCO SmartSockets User’s Guide

Monitoring Composition | 375
MON_CLIENT_SUBJECT_POLL_RESULT str /*client_name*/

{str /*subject_name*/

int4 /*total_msg_send*/

int4 /*total_msg_recv*/

int4 /*total_byte_send*/

int4 /*total_byte_recv*/}

MON_CLIENT_SUBSCRIBE_NUM_POLL_CALL str /*client_name*/

MON_CLIENT_SUBSCRIBE_NUM_POLL_RESULT str_array /*client_names*/

int4_array /*num_subscribes*/

MON_CLIENT_SUBSCRIBE_POLL_CALL str /*client_name*/

MON_CLIENT_SUBSCRIBE_POLL_RESULT {str /*client_name*/

str_array /*subscribe_subject_names*/}

MON_CLIENT_SUBSCRIBE_SET_WATCH str /*client_name*/

bool /*watch_status*/

MON_CLIENT_SUBSCRIBE_STATUS str /*client_name*/

str_array /*subscribe_subject_names*/

str /*start_subject*/

str /*stop_subject*/

MON_CLIENT_TIME_POLL_CALL str /*client_name*/

MON_CLIENT_TIME_POLL_RESULT str /*client_name*/

real8 /*current_time*/

str /*current_time_str*/

real8 /*wall_time*/

str /*wall_time_str*/

real8 /*cpu_time*/

int4 /*frame_count*/

Message Type (T_MT_ is omitted) Grammar
 TIBCO SmartSockets User’s Guide

376 | Chapter 5 Project Monitoring
MON_CLIENT_TIME_SET_WATCH str /*client_name*/

bool /*watch_status*/

MON_CLIENT_TIME_STATUS str /*client_name*/

real8 /*current_time*/

str /*current_time_str*/

real8 /*wall_time*/

str /*wall_time_str*/

real8 /*cpu_time*/

int4 /*frame_count*/

MON_CLIENT_VERSION_POLL_CALL str /*client_name*/

MON_CLIENT_VERSION_POLL_RESULT str /*client_name*/

int4 /*version*/

MON_PROJECT_NAMES_POLL_CALL /*empty*/

MON_PROJECT_NAMES_POLL_RESULT str_array /*project_names*/

MON_PROJECT_NAMES_SET_WATCH bool /*watch_status*/

MON_PROJECT_NAMES_STATUS str_array /*project_names*/

str /*created_project*/

str /*destroyed_project*/

MON_SERVER_BUFFER_POLL_CALL str /*server_name*/

str /*connected_process_name*/

MON_SERVER_BUFFER_POLL_RESULT str /*server_name*/

{str /*connected_process_name*/

int4 /*msg_queue_count*/

int4 /*msg_queue_byte_count*/

int4 /*read_buffer_count*/

int4 /*write_buffer_count*/}

Message Type (T_MT_ is omitted) Grammar
TIBCO SmartSockets User’s Guide

Monitoring Composition | 377
MON_SERVER_CONGESTION_SET_WATCH str /*server_name*/

str /*connected_process_name*/

int4 /*high_water*/

int4 /*low_water*/

bool /*watch_status*/

MON_SERVER_CONGESTION_STATUS int4 /*size*/

int4 /*threshold*/

str /*server_name*/

str /*connected_process_name*/

bool /*high_water*/

MON_SERVER_CONN_POLL_CALL /*empty*/

MON_SERVER_CONN_POLL_RESULT str_array /*server1_names*/

str_array /*server2_names*/

str_array /*conn_names*/

int4_array /*weights*/

MON_SERVER_CONN_SET_WATCH bool /*watch_status*/

MON_SERVER_CONN_STATUS str_array /*server1_names*/

str_array /*server2_names*/

str_array /*conn_names*/

int4_array /*weights*/

str /*start_server1*/

str /*start_server2*/

str /*stop_server1*/

str /*stop_server2*/

MON_SERVER_CPU_POLL_CALL str /*server_name*/

MON_SERVER_CPU_POLL_RESULT str /*server_name*/

real4 /*cpu_utilization*/

Message Type (T_MT_ is omitted) Grammar
 TIBCO SmartSockets User’s Guide

378 | Chapter 5 Project Monitoring
MON_SERVER_GENERAL_POLL_CALL str /*server_name*/

MON_SERVER_GENERAL_POLL_RESULT str /*server_name*/

str /*ident*/

str /*node_name*/

str /*user_name*/

int4 /*pid*/

str /*arch*/

int4 /*current_sbrk*/

int4 /*sbrk_delta_since_startup*/

int2 /*int_format*/

int2 /*real_format*/

str /*cmd_file_name*/

bool /*no_daemon_flag*/

bool /*cmd_mode_flag*/

str_array /*direct_client_names*/

str_array /*direct_server_names*/

str_array /*server_subscribes*/

str_array /*client_subscribes*/

MON_SERVER_MAX_CLIENT_LICENSES_SET_WATCH str /*server_name*/

bool /*watch_status*/

MON_SERVER_MAX_CLIENT_LICENSES_STATUS int4 /*max_licenses*/

str /*client_name*/

str /*server_name*/

MON_SERVER_MSG_TRAFFIC_EX_POLL_CALL str /*server_name*/

str /*connected_process_name*/

Message Type (T_MT_ is omitted) Grammar
TIBCO SmartSockets User’s Guide

Monitoring Composition | 379
MON_SERVER_MSG_TRAFFIC_EX_POLL_RESULT str /*server_name*/

str_array /*connected_process_name*/

int8_array /*total_msg_send*/

int8_array /*total_msg_recv*/

int8_array /*total_byte_send*/

int8_array /*total_byte_recv*/

MON_SERVER_MSG_TRAFFIC_POLL_CALL str /*server_name*/

str /*connected_process_name*/

MON_SERVER_MSG_TRAFFIC_POLL_RESULT str /*server_name*/

{str /*connected_process_name*/

int4 /*total_msg_send*/

int4 /*total_msg_recv*/

int4 /*total_byte_send*/

int4 /*total_byte_recv*/}

MON_SERVER_NAMES_POLL_CALL /*empty*/

MON_SERVER_NAMES_POLL_RESULT str_array /*server_names*/

str_array /*server_info_strs*/

MON_SERVER_NAMES_SET_WATCH bool /*watch_status*/

MON_SERVER_NAMES_STATUS str_array /*server_names*/

str_array /*server_info_strs*/

str /*created_server*/

str /*destroyed_server*/

MON_SERVER_OPTION_POLL_CALL str /*server_name*/

str /*option_name*/

Message Type (T_MT_ is omitted) Grammar
 TIBCO SmartSockets User’s Guide

380 | Chapter 5 Project Monitoring
MON_SERVER_OPTION_POLL_RESULT str /*server_name*/

{str /*option_name*/

int2 /*type*/

str /*value_str*/

bool /*required*/

str_array /*legal_vals*/}

MON_SERVER_ROUTE_POLL_CALL str /*orig_server_name*/

str /*dest_server_name*/

MON_SERVER_ROUTE_POLL_RESULT str /*orig_server_name*/

{str /*dest_server_name*/

str_array /*connected_server_names*/

int4 /*distance*/

str_array /*route_to_server*/}

MON_SERVER_START_TIME_POLL_CALL str /*server_name*/

MON_SERVER_START_TIME_POLL_RESULT str /*server_name*/

real8 /*start_time*/

real8 /*elapsed_time*/

MON_SERVER_TIME_POLL_CALL str /*server_name*/

MON_SERVER_TIME_POLL_RESULT str /*server_name*/

real8 /*wall_time*/

str /*wall_time_str*/

real8 /*cpu_time*/

MON_SERVER_VERSION_POLL_CALL str /*server_name*/

MON_SERVER_VERSION_POLL_RESULT str /*server_name*/

int4 /*version*/

MON_SUBJECT_NAMES_POLL_CALL /*empty*/

Message Type (T_MT_ is omitted) Grammar
TIBCO SmartSockets User’s Guide

Monitoring Composition | 381
MON_SUBJECT_NAMES_POLL_RESULT str_array /*subject_names*/

MON_SUBJECT_NAMES_SET_WATCH bool /*watch_status*/

MON_SUBJECT_NAMES_STATUS str_array /*subject_names*/

str /*created_subject*/

str /*destroyed_subject*/

MON_SUBJECT_SUBSCRIBE_POLL_CALL str /*subject_name*/

MON_SUBJECT_SUBSCRIBE_POLL_RESULT {str /*subject_name*/

str_array /*subscribe_client_names*/}

MON_SUBJECT_SUBSCRIBE_SET_WATCH str /*subject_name*/

bool /*watch_status*/

MON_SUBJECT_SUBSCRIBE_STATUS str /*subject_name*/

str_array /*subscribe_client_names*/

str /*start_client*/

str /*stop_client*/

Message Type (T_MT_ is omitted) Grammar
 TIBCO SmartSockets User’s Guide

382 | Chapter 5 Project Monitoring
Polling

Polling for information allows you to receive a one-time snapshot of information.
Polling can be done at regular time intervals by issuing poll requests repeatedly.
All polling of a project goes through RTserver. Typically, a request for particular
information is sent to RTserver, then RTserver retrieves the information from its
internal tables, from other RTservers, or from RTclients and sends it back to the
requesting program.

The type of information polled about projects, RTservers, RTclients, and subjects,
is shown in the table. The table lists the entity from where the information is
available (RTclient, RTserver, subject), a brief description of the information
available, whether the information can be watched as well as polled, and the final
column shows the TipcMon* API call that initiates the polling and then the
monitoring message type returned. The prefix T_MT_ is omitted from the
message type for the sake of brevity.

Entity Information
Available Watch? API Function and Message Type Returned

(T_MT_ omitted)

Project Names Yes TipcMonProjectNamesPoll

MON_PROJECT_NAMES_POLL_RESULT

RTclient Read and write
message buffers

Yes TipcMonClientBufferPoll

MON_CLIENT_BUFFER_POLL_RESULT

RTclient Callback summary No TipcMonClientCbPoll

MON_CLIENT_CB_POLL_RESULT

RTclient CPU percentage
used

No TipcMonClientCpuPoll

MON_CLIENT_CPU_POLL_RESULT

RTclient Extension data No TipcMonClientExtPoll

MON_CLIENT_EXT_POLL_RESULT

RTclient General (process) No TipcMonClientGeneralPoll

MON_CLIENT_GENERAL_POLL_RESULT

RTclient General information No TipcMonClientInfoPoll

MON_CLIENT_INFO_POLL_RESULT
TIBCO SmartSockets User’s Guide

Polling | 383
RTclient Message traffic No TipcMonClientMsgTrafficPoll

MON_CLIENT_MSG_TRAFFIC_POLL_RESULT

RTclient Message types No TipcMonClientMsgTypeExPoll

MON_CLIENT_MSG_TYPE_EX_POLL_RESULT

RTclient Names Yes TipcMonClientNamesPoll

MON_CLIENT_NAMES_POLL_RESULT

RTclient Options No TipcMonClientOptionPoll

MON_CLIENT_OPTION_POLL_RESULT

RTclient Summary of
messages sent or
received from a
subject

No TipcMonClientSubjectExPoll

MON_CLIENT_SUBJECT_EX_POLL_RESULT

RTclient Subjects subscribing
to

Yes TipcMonClientSubscribePoll

MON_CLIENT_SUBSCRIBE_POLL_RESULT

RTclient Wall time, CPU time
used

Yes TipcMonClientTimePoll

MON_CLIENT_TIME_POLL_RESULT

RTclient Version No TipcMonClientVersionPoll

MON_CLIENT_VERSION_POLL_RESULT

RTserver Number of
RTclients in a
project

No TipcMonClientNamesNumPoll

MON_CLIENT_NAMES_NUM_POLL_RESULT

RTserver Number of subjects
a client subscribes
to

No TipcMonClientSubscribeNumPoll

MON_CLIENT_SUBSCRIBE_NUM_POLL_RESULT

RTserver Read and write
message buffers

No TipcMonServerBufferPoll

MON_SERVER_BUFFER_POLL_RESULT

RTserver Connections Yes TipcMonServerConnPoll

MON_SERVER_CONN_POLL_RESULT

Entity Information
Available Watch? API Function and Message Type Returned

(T_MT_ omitted)
 TIBCO SmartSockets User’s Guide

384 | Chapter 5 Project Monitoring
Some information that can be polled can also be watched. See Watching on
page 408 for more details on watching information.

RTserver CPU percentage
used

No TipcMonServerCpuPoll

MON_SERVER_CPU_POLL_RESULT

RTserver General (process) No TipcMonServerGeneralPoll

MON_SERVER_GENERAL_POLL_RESULT

RTserver Message traffic No TipcMonServerMsgTrafficExPoll

MON_SERVER_MSG_TRAFFIC_EX_POLL_RESULT

RTserver Names Yes TipcMonServerNamesPoll

MON_SERVER_NAMES_POLL_RESULT

RTserver Options No TipcMonServerOptionPoll

MON_SERVER_OPTION_POLL_RESULT

RTserver Routes No TipcMonServerRoutePoll

MON_SERVER_ROUTE_POLL_RESULT

RTserver Start time and
elapsed time

No TipcMonServerStartTimePoll

MON_SERVER_START_TIME_POLL_RESULT

RTserver Wall time, CPU time
used

No TipcMonServerTimePoll

MON_SERVER_TIME_POLL_RESULT

RTserver Version No TipcMonServerVersionPoll

MON_SERVER_VERSION_POLL_RESULT

subject Names Yes TipcMonSubjectNamesPoll

MON_SUBJECT_NAMES_POLL_RESULT

subject Clients subscribing
to

Yes TipcMonSubjectSubscribePoll

MON_SUBJECT_SUBSCRIBE_POLL_RESULT

Entity Information
Available Watch? API Function and Message Type Returned

(T_MT_ omitted)
TIBCO SmartSockets User’s Guide

Polling | 385
To initiate a polling request in your program, call an API function,
TipcMonTypePoll, where Type is the kind of information you wish to request. For
example, a call to TipcMonSubjectSubscribePoll initiates a poll for information
about which RTclients are subscribing to a specified subject, and a call to
TipcMonClientTimePoll initiates a poll for time information about an RTclient.

Calling a TipcMonTypePoll function causes a message of type
MON_TYPE_POLL_CALL to be sent to RTserver, where TYPE is the kind of
information being requested. This TYPE is very similar to the Type used in the
name of the API function as shown in these examples:

• TipcMonSubjectSubscribePoll sends a message of type
MON_SUBJECT_SUBSCRIBE_POLL_CALL

• TipcMonClientTimePoll sends a message of type
MON_CLIENT_TIME_POLL_CALL

RTserver may already hold the information requested, RTserver may need to ask
other RTservers for the information, or RTserver may need to forward the
message to one or more RTclients to retrieve the information. If RTserver holds the
information, the response should come back quickly. For example, you can poll
for the names of all projects that RTserver knows about.

If the RTclient has the information, the response may or may not come back
quickly depending on how busy the RTclient is. For example, you can poll for
information about an RTclient’s message buffers. If RTserver must gather the
requested information from an RTclient, the RTclient must read and process
messages through calls to TipcSrvMainLoop, TipcSrvMsgNext, TipcMsgSearch, or
TipcMsgSearchType in order for the poll request to be returned.

RTserver returns requested information in a MON_TYPE_POLL_RESULT
message, where TYPE matches the TYPE in the MON_TYPE_POLL_CALL that
initiated the request. The message types are in pairs of MON_TYPE_POLL_CALL
and MON_TYPE_POLL_RESULT as shown in these examples:

• TipcMonSubjectSubscribePoll sends a message of type
MON_SUBJECT_SUBSCRIBE_POLL_CALL, and a message of type
MON_SUBJECT_SUBSCRIBE_POLL_RESULT is returned by RTserver.

• TipcMonClientTimePoll sends a message of type
MON_CLIENT_TIME_POLL_CALL, and a message of type
MON_CLIENT_TIME_POLL_RESULT is returned by RTserver.

A complete listing and description of these message types are described in Polling
Message Types on page 389. The message grammars for all monitoring message
types are described in Monitoring Message Types on page 367.
 TIBCO SmartSockets User’s Guide

386 | Chapter 5 Project Monitoring
Processing Poll Results
When the results of a poll are returned in a MON_TYPE_POLL_RESULT message,
the message is processed in one of these two ways:

• blocking and using the API function TipcSrvMsgSearch to search for the
message containing the poll results

• using an RTclient message process callback (created with
TipcSrvProcessCbCreate)

Typically, after performing a one-time poll for information, the program blocks
and waits for the result before continuing. For example, you can poll to find out if
any RTclients are subscribing to a subject prior to sending a message. When
polling often, or watching for information, using callbacks is usually the preferred
method, as it is unclear when the monitoring results may be returned to the
program. The sections that follow present examples of how to process poll results
using both methods.

Using the TipcMsgSearchType Function

This example shows how to issue a poll request and then use TipcMsgSearchType
to block and search for the results (for up to 10 seconds):

T_IPC_MT mt;
T_IPC_MSG msg;
T_STR *project_names;
T_INT4 num_project_names;
/* send the poll request out to RTserver */
if (!TipcMonProjectNamesPoll()) {
 /* error */
}

mt = TipcMtLookupByNum(T_MT_MON_PROJECT_NAMES_POLL_RESULT);
if (mt == NULL) {
 /* error */
}

/* wait up to 10 seconds for the poll result */
msg = TipcSrvMsgSearchType(10.0, mt);
if (msg == NULL) {
 /* error */
}
TIBCO SmartSockets User’s Guide

Polling | 387
/* access the fields of the returned message */
if (!TipcMsgSetCurrent(msg, 0)) {
 /* error */
}

if (!TipcMsgNextStrArray(msg, &project_names, &num_project_names))
{
 /* error */
}

/* do whatever here with the poll results */

/* clean up */
if (!TipcMsgDestroy(msg)) {
 /* error */
}

 TIBCO SmartSockets User’s Guide

388 | Chapter 5 Project Monitoring
Using Callbacks

This example shows how to use an RTclient message process callback (created
with TipcSrvProcessCbCreate) to process the message containing the poll result:

/*..process_project_names_poll - callback to process
 MON_PROJECT_NAMES_POLL_RESULT */
static void T_ENTRY process_project_names_poll(

T_IPC_CONN conn,
T_IPC_CONN_PROCESS_CB_DATA data,
T_CB_ARG arg)

{
 T_STR *project_names;
 T_INT4 num_project_names;

 /* access the fields of the returned message */
 if (!TipcMsgSetCurrent(data->msg, 0)) {
 /* error */
 }

 if (!TipcMsgNextStrArray(data->msg, &project_names,
 &num_project_names)) {
 /* error */
 }

 /* do whatever here with poll results */
} /* process_project_names_poll */

/* === */
/* ... later, in main program */

T_IPC_MT mt;

/* create callback to process MON_PROJECT_NAMES poll results */
mt = TipcMtLookupByNum(T_MT_MON_PROJECT_NAMES_POLL_RESULT);
if (mt == NULL) {
 /* error */
}

if (TipcSrvProcessCbCreate(mt, process_project_names_poll, NULL)
 == NULL){
 /* error */
}

/* send the poll request out to RTserver */
if (!TipcMonProjectNamesPoll()) {
 /* error */
}

/* TipcSrvMainLoop may be called here */
TIBCO SmartSockets User’s Guide

Polling | 389
Polling Message Types
This section contains a complete listing of each polling message type. For each
message pair (MON_TYPE_POLL_CALL and MON_TYPE_POLL_RESULT), a
description of the type of information, the API function, and where the
information is collected from is shown. Information gathered from RTserver
should come back quickly, while information gathered from RTclient may or may
not.

The T_MT_ prefix is omitted from the name of each message type for the sake of
brevity.

MON_CLIENT_BUFFER_POLL_*

The MON_CLIENT_BUFFER_POLL_CALL message type is used to request
message-related buffer information about one or more RTclients in a project. The
polled RTclients respond by sending back
MON_CLIENT_BUFFER_POLL_RESULT messages.

API Function: TipcMonClientBufferPoll

Message Initiated: MON_CLIENT_BUFFER_POLL_CALL

Message Returned: MON_CLIENT_BUFFER_POLL_RESULT

Info Gathered From: RTclient

MON_CLIENT_CB_POLL_*

The MON_CLIENT_CB_POLL_CALL message type is used to request callback
information about one or more RTclients in a project. The polled RTclients respond
by sending back a MON_CLIENT_CB_POLL_RESULT message.

API Function: TipcMonClientCbPoll

Message Initiated: MON_CLIENT_CB_POLL_CALL

Message Returned: MON_CLIENT_CB_POLL_RESULT

Info Gathered From: RTclient
 TIBCO SmartSockets User’s Guide

390 | Chapter 5 Project Monitoring
MON_CLIENT_CPU_POLL_*

The MON_CLIENT_CPU_POLL_CALL message type is used to request CPU
usage information about one or more RTclients in a project. The polled RTclients
respond by sending back MON_CLIENT_CPU_POLL_RESULT messages.

API Function: TipcMonClientCpuPoll

Message Initiated: MON_CLIENT_CPU_POLL_CALL

Message Returned: MON_CLIENT_CPU_POLL_RESULT

Info Gathered From: RTclient

MON_CLIENT_EXT_POLL_*

The MON_CLIENT_EXT_POLL_CALL message type is used to request RTclient
extension data. Extension data is information created by an RTclient. You must
use the TipcMonExt* APIs to define and update the fields of an RTclient’s
MON_CLIENT_EXT_POLL_RESULT message for extension data. The polled
RTclients respond by sending back MON_CLIENT_EXT_POLL_RESULT
messages.

API Function: TipcMonClientExtPoll

Message Initiated: MON_CLIENT_EXT_POLL_CALL

Message Returned: MON_CLIENT_EXT_POLL_RESULT

Info Gathered From: RTclient

MON_CLIENT_GENERAL_POLL_*

The MON_CLIENT_GENERAL_POLL_CALL message type is used to request
general information about one or more RTclients in a project. The polled RTclients
respond by sending back a MON_CLIENT_GENERAL_POLL_RESULT message.

API Function: TipcMonClientGeneralPoll

Message Initiated: MON_CLIENT_GENERAL_POLL_CALL

Message Returned: MON_CLIENT_GENERAL_POLL_RESULT

Info Gathered From: RTclient
TIBCO SmartSockets User’s Guide

Polling | 391
MON_CLIENT_INFO_POLL_*

The MON_CLIENT_INFO_POLL_CALL message type is used to request general
information, including CPU usage, about one or more RTclients in a project. The
polled RTclients respond by sending back MON_CLIENT_INFO_POLL_RESULT
messages.

API Function: TipcMonClientInfoPoll

Message Initiated: MON_CLIENT_INFO_POLL_CALL

Message Returned: MON_CLIENT_INFO_POLL_RESULT

Info Gathered From: RTclient

MON_CLIENT_MSG_TRAFFIC_POLL_*

The MON_CLIENT_MSG_TRAFFIC_POLL_CALL message type is used to
request message traffic information about one or more RTclients in a project. The
polled RTclients respond by sending back a
MON_CLIENT_MSG_TRAFFIC_POLL_RESULT message.

API Function: TipcMonClientMsgTrafficPoll

Message Initiated: MON_CLIENT_MSG_TRAFFIC_POLL_CALL

Message Returned: MON_CLIENT_MSG_TRAFFIC_POLL_RESULT

Info Gathered From: RTclient

MON_CLIENT_MSG_TYPE_EX_POLL_*

The MON_CLIENT_MSG_TYPE_EX_POLL_CALL message type is used to
request message type information about one or more RTclients in a project. The
polled RTclients respond by sending back a
MON_CLIENT_MSG_TYPE_POLL_EX_RESULT message.

API Function: TipcMonClientMsgTypeExPoll

Message Initiated: MON_CLIENT_MSG_TYPE_EX_POLL_CALL

Message Returned: MON_CLIENT_MSG_TYPE_EX_POLL_RESULT

Info Gathered From: RTclient

This poll supersedes the MON_CLIENT_MSG_TYPE_POLL_* poll for new
development. See TipcMonClientMsgTypePoll in the TIBCO SmartSockets
Application Programming Interface guide for more information. The
MON_CLIENT_MSG_TYPE_POLL_* is retained for compatibility with clients
prior to release 6.7.
 TIBCO SmartSockets User’s Guide

392 | Chapter 5 Project Monitoring
MON_CLIENT_NAMES_NUM_POLL_*

The MON_CLIENT_NAMES_NUM_POLL_CALL message type is used to
request the number of RTclients in an RTserver cloud. The polled RTclients
respond by sending back MON_CLIENT_NAMES_NUM_POLL_RESULT
messages.

API Function: TipcMonClientNamesNumPoll

Message Initiated: MON_CLIENT_NAMES_NUM_POLL_CALL

Message Returned: MON_CLIENT_NAMES_NUM_POLL_RESULT

Info Gathered From: RTserver

MON_CLIENT_NAMES_POLL_*

The MON_CLIENT_NAMES_POLL_CALL message type is used to request the
running RTclient names in the current project. RTserver responds by sending back
a MON_CLIENT_NAMES_POLL_RESULT message.

API Function: TipcMonClientNamesPoll

Message Initiated: MON_CLIENT_NAMES_POLL_CALL

Message Returned: MON_CLIENT_NAMES_POLL_RESULT

Info Gathered From: RTserver

MON_CLIENT_OPTION_POLL_*

The MON_CLIENT_OPTION_POLL_CALL message type is used to request
option information about one or more RTclients in a project. The polled RTclients
respond by sending back a MON_CLIENT_OPTION_POLL_RESULT message.

API Function: TipcMonClientOptionPoll

Message Initiated: MON_CLIENT_OPTION_POLL_CALL

Message Returned: MON_CLIENT_OPTION_POLL_RESULT

Info Gathered From: RTclient
TIBCO SmartSockets User’s Guide

Polling | 393
MON_CLIENT_SUBJECT_EX_POLL_*

The MON_CLIENT_SUBJECT_EX_POLL_CALL message type is used to request
subject information about one or more RTclients in a project. The polled RTclients
respond by sending back a MON_CLIENT_SUBJECT_EX_POLL_RESULT
message.

API Function: TipcMonClientSubjectExPoll

Message Initiated: MON_CLIENT_SUBJECT_EX_POLL_CALL

Message Returned: MON_CLIENT_SUBJECT_EX_POLL_RESULT

Info Gathered From: RTclient

MON_CLIENT_SUBSCRIBE_NUM_POLL_*

The MON_CLIENT_SUBSCRIBE_NUM_POLL_CALL message type is used to
request the number of subjects subscribed to by one or more RTclients in a project.
The polled RTclients respond by sending back
MON_CLIENT_SUBSCRIBE_NUM_POLL_RESULT messages.

API Function: TipcMonClientSubscribeNumPoll

Message Initiated: MON_CLIENT_SUBSCRIBE_NUM_POLL_CALL

Message Returned: MON_CLIENT_SUBSCRIBE_NUM_POLL_RESULT

Info Gathered From: RTserver

MON_CLIENT_SUBSCRIBE_POLL_*

The MON_CLIENT_SUBSCRIBE_POLL_CALL message type is used to request
the current subjects to which one or more RTclients in a project are subscribing.
RTserver responds by sending back a
MON_CLIENT_SUBSCRIBE_POLL_RESULT message for each RTclient specified.

API Function: TipcMonClientSubscribePoll

Message Initiated: MON_CLIENT_SUBSCRIBE_POLL_CALL

Message Returned: MON_CLIENT_SUBSCRIBE_POLL_RESULT

Info Gathered From: RTserver

This poll supersedes the MON_CLIENT_SUBJECT_POLL_* poll for new
development. See TipcMonClientSubjectPoll in the TIBCO SmartSockets
Application Programming Interface guide for more information. The
MON_CLIENT_SUBJECT_POLL_* is retained for compatibility with clients prior
to release 6.7.
 TIBCO SmartSockets User’s Guide

394 | Chapter 5 Project Monitoring
MON_CLIENT_TIME_POLL_*

The MON_CLIENT_TIME_POLL_CALL message type is used to request time
information about one or more RTclients in a project. The polled RTclients respond
by sending back MON_CLIENT_TIME_POLL_RESULT messages.

API Function: TipcMonClientTimePoll

Message Initiated: MON_CLIENT_TIME_POLL_CALL

Message Returned: MON_CLIENT_TIME_POLL_RESULT

Info Gathered From: RTclient

MON_CLIENT_VERSION_POLL_*

The MON_CLIENT_VERSION_POLL_CALL message type is used to request
client version of one or more RTclients in a project. The polled RTclients respond
by sending back MON_CLIENT_VERSION_POLL_RESULT messages.

API Function: TipcMonClientVersionPoll

Message Initiated: MON_CLIENT_VERSION_POLL_CALL

Message Returned: MON_CLIENT_VERSION_POLL_RESULT

Info Gathered From: RTclient

MON_PROJECT_NAMES_POLL_*

The MON_PROJECT_NAMES_POLL_CALL message type is used to request the
current project names from RTserver. RTserver responds by sending back a
MON_PROJECT_NAMES_POLL_RESULT message.

API Function: TipcMonProjectNamesPoll

Message Initiated: MON_PROJECT_NAMES_POLL_CALL

Message Returned: MON_PROJECT_NAMES_POLL_RESULT

Info Gathered From: RTserver
TIBCO SmartSockets User’s Guide

Polling | 395
MON_SERVER_BUFFER_POLL_*

The MON_SERVER_BUFFER_POLL_CALL message type is used to request
message-related buffer information about one or more RTservers in an RTserver
group. The polled RTservers respond by sending back a
MON_SERVER_BUFFER_POLL_RESULT message.

API Function: TipcMonServerBufferPoll

Message Initiated: MON_SERVER_BUFFER_POLL_CALL

Message Returned: MON_SERVER_BUFFER_POLL_RESULT

Info Gathered From: RTserver

MON_SERVER_CONN_POLL_*

The MON_SERVER_CONN_POLL_CALL message type is used to request
connection information about one or more RTservers in an RTserver group. The
polled RTservers respond by sending back a
MON_SERVER_CONN_POLL_RESULT message.

API Function: TipcMonServerConnPoll

Message Initiated: MON_SERVER_CONN_POLL_CALL

Message Returned: MON_SERVER_CONN_POLL_RESULT

Info Gathered From: RTserver

MON_SERVER_CPU_POLL_*

The MON_SERVER_CPU_POLL_CALL message type is used to request CPU
usage information about one or more RTservers in a project. The polled RTclients
respond by sending back MON_SERVER_CPU_POLL_RESULT messages.

API Function: TipcMonServerCpuPoll

Message Initiated: MON_SERVER_CPU_POLL_CALL

Message Returned: MON_SERVER_CPU_POLL_RESULT

Info Gathered From: RTserver
 TIBCO SmartSockets User’s Guide

396 | Chapter 5 Project Monitoring
MON_SERVER_GENERAL_POLL_*

The MON_SERVER_GENERAL_POLL_CALL message type is used to request
general process information about one or more RTservers in an RTserver group.
The polled RTservers respond by sending back a
MON_SERVER_GENERAL_POLL_RESULT message.

API Function: TipcMonServerGeneralPoll

Message Initiated: MON_SERVER_GENERAL_POLL_CALL

Message Returned: MON_SERVER_GENERAL_POLL_RESULT

Info Gathered From: RTserver

MON_SERVER_MSG_TRAFFIC_EX_POLL_*

The MON_SERVER_MSG_TRAFFIC_EX_POLL_CALL message type is used to
request message traffic information about one or more RTservers in an RTserver
group. The polled RTservers respond by sending back a
MON_SERVER_MSG_TRAFFIC_EX_POLL_RESULT message.

API Function: TipcMonServerMsgTrafficExPoll

Message Initiated: MON_SERVER_MSG_TRAFFIC_EX_POLL_CALL

Message Returned: MON_SERVER_MSG_TRAFFIC_EX_POLL_RESULT

Info Gathered From: RTserver

MON_SERVER_NAMES_POLL_*

The MON_SERVER_NAMES_POLL_CALL message type is used to request the
running RTserver names. RTserver responds by sending back a
MON_SERVER_NAMES_POLL_RESULT message.

API Function: TipcMonServerNamesPoll

Message Initiated: MON_SERVER_NAMES_POLL_CALL

Message Returned: MON_SERVER_NAMES_POLL_RESULT

Info Gathered From: RTserver

This poll supersedes the MON_SERVER_MSG_TRAFFIC_POLL_* poll for new
development. See TipcMonServerMsgTrafficPoll in the TIBCO SmartSockets
Application Programming Interface guide for more information. The
MON_SERVER_MSG_TRAFFIC_POLL_* is retained for compatibility with
servers prior to release 6.7.
TIBCO SmartSockets User’s Guide

Polling | 397
MON_SERVER_OPTION_POLL_*

The MON_SERVER_OPTION_POLL_CALL message type is used to request
option information about one or more RTservers in an RTserver group. The polled
RTservers respond by sending back a MON_SERVER_OPTION_POLL_RESULT
message.

API Function: TipcMonServerOptionPoll

Message Initiated: MON_SERVER_OPTION_POLL_CALL

Message Returned: MON_SERVER_OPTION_POLL_RESULT

Info Gathered From: RTserver

MON_SERVER_ROUTE_POLL_*

The MON_SERVER_ROUTE_POLL_CALL message type is used to request route
information about one or more RTservers in an RTserver group. The polled
RTservers respond by sending back a MON_SERVER_ROUTE_POLL_RESULT
message.

API Function: TipcMonServerRoutePoll

Message Initiated: MON_SERVER_ROUTE_POLL_CALL

Message Returned: MON_SERVER_ROUTE_POLL_RESULT

Info Gathered From: RTserver

MON_SERVER_START_TIME_POLL_*

The MON_SERVER_START_TIME_POLL_CALL message type is used to request
start time and elapsed time information about one or more RTservers in an
RTserver group. The polled RTservers respond by sending back
MON_SERVER_START_TIME_POLL_RESULT messages.

API Function: TipcMonStartServerTimePoll

Message Initiated: MON_SERVER_START_TIME_POLL_CALL

Message Returned: MON_SERVER_START_TIME_POLL_RESULT

Info Gathered From: RTserver
 TIBCO SmartSockets User’s Guide

398 | Chapter 5 Project Monitoring
MON_SERVER_TIME_POLL_*

The MON_SERVER_TIME_POLL_CALL message type is used to request time
information (wall time and CPU timed used) about one or more RTservers in an
RTserver group. The polled RTservers respond by sending back a
MON_SERVER_TIME_POLL_RESULT message.

API Function: TipcMonServerTimePoll

Message Initiated: MON_SERVER_TIME_POLL_CALL

Message Returned: MON_SERVER_TIME_POLL_RESULT

Info Gathered From: RTserver

MON_SERVER_VERSION_POLL_*

The MON_SERVER_VERSION_POLL_CALL message type is used to request
server version of one or more RTservers in a project. The polled RTservers
respond by sending back MON_SERVER_VERSION_POLL_RESULT messages.

API Function: TipcMonServerVersionPoll

Message Initiated: MON_SERVER_VERSION_POLL_CALL

Message Returned: MON_SERVER_VERSION_POLL_RESULT

Info Gathered From: RTserver

MON_SUBJECT_NAMES_POLL_*

The MON_SUBJECT_NAMES_POLL_CALL message type is used to request the
current subject names in the current project. RTserver responds by sending back a
MON_SUBJECT_NAMES_POLL_RESULT message.

API Function: TipcMonSubjectNamesPoll

Message Initiated: MON_SUBJECT_NAMES_POLL_CALL

Message Returned: MON_SUBJECT_NAMES_POLL_RESULT

Info Gathered From: RTserver
TIBCO SmartSockets User’s Guide

Polling | 399
MON_SUBJECT_SUBSCRIBE_POLL_*

The MON_SUBJECT_SUBSCRIBE_POLL_CALL message type is used to request
the current RTclients that are subscribing to a specified subject or all subjects.
RTserver responds by sending back a
MON_SUBJECT_SUBSCRIBE_POLL_RESULT message for each subject.

API Function: TipcMonSubjectSubscribePoll

Message Initiated: MON_SUBJECT_SUBSCRIBE_POLL_CALL

Message Returned: MON_SUBJECT_SUBSCRIBE_POLL_RESULT

Info Gathered From: RTserver
 TIBCO SmartSockets User’s Guide

400 | Chapter 5 Project Monitoring
Polling Example
The following is a complete C source example of a program that continues to poll
for message traffic information at a regular interval, where the interval (in
seconds) is one of the command line arguments passed in to the program.

The source code files for this example are located in these directories:

UNIX:
$RTHOME/examples/smrtsock/manual

OpenVMS:
RTHOME:[EXAMPLES.SMRTSOCK.MANUAL]

Windows:
%RTHOME%\examples\smrtsock\manual

The online source files have additional #ifdefs to provide C++ support. These
#ifdefs are not shown to simplify the example.

/*

--
 polltraf.c

 USAGE
 polltraf <project> <unique_subject> <poll_interval>

 This program gathers message traffic information on the RTclient
 specified in the command line arg <unique_subject> in
 project <project>. The info is polled for on a
 regular interval as specified in <poll_interval>. You can gather
 message traffic info on all clients in a project by
 specifying "/..." for <unique_subject>. <poll_interval> is
 always specified in seconds (as an integer).

 Sample usage:
 polltraf tank my_ie 10
 polltraf tank /... 30

--
*/

#include <rtworks/ipc.h>
TIBCO SmartSockets User’s Guide

Polling | 401
/*
==
*/
/*..cb_default - default callback */
static void T_ENTRY cb_default
(
 T_IPC_CONN conn,
 T_IPC_CONN_DEFAULT_CB_DATA data,
 T_CB_ARG arg
)
{
 if (!TipcMsgPrintError(data->msg)) {
 TutOut("Could not print message: error <%s>.\n",
 TutErrStrGet());
 }
} /* cb_default */

/* ===
*/
/*..process_traffic_poll - callback to process a
 MON_CLIENT_MSG_TRAFFIC_POLL_RESULT message
*/
static void T_ENTRY process_traffic_poll
(
 T_IPC_CONN conn,
 T_IPC_CONN_PROCESS_CB_DATA data,
 T_CB_ARG arg
)
{
 T_IPC_MSG msg = data->msg;
 T_STR client_name;
 T_INT4 total_msg_recv_4;
 T_INT4 total_msg_send_4;
 T_INT4 total_byte_recv_4;
 T_INT4 total_byte_send_4;
 T_INT8 total_msg_recv_8;
 T_INT8 total_msg_send_8;
 T_INT8 total_byte_recv_8;
 T_INT8 total_byte_send_8;

 /* Set current field */
 if (!TipcMsgSetCurrent(msg, 0)) {
 TutOut("Could not set current field of message: error <%s>.\n",
 TutErrStrGet());
 return;
 }
 TIBCO SmartSockets User’s Guide

402 | Chapter 5 Project Monitoring
 /* Get the fields from the message */
 if (!TipcMsgRead(data->msg, T_IPC_FT_STR, &client_name,
 T_IPC_FT_INT4, &total_msg_recv_4,
 T_IPC_FT_INT4, &total_msg_send_4,
 T_IPC_FT_INT4, &total_byte_recv_4,
 T_IPC_FT_INT4, &total_byte_send_4,
 NULL)) {
 TutOut("Unable to access message traffic message: error
<%s>.\n",
 TutErrStrGet());
 return;
 }

 TutOut("Summary of message traffic for RTclient <%s>\n",
client_name);
 if (TipcMsgRead(data->msg, T_IPC_FT_INT8, &total_msg_recv_8,
 T_IPC_FT_INT8, &total_msg_send_8,
 T_IPC_FT_INT8, &total_byte_recv_8,
 T_IPC_FT_INT8, &total_byte_send_8,
 NULL)) {
 /* Print out the new information received */
 TutOut(" (Received 64-bit data)\n");
 TutOut(" Total messages received = " T_INT8_SPEC "\n",

total_msg_recv_8);
 TutOut(" Total messages sent = " T_INT8_SPEC "\n",

total_msg_send_8);
 TutOut(" Total bytes received = " T_INT8_SPEC "\n",

total_byte_recv_8);
 TutOut(" Total bytes sent = " T_INT8_SPEC "\n",

total_byte_recv_8);
 }
 else {
 /* Print out the new information received */
 TutOut(" (Received 32-bit data)\n");
 TutOut(" Total messages received = " T_INT4_SPEC "\n",

total_msg_recv_4);
 TutOut(" Total messages sent = " T_INT4_SPEC "\n",

total_msg_send_4);
 TutOut(" Total bytes received = " T_INT4_SPEC "\n",

total_byte_recv_4);
 TutOut(" Total bytes sent = " T_INT4_SPEC "\n",

total_byte_recv_4);
 }

TutOut("==\n")
;

} /* process_traffic_poll */
TIBCO SmartSockets User’s Guide

Polling | 403
/* ===
*/
int main
(
 int argc,
 char **argv
)
{
 T_STR project_name;
 T_STR unique_subject;
 T_REAL8 poll_interval;
 T_IPC_MT mt;
 T_OPTION option;

 /* Check the command line arguments */
 if (argc != 4) {
 TutOut("Usage: polltraf <project> <unique_subject> ");
 TutOut("<poll_interval>\n");
 TutExit(T_EXIT_FAILURE);
 }

 /* Save pointers to command line arguments */
 project_name = argv[1];
 unique_subject = argv[2];
 poll_interval = atof(argv[3]);

 /* Check that the polling interval is greater than zero */
 if (poll_interval <= 0.0) {
 TutOut("Poll_Interval must be greater than zero.\n");
 TutExit(T_EXIT_FAILURE);
 }

 TutOut("Polling RTclient <%s> in project <%s> ",
 unique_subject, project_name);
 TutOut("every <%g> seconds...\n", poll_interval);

 /* Set the project name */
 option = TutOptionLookup("project");
 if (option == NULL) {
 TutOut("Could not look up option <project>: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 if (!TutOptionSetEnum(option, project_name)) {
 TutOut("Could not set option <project>: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* Connect to RTserver */
 if (!TipcSrvCreate(T_IPC_SRV_CONN_FULL)) {
 TutOut("Could not connect to RTserver: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 TIBCO SmartSockets User’s Guide

404 | Chapter 5 Project Monitoring
 /* Create callback to process CLIENT_MSG_TRAFFIC poll results */
 mt = TipcMtLookupByNum(T_MT_MON_CLIENT_MSG_TRAFFIC_POLL_RESULT);
 if (mt == NULL) {
 TutOut("Could not look up message type ");
 TutOut("MON_CLIENT_MSG_TRAFFIC_POLL_RESULT: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 if (TipcSrvProcessCbCreate(mt, process_traffic_poll, NULL) ==
NULL){
 TutOut("Could not set up callback to process ");
 TutOut("MON_CLIENT_MSG_POLL_RESULT: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* Create default callback to receive unwanted message types */
 if (TipcSrvDefaultCbCreate(cb_default, NULL) == NULL) {
 TutOut("Could not create default callback: error <%s>.\n",
 TutErrStrGet());
 }

 /* Read and process poll results every "poll_interval" seconds */
 while (1) {
 TutOut("==> Polling RTclient <%s> for message traffic
info...\n",
 unique_subject);

 /* Initiate poll for message traffic info about an RTclient */
 if (!TipcMonClientMsgTrafficPoll(unique_subject)) {
 TutOut("Unable to poll for message traffic for RTclient
<%s>.\n",
 unique_subject);
 TutOut(" error <%s>.\n", TutErrStrGet());
 }

 /* Process the poll results which arrive */
 if (!TipcSrvMainLoop(poll_interval)) {
 TutOut("TipcSrvMainLoop failed: error <%s>.\n",
 TutErrStrGet());
 }
 }

 /* This line should not be reached. */
 return T_EXIT_FAILURE;
} /* main */
TIBCO SmartSockets User’s Guide

Polling | 405
This program retrieves both input and output information about the RTclients’
message traffic. The poll for traffic information is initiated by the call to
TipcMonClientMsgTrafficPoll. Note that the argument to this function is
unique_subject. This argument is passed in as a command line argument and must
be either:

• the unique subject of a specified RTclient

• a wildcarded subject name, which indicates the request should be sent to all
RTclients with a unique subject matching the wildcarded subject name

• an at sign (@), which indicates the request should be sent to all RTclients that
match Monitor_Scope

In this program, the poll is sent to the specified RTclient or many RTclients at a
regular interval, which is controlled by the call to TipcSrvMainLoop. The
poll_interval timeout causes TipcSrvMainLoop to read and process all
incoming messages for that many seconds before giving up control.

The call to TipcMonClientMsgTrafficPoll results in one or a series (one for each
RTclient polled) of MON_CLIENT_MSG_TRAFFIC_POLL_RESULT messages
being returned to the program from RTserver. An RTclient message process
callback, process_traffic_poll, is created to process messages of that type.

The callback function process_traffic_poll accesses the fields of the poll result
message and prints the requested information. If no RTclient exists that matches
the unique_subject passed to TipcMonClientMsgTrafficPoll, no results are printed.

Compiling, Linking, and Running
To compile, link, and run the polltraf program, first you must either copy the
program to your own directory or have write permission to the directory:

UNIX:
$RTHOME/examples/smrtsock/manual

OpenVMS:
RTHOME:[EXAMPLES.SMRTSOCK.MANUAL]

Windows:
%RTHOME%\examples\smrtsock\manual

You are also going to run a program with some message traffic.
 TIBCO SmartSockets User’s Guide

406 | Chapter 5 Project Monitoring
Step 1 Copy the receive.c program from this directory

Note that this program is part of the ss_tutorial project and subscribes to the
lesson5 subject.

UNIX:
$RTHOME/examples/smrtsock/tutorial/lesson5

OpenVMS:
RTHOME:[EXAMPLES.SMRTSOCK.TUTORIAL.LESSON5]

Windows:
%RTHOME%\examples\smrtsock\tutorial\lesson5

Step 2 Compile and link the polltraf and receive programs

UNIX:
$ rtlink polltraf.c -o polltraf.x
$ rtlink receive.c -o receive.x

OpenVMS:
$ cc polltraf.c
$ rtlink /exec=polltraf.exe polltraf.obj
$ cc receive.c
$ rtlink /exec=receive.exe receive.obj

Windows:
$ nmake /f pollw32m.mak
$ nmake /f recw32m.mak

To run the programs, start the receive process in one terminal emulator window
and then the polltraf process in another terminal emulator window.

Step 3 Start the receive program in the first window

UNIX:
$ receive.x

OpenVMS:
$ run receive.exe

Windows:
$ receive.exe
TIBCO SmartSockets User’s Guide

Polling | 407
Step 4 Start the polltraf program in the second window

UNIX:
$ polltraf.x ss_tutorial /... 10

OpenVMS:
$ polltraf :== sysdisk:[]polltraf.exe
$ polltraf ss_tutorial /... 10

Windows:
$ polltraf.exe ss_tutorial /... 10

The name /... indicates that all RTclients should be polled. Here is an example of
the output displayed:

Polling RTclient </...> in project <ss_tutorial> every <10>
seconds...
Connecting to project <ss_tutorial> on <_node> RTserver.
Using local protocol.
Message from RTserver: Connection established.
Start subscribing to subject </_grissom_1037>.
==> Polling RTclient </...> for message traffic info...
Summary of message traffic for RTclient </_grissom_1028>
 Total messages received = 19
 Total messages sent = 19
 Total bytes received = 792
 Total bytes sent = 792
==
Summary of message traffic for RTclient </_grissom_1037>
 Total messages received = 1
 Total messages sent = 2
 Total bytes received = 64
 Total bytes sent = 64
==
==> Polling RTclient </...> for message traffic info...
Summary of message traffic for RTclient </_grissom_1028>
 Total messages received = 20
 Total messages sent = 20
 Total bytes received = 904
 Total bytes sent = 904
==
Summary of message traffic for RTclient </_grissom_1037>
 Total messages received = 3
 Total messages sent = 4
 Total bytes received = 240
 Total bytes sent = 240
==

Notice than when a poll takes place, two results are reported. One is for the
receive program, the second is for the polltraf program. When /... is used to
specify all RTclients, polltraf even receives information about itself (which
initiated the poll).
 TIBCO SmartSockets User’s Guide

408 | Chapter 5 Project Monitoring
Watching

Watching information is very different from polling. When watching information,
the RTclient that initiated the watch is notified asynchronously, through a
message, whenever the item(s) of interest changes. All watching of a project goes
through RTserver. Typically, a request to watch particular information is sent to
RTserver. RTserver then notifies the process holding the information (the same
RTserver, a different RTserver, or an RTclient) that a program is interested in
watching the specified information. Then, whenever the information changes, the
process holding the information sends it back to the requesting program in a
message. Unlike polling, which is a one time request for information, watching
causes status messages to continue to be sent until watching is turned off for that
particular information.

The type of information watched about projects, RTservers, RTclients, and
subjects, is shown in the table. The table lists the entity from which the
information is available (such as RTclient, RTserver, or subject), a brief description
of the information that is available, whether the information can be polled as well
as watched, and the final column shows the TipcMon* API call that initiates the
watching and the monitoring message type returned whenever the information of
interest changes. The prefix T_MT_ is omitted from the message type for the sake
of brevity.

Entity Information Available Poll?
API Function and
Message Type Returned
(T_MT_ omitted)

Project Names Yes TipcMonProjectNamesSetWatch

MON_PROJECT_NAMES_STATUS

RTclient Read and write message
buffers

Yes TipcMonClientBufferSetWatch

MON_CLIENT_BUFFER_STATUS

RTclient Write buffer congestion No TipcMonClientCongestionSetWatch

MON_CLIENT_CONGESTION_SET_WATCH

RTclient Messages being received No TipcMonClientMsgRecvSetWatch

MON_CLIENT_MSG_RECV_STATUS

RTclient Messages being sent out No TipcMonClientMsgSendSetWatch

MON_CLIENT_MSG_RECV_STATUS
TIBCO SmartSockets User’s Guide

Watching | 409
Most of the information that can be watched can also be polled. See Polling on
page 382 for more details on polling for information.

To set up watching in your program, you call an API function,
TipcMonTypeSetWatch, with the watch_status parameter set to TRUE, where Type is
the kind of information to watch. For example, a call to
TipcMonSubjectSubscribeSetWatch(subject_name, TRUE) turns on watching for
information about which RTclients are subscribing to a specified subject, and a
call to TipcMonClientTimeSetWatch(client_name, TRUE) sets up watching for time
information about an RTclient.

RTclient Subjects subscribing to Yes TipcMonClientSubscribeSetWatch

MON_CLIENT_SUBSCRIBE_STATUS

RTclient Wall time, CPU time used Yes TipcMonClientTimeSetWatch

MON_CLIENT_TIME_STATUS

RTclient Names Yes TipcMonClientNamesSetWatch

MON_CLIENT_NAMES_STATUS

RTserver Write buffer congestion No TipcMonServerCongestionSetWatch

MON_SERVER_CONGESTION_SET_WATCH

RTserver Connections Yes TipcMonServerConnSetWatch

MON_SERVER_CONN_STATUS

RTserver Licenses No TipcMonServerMaxClientLicensesSetWatch

MON_SERVER_MAX_CLIENT_LICENSES_SET
_WATCH

RTserver Names Yes TipcMonServerNamesSetWatch

MON_SERVER_NAMES_STATUS

subject Names Yes TipcMonSubjectNamesSetWatch

MON_SUBJECT_NAMES_STATUS

subject Clients subscribing to Yes TipcMonSubjectSubscribeSetWatch

MON_SUBJECT_SUBSCRIBE_STATUS

Entity Information Available Poll?
API Function and
Message Type Returned
(T_MT_ omitted)
 TIBCO SmartSockets User’s Guide

410 | Chapter 5 Project Monitoring
In a similar fashion, watching is turned off by calling the API function with the
watch_status parameter set to FALSE (such as
TipcMonSubjectSubscribeSetWatch(subject_name, FALSE)).

Calling a TipcMonTypeSetWatch function with the watch_status parameter set to
TRUE causes a message of type MON_TYPE_SET_WATCH to be sent to RTserver,
where TYPE is the kind of information being watched. This TYPE is very similar to
the Type used in the name of the API function as shown in these examples:

• TipcMonSubjectSubscribeSetWatch sends a message of type
MON_SUBJECT_SUBSCRIBE_SET_WATCH

• TipcMonClientTimeSetWatch sends a message of type
MON_CLIENT_TIME_SET_WATCH

An RTserver may hold the information being watched or it may need to forward
the message on to other RTservers or RTclients to watch the information. An
example of information that an RTserver keeps track of is a list of subjects to
which its direct RTclients are subscribing. An example of the information an
RTserver does not know about is the information about an RTclient’s message
buffers.

If RTserver does not hold the information and RTclient has the information,
RTclient must be reading and processing messages when the initial call to
TipcMonTypeSetWatch is made. Messages can be read and processed through calls
to TipcSrvMainLoop, TipcSrvMsgNext, TipcMsgSearch, or TipcMsgSearchType
when the watching is enabled in order for the watching to take effect. If RTclient
does not receive and process a MON_TYPE_STATUS_SET_WATCH message, it
will not send out the watched information when it changes.

Whenever the information of interest changes, RTserver sends a message with the
information to the program that set up the watch. The watched information is
returned by RTserver using a MON_TYPE_STATUS message, where TYPE matches
the TYPE in the MON_TYPE_SET_WATCH that initiated the watch. The message
types are in pairs of MON_TYPE_SET_WATCH and MON_TYPE_STATUS as
shown in these examples:

• TipcMonSubjectSubscribeSetWatch sends a message of type
MON_SUBJECT_SUBSCRIBE_SET_WATCH, and a message of type
MON_SUBJECT_SUBSCRIBE_STATUS is returned by RTserver whenever an
RTclient starts subscribing to or stops subscribing to the subject of interest.

• TipcMonClientTimeSetWatch sends a message of type
MON_CLIENT_TIME_SET_WATCH, and a message of type
MON_CLIENT_TIME_STATUS is returned by RTserver whenever the time
changes in the RTclient of interest.
TIBCO SmartSockets User’s Guide

Watching | 411
A complete listing and description of these message types are described in
Watching Message Types on page 413. The message grammar for these types are
described in Monitoring Message Types on page 367.

Processing Watch Results
When the results of a watch are returned in a MON_TYPE_STATUS message, the
message can be processed using an RTclient message process callback (created
with TipcSrvProcessCbCreate). Using callbacks to process the status messages
that are returned as the result of a watch being enabled is the recommended
method for processing watch results. The main reason for this is that the messages
arrive asynchronously. It is often unclear as to when or how often the information
may change. The following section shows an example of how to process watch
results using callbacks.

Using Callbacks

This example shows how to use an RTclient message process callback (created
with TipcSrvProcessCbCreate) to process the message containing the results of a
watch being set up:

/* === */
/*..process_mon_project_names_status - callback to process a
 MON_PROJECT_NAMES_STATUS message */
void T_ENTRY process_mon_project_names_status(

T_IPC_CONN conn,
T_IPC_CONN_PROCESS_CB_DATA data,
T_CB_ARG arg)

{
 T_STR *project_names;
 T_INT4 num_project_names;
 T_STR created_project;
 T_STR destroyed_project;
 T_INT4 counter;

 /* access fields of status message */
 if (!TipcMsgSetCurrent(data->msg, 0)) {
 /* error */
 }

 if (!TipcMsgNextStrArray(data->msg, &project_names,
 &num_project_names)
 || !TipcMsgNextStr(data->msg, &created_project)
 || !TipcMsgNextStr(data->msg, &destroyed_project)) {
 /* error */
 }

 /* ...do whatever with results here */

} /* process_mon_project_names_status */
 TIBCO SmartSockets User’s Guide

412 | Chapter 5 Project Monitoring
/* === */
/*...code from calling function is below */

T_IPC_MT mt;

/* setup watching of projects */
if (!TipcMonProjectNamesSetWatch(TRUE)) {
 /* error */
}

/* create callback to process MON_PROJECT_NAMES_STATUS messages */
mt = TipcMtLookupByNum(T_MT_MON_PROJECT_NAMES_STATUS);
if (mt == NULL) {
 /* error */
}

if (TipcSrvProcessCbCreate(mt, process_mon_project_names_status,
NULL)
 == NULL) {
 /* error */
}

/* At this point TipcSrvMainLoop can be used to read and process messages. */

Printing Watch Categories
The API function TipcMonPrintWatch can be used to print all the monitoring
categories being watched by a program to a TutOut-style output function. The
output function is called once for each line of output as shown in the example:

/* Set up some information to be watched */
if (!TipcMonSubjectSubscribeSetWatch(T_IPC_MON_ALL, TRUE) {
 /* error */
}
if (!TipcMonProjectNamesSetWatch(TRUE) {
 /* error */
}
if (!TipcMonClientTimeSetWatch("primary_rtie", TRUE) {
 /* error */
}
if (!TipcMonClientMsgRecvSetWatch("primary_rtie", "numeric_data",
 TRUE) {
 /* error */
}
if (!TipcMonPrintWatch(TutOut)) {
 /* error */
}
TIBCO SmartSockets User’s Guide

Watching | 413
The example prints this output:

Watching project_names.
Watching subject_subscribe <*>.
Watching client_time <primary_rtie>.
Watching client_msg_recv <primary_rtie> <numeric_data>.

Watching Message Types
This section contains a complete listing of each watching message type. For each
message pair (MON_TYPE_SET_WATCH and MON_TYPE_STATUS), a
description of the type of information, the API function, and where the
information is collected from is shown.

The T_MT_ prefix is omitted from the name of each message type for the sake of
brevity.

MON_CLIENT_BUFFER_*

The MON_CLIENT_BUFFER_SET_WATCH message type is used to set whether
or not an RTclient is watching message-related buffer information in one or more
RTclients in a project. When watching an RTclient’s message buffers, RTserver
sends a MON_CLIENT_BUFFER_STATUS message each time the message queue
for the connection to RTserver changes in the watched RTclients. When watching
is first enabled, an initial status message is sent if the RTclient(s) being watched
exists.

API Function: TipcMonClientBufferSetWatch

Message Initiated: MON_CLIENT_BUFFER_SET_WATCH

Message Returned: MON_CLIENT_BUFFER_STATUS

Info Gathered From: RTclient
 TIBCO SmartSockets User’s Guide

414 | Chapter 5 Project Monitoring
MON_CLIENT_CONGESTION_*

The MON_CLIENT_CONGESTION_SET_WATCH message type is used to set
whether or not an RTclient is watching for congestion in another RTclient’s write
buffer. When watching an RTclient’s write buffers, RTserver sends a
MON_CLIENT_CONGESTION_STATUS message if the number of pending
messages in the write buffer reaches a set amount. Another message is sent when
the number of pending messages decreases to a lower set amount.

API Function: TipcMonClientCongestionSetWatch

Message Initiated: MON_CLIENT_CONGESTION_SET_WATCH

Message Returned: MON_CLIENT_CONGESTION_STATUS

Info Gathered From: RTclient

MON_CLIENT_MSG_RECV_*

The MON_CLIENT_MSG_RECV_SET_WATCH message type is used to set
whether or not an RTclient is watching message-received information in one or
more RTclients in a project.When watching an RTclient’s incoming messages,
RTserver sends a MON_CLIENT_MSG_RECV_STATUS message each time a
received message is inserted into or deleted from the message queue (for the
connection to RTserver) in the watched RTclients. When watching is first enabled,
an initial status message is sent if the RTclient(s) being watched exists.

API Function: TipcMonClientMsgRecvSetWatch

Message Initiated: MON_CLIENT_MSG_RECV_SET_WATCH

Message Returned: MON_CLIENT_MSG_RECV_STATUS

Info Gathered From: RTclient

MON_CLIENT_MSG_SEND_*

The MON_CLIENT_MSG_SEND_SET_WATCH message type is used to set
whether or not an RTclient is watching sent messages in one or more RTclients in a
project. When watching an RTclient’s outgoing messages, RTserver sends a
MON_CLIENT_MSG_SEND_STATUS message each time a message is sent to
RTserver from the watched RTclients. When watching is first enabled, an initial
status message is sent if the RTclient(s) being watched exists.

API Function: TipcMonClientMsgSendSetWatch

Message Initiated: MON_CLIENT_MSG_SEND_SET_WATCH

Message Returned: MON_CLIENT_MSG_SEND_STATUS

Info Gathered From: RTclient
TIBCO SmartSockets User’s Guide

Watching | 415
MON_CLIENT_NAMES_*

The MON_CLIENT_NAMES_SET_WATCH message type is used to set whether
or not an RTclient is watching RTclient names in a project. When watching
RTclient names, RTserver sends a MON_CLIENT_NAMES_STATUS message
each time an RTclient is created or destroyed. When watching is first enabled, an
initial status message is sent if an RTclient is running. An RTclient is considered
created when it connects to RTserver. An RTclient is considered destroyed when
when its connection to RTserver is closed or lost.

API Function: TipcMonClientNamesSetWatch

Message Initiated: MON_CLIENT_NAMES_SET_WATCH

Message Returned: MON_CLIENT_NAMES_STATUS

Info Gathered From: RTserver

MON_CLIENT_SUBSCRIBE_*

The MON_CLIENT_SUBSCRIBE_SET_WATCH message type is used to set
whether or not an RTclient is watching the subjects to which one or more RTclients
in a project are subscribing. When watching RTclient subscriptions, RTserver
sends a MON_CLIENT_SUBSCRIBE_STATUS message each time the watched
RTclients start or stop subscribing to a subject. When watching is first enabled, an
initial status message is sent if the RTclient(s) being watched exists.

API Function: TipcMonClientSubscribeSetWatch

Message Initiated: MON_CLIENT_SUBSCRIBE_SET_WATCH

Message Returned: MON_CLIENT_SUBSCRIBE_STATUS

Info Gathered From: RTserver

MON_CLIENT_TIME_*

The MON_CLIENT_TIME_SET_WATCH message type is used to set whether or
not an RTclient is watching time information in one or more RTclients in a project.
When watching an RTclient’s time information, RTserver sends a
MON_CLIENT_TIME_STATUS message each time the current time changes in
the watched RTclients. When watching is first enabled, an initial status message is
sent if the RTclient(s) being watched exists.

API Function: TipcMonClientTimeSetWatch

Message Initiated: MON_CLIENT_TIME_SET_WATCH

Message Returned: MON_CLIENT_TIME_STATUS

Info Gathered From: RTclient
 TIBCO SmartSockets User’s Guide

416 | Chapter 5 Project Monitoring
MON_PROJECT_NAMES_*

The MON_PROJECT_NAMES_SET_WATCH message type is used to set whether
or not an RTclient is watching project names. When watching project names,
RTserver sends a MON_PROJECT_NAMES_STATUS message each time a project
is created or destroyed, as well as an initial status message when watching is first
enabled.

API Function: TipcMonProjectNamesSetWatch

Message Initiated: MON_PROJECT_NAMES_SET_WATCH

Message Returned: MON_PROJECT_NAMES_STATUS

Info Gathered From: RTserver

MON_SERVER_CONGESTION_*

The MON_SERVER_CONGESTION_SET_WATCH message type is used to set
whether or not an RTclient is watching for congestion in a process’s write buffer.
When watching the process’s write buffers, RTserver sends a
MON_SERVER_CONGESTION_STATUS message if the number of pending
bytes in the write buffer reaches a set amount. Another message is sent when the
number of pending bytes decreases to a lower set amount.

API Function: TipcMonServerCongestionSetWatch

Message Initiated: MON_SERVER_CONGESTION_SET_WATCH

Message Returned: MON_SERVER_CONGESTION_STATUS

Info Gathered From: RTserver

MON_SERVER_CONN_*

The MON_SERVER_CONN_SET_WATCH message type is used to set whether or
not an RTclient is watching RTserver connections. When watching RTserver
connections, RTserver sends a MON_SERVER_CONN_STATUS message each
time a connection between RTservers is created or destroyed.

API Function: TipcMonServerConnSetWatch

Message Initiated: MON_SERVER_CONN_SET_WATCH

Message Returned: MON_SERVER_CONN_STATUS

Info Gathered From: RTserver
TIBCO SmartSockets User’s Guide

Watching | 417
MON_SERVER_MAX_CLIENT_LICENSES_*

The MON_SERVER_MAX_CLIENT_LICENSES_SET_WATCH message type is
used to set whether or not an RTserver is watching for the number of client
connections to reach and exceeded the licensed amount. When watching client
connection licenses, RTserver sends a
MON_SERVER_MAX_CLIENT_LICENSES_STATUS message each time an
RTserver refuses a client connection because no licenses were available.

API Function: TipcMonServerMaxClientLicensesSetWatch

Message Initiated: MON_SERVER_MAX_CLIENT_LICENSES_SET_WATCH

Message Returned: MON_SERVER_MAX_CLIENT_LICENSES_STATUS

Info Gathered From: RTserver

MON_SERVER_NAMES_*

The MON_SERVER_NAMES_SET_WATCH message type is used to set whether
or not an RTclient is watching RTserver names. When watching RTserver names,
RTserver sends a MON_SERVER_NAMES_STATUS message each time an
RTserver is created or destroyed. An RTserver is considered created when it starts
up (and usually connects to other RTservers). An RTserver is considered
destroyed when it terminates or disconnects from other RTservers.

API Function: TipcMonServerNamesSetWatch

Message Initiated: MON_SERVER_NAMES_SET_WATCH

Message Returned: MON_SERVER_NAMES_STATUS

Info Gathered From: RTserver

MON_SUBJECT_NAMES_*

The MON_SUBJECT_NAMES_SET_WATCH message type is used to set whether
or not an RTclient is watching subject names in a project. When watching subject
names, RTserver sends a MON_SUBJECT_NAMES_STATUS message each time a
subject is created or destroyed in the project. A subject is considered created when
the first RTclient starts subscribing to that subject. A subject is considered
destroyed when the last RTclient stops subscribing to that subject.

API Function: TipcMonSubjectNamesSetWatch

Message Initiated: MON_SUBJECT_NAMES_SET_WATCH

Message Returned: MON_SUBJECT_NAMES_STATUS

Info Gathered From: RTserver
 TIBCO SmartSockets User’s Guide

418 | Chapter 5 Project Monitoring
MON_SUBJECT_SUBSCRIBE_*

The MON_SUBJECT_SUBSCRIBE_SET_WATCH message type is used to set
whether or not an RTclient is watching the RTclients that are subscribing to a
specified subject or any subject. When watching subjects being subscribed to,
RTserver sends a MON_SUBJECT_SUBSCRIBE_STATUS message each time an
RTclient starts or stops subscribing to the subject(s). When watching is first
enabled, an initial status message is sent if the subject being watched exists.

API Function: TipcMonSubjectSubscribeSetWatch

Message Initiated: MON_SUBJECT_SUBSCRIBE_SET_WATCH

Message Returned: MON_SUBJECT_SUBSCRIBE_STATUS

Info Gathered From: RTserver

Watching Example
The following is a complete C source example that watches a subject and outputs
information whenever an RTclient starts subscribing to a subject or stops
subscribing to a subject.

The source code files for this example are located in these directories:

UNIX:
$RTHOME/examples/smrtsock/manual

OpenVMS:
RTHOME:[EXAMPLES.SMRTSOCK.MANUAL]
TIBCO SmartSockets User’s Guide

Watching | 419
Windows:
%RTHOME%\examples\smrtsock\manual

The online source files have additional #ifdefs to provide C++ support; these
#ifdefs are not shown to simplify the example.

/*
 --
 watchsbj.c

 USAGE
 watchsbj <project> <subject>

 This program connects to RTserver and outputs a count and names
 of RTclients that subscribed to <subject> in <project>.
 Whenever an RTclient subscribes or unsubscribes to a subject,
 information about the subject is output.

*/

#include <rtworks/ipc.h>

/* === */
/*..cb_default - callback to process anything but
 MON_SUBJECT_SUBSCRIBE_STATUS */
static void T_ENTRY cb_default(

T_IPC_CONN conn,
T_IPC_CONN_PROCESS_CB_DATA data,
T_CB_ARG arg)

{
 TipcMsgPrintError(data->msg);
} /* cb_default */

/* === */
/*..process_subject_status - callback to process MON_SUBJECT_SUBSCRIBE_STATUS msg */
static void T_ENTRY process_subject_status(

T_IPC_CONN conn,
T_IPC_CONN_PROCESS_CB_DATA data,
T_CB_ARG arg)

{
 T_IPC_MSG msg = data->msg;
 T_STR subject_name;
 T_STR *subscribe_client_names;
 T_INT4 num_subscribe_clients;
 T_STR start_client;
 T_STR stop_client;
 T_INT4 n;

 /* Set current field */
 if (!TipcMsgSetCurrent(msg, 0)) {
 TutOut("Could not set current field of message: error <%s>.\n",
 TutErrStrGet());
 return;
 }
 TIBCO SmartSockets User’s Guide

420 | Chapter 5 Project Monitoring
 /* Get the fields from the message */
 if (!TipcMsgNextStr(msg, &subject_name)
 || !TipcMsgNextStrArray(msg, &subscribe_client_names,
 &num_subscribe_clients)
 || !TipcMsgNextStr(msg, &start_client)
 || !TipcMsgNextStr(msg, &stop_client)) {
 TutOut("Unable to access MON_SUBJECT_SUBSCRIBE_STATUS");
 TutOut(" message: error <%s>.\n",
 TutErrStrGet());
 return;
 }

 /* Print out the new information extracted from message */
 TutOut("Received change notice for subject <%s>\n",
subject_name);
 TutOut("Number of clients subscribed to <%s> = %d\n",
 subject_name, num_subscribe_clients);
 for (n = 0; n < num_subscribe_clients; n++) {
 TutOut(" [%d] %s\n", n, subscribe_client_names[n]);
 }

 TutOut("RTclient who just subscribed: %s\n", start_client);
 TutOut("RTclient who just unsubscribed: %s\n", stop_client);

TutOut("==\n")
;

} /* process_subject_status */

/* === */
int main(argc, argv)
int argc;
char **argv;
{
 T_STR project_name;
 T_STR subject_name;
 T_IPC_MT mt;
 T_OPTION option;

 /* Check the command line arguments */
 if (argc != 3) {
 TutOut("Usage: watchsbj <project> <subject>\n");
 TutExit(T_EXIT_FAILURE);
 }

 /* Save pointers to command line arguments */
 project_name = argv[1];
 subject_name = argv[2];

 TutOut("Watching subject <%s> in project <%s>...\n",
 subject_name, project_name);
TIBCO SmartSockets User’s Guide

Watching | 421
 /* Set the project name */
 option = TutOptionLookup("project");
 if (option == NULL) {
 TutOut("Could not look up option <project>: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 if (!TutOptionSetEnum(option, project_name)) {
 TutOut("Could not set option <project>: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* Connect to RTserver */
 if (!TipcSrvCreate(T_IPC_SRV_CONN_FULL)) {
 TutOut("Could not connect to RTserver: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* Create callback to process subject status messages */
 mt = TipcMtLookupByNum(T_MT_MON_SUBJECT_SUBSCRIBE_STATUS);
 if (mt == NULL) {
 TutOut("Could not look up message type");
 TutOut(" MON_SUBJECT_SUBSCRIBE_STATUS: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 if (TipcSrvProcessCbCreate(mt, process_subject_status, NULL)
 == NULL) {
 TutOut("Could not create callback to process ");
 TutOut("MON_SUBJECT_SUBSCRIBE_STATUS: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* Create default callback to receive unwanted message types */
 if (TipcSrvDefaultCbCreate(cb_default, NULL) == NULL) {
 TutOut("Could not create default callback: error <%s>.\n",
 TutErrStrGet());
 }

 /* Start "watching" the subject */
 if (!TipcMonSubjectSubscribeSetWatch(subject_name, TRUE)) {
 TutOut("Could not start watching ");
 TutOut("subject <%s>: error <%s>.\n",
 subject_name, TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 TIBCO SmartSockets User’s Guide

422 | Chapter 5 Project Monitoring
 /* If an error occurs, then TipcSrvMainLoop will restart RTserver */
 /* and return FALSE. We can safely continue. */
 for (;;) {
 if (!TipcSrvMainLoop(T_TIMEOUT_FOREVER)) {
 TutOut("TipcSrvMainLoop failed: error <%s>.\n",
 TutErrStrGet());
 }
 }

 /* This line should not be reached. */
 return T_EXIT_FAILURE;
} /* main */

The call to TipcMonSubjectSubscribeSetWatch turns on watching for all RTclients
subscribing to the specified subject. Whenever an RTclient starts or stops
subscribing to the specified subject, RTserver asynchronously sends a
MON_SUBJECT_SUBSCRIBE_STATUS message to the watchsbj program. Prior to
turning watching on, a callback (process_subject_status) is created to process a
message of this type when it arrives. The callback function process_subject_status
then prints out the information contained in the message.

Initially, if there are no RTclients subscribing to the specified subject, no message
is sent by RTserver to the program.
TIBCO SmartSockets User’s Guide

Watching | 423
Compiling, Linking, and Running
To compile, link, and run the watchsbj program, first you must either copy the
program to your own directory or have write permission in these directories:

UNIX:
$RTHOME/examples/smrtsock/manual

OpenVMS:
RTHOME:[EXAMPLES.SMRTSOCK.MANUAL]

Windows:
%RTHOME%\examples\smrtsock\manual

You are also going to run a program to start subscribing to a subject.

Step 1 Copy the receive.c program from one of these directories

Note that this program is part of the ss_tutorial project and subscribes to the
lesson5 subject.

UNIX:
$RTHOME/examples/smrtsock/tutorial/lesson5

OpenVMS:
RTHOME:[EXAMPLES.SMRTSOCK.TUTORIAL.LESSON5]

Windows:
%RTHOME%\examples\smrtsock\tutorial\lesson5

Step 2 Compile and link the watchsbj and receive programs

UNIX:
$ rtlink watchsbj.c -o watchsbj.x
$ rtlink receive.c -o receive.x

OpenVMS:
$ cc watchsbj.c
$ rtlink /exec=watchsbj.exe watchsbj.obj
$ cc receive.c
$ rtlink /exec=receive.exe receive.obj

Windows:
$ nmake /f wsjw32m.mak
$ nmake /f recw32m.mak
 TIBCO SmartSockets User’s Guide

424 | Chapter 5 Project Monitoring
To run the programs, start the receive process in one terminal emulator window
and then the watchsbj process in another terminal emulator window.

Step 3 Start the receive program in the first window

UNIX:
$ receive.x

OpenVMS:
$ run receive.exe

Windows:
$ receive.exe

Step 4 Start the watchsbj program in the second window

UNIX:
$ watchsbj.x ss_tutorial lesson5

OpenVMS:
$ watchsbj :== sysdisk:[]watchsbj.exe
$ watchsbj ss_tutorial lesson5

Windows:
$ watchsbj.exe ss_tutorial lesson5

This is an example of the output displayed:

Watching subject <lesson5> in project <ss_tutorial>...
Connecting to project <ss_tutorial> on <_node> RTserver.
Using local protocol.
Message from RTserver: Connection established.
Start subscribing to subject </_grissom_1026>.
Received change notice for subject <lesson5>
/* This is the initial status message which is returned */
Number of clients subscribed to <lesson5> = 1
 [0] /_grissom_1018
RTclient who just subscribed:
RTclient who just unsubscribed:
==
TIBCO SmartSockets User’s Guide

Watching | 425
Step 5 Kill the receive program and restart it

This is an example of the output displayed:

Received change notice for subject <lesson5>
Number of clients subscribed to <lesson5> = 0
RTclient who just subscribed:
RTclient who just unsubscribed: /_grissom_1018
==
Received change notice for subject <lesson5>
Number of clients subscribed to <lesson5> = 1
 [0] /_grissom_1028
RTclient who just subscribed: /_grissom_1028
RTclient who just unsubscribed:
==

Note that watchsbj output results immediately when the program was killed and
again when it was restarted.
 TIBCO SmartSockets User’s Guide

426 | Chapter 5 Project Monitoring
Advanced Monitoring

This section describes advanced monitoring features, such as how to derive
information, naming services, and using monitoring to implement a fault tolerant
architecture.

Monitoring With SNMP
With your standard SmartSockets product, all you have to do is hook into a
project, and all monitoring information for all processes is available. However, if
you want to use SNMP products to monitor SmartSockets processes, you can
purchase our SNMP support module, SmartSockets Monitor. For more
information, see your TIBCO sales representative or the TIBCO SmartSockets
Monitor User’s Guide.

Deriving Information
In many situations, you may wish to derive (calculate) new information from the
information received. This allows the process accessing the monitoring
information to calculate any derived information it finds useful. One example of
this is calculating the change in memory usage of an RTclient since the last poll.
For example, the RTmon GDI calculates the change in memory usage from the last
poll.
TIBCO SmartSockets User’s Guide

Advanced Monitoring | 427
Process Identification
Each RTserver and RTclient has an identification string that is used as a
descriptive name for the process when it is being monitored. This string shows up
in RTmon and is also used as part of a field in these message types:

• MON_CLIENT_NAMES_STATUS

• MON_SERVER_NAMES_STATUS

• MON_CLIENT_NAMES_POLL_RESULT

• MON_SERVER_NAMES_POLL_RESULT

In the above message types, the full field has the form "ident: user@node" (such as
"RTclient: ssuser@workstation1"). The monitoring identification string is used as
ident. This string is retrieved with the function TipcMonGetIdentStr and set with
the function TipcMonSetIdentStr, or the Monitor_Ident option. This example
shows how to set and access the identification string of a process:

T_STR ident_str;

if (!TipcMonSetIdentStr("Acme Inc. Data Collector")) {
 /* error */
}

if (!TipcMonGetIdentStr(&ident_str)) {
 /* error */
}

TutOut("Monitoring identification string is %s\n", ident_str);

An RTclient that calls TipcMonSetIdentStr after calling TipcSrvCreate will not be
identified correctly.
 TIBCO SmartSockets User’s Guide

428 | Chapter 5 Project Monitoring
Naming (Directory) Services
SmartSockets monitoring provides an elegant way to implement naming and
directory services within a project. Using monitoring combined with the
publish-subscribe features of SmartSockets, it is very easy to find items of interest
on a network. In general, RTclients are identified by the setting of their
Unique_Subject option, and groups of RTclients can be identified by subscribing
to a specified subject.

The monitoring functions that provide naming or directory services includes:

• TipcMonClientGeneralPoll — returns the node an RTclient is running on

• TipcMonServerGeneralPoll — returns the node an RTserver is running on

These functions, combined with other functions in the monitoring API, can be
used to locate RTclients based on:

• the setting of their Unique_Subject option

• the subjects they are subscribing to

• the project they belong to

• the message types they know about

• the options they know about

For example, to locate what node an RTclient, identified by the unique subject
program_x, resides on, this example is used:

T_IPC_MT mt;
T_STR client_name;
T_STR ident;
T_STR node_name;
T_STR user_name;
T_INT4 pid;
T_STR project;

/* send the poll request out to RTserver */
if (!TipcMonClientGeneralPoll("program_x")) {
 /* error */
}

mt = TipcMtLookupByNum(T_MT_MON_CLIENT_GENERAL_POLL_RESULT);
if (mt == NULL) {
 /* error */
}

/* wait up to 10 seconds for the poll result */
msg = TipcSrvMsgSearchType(10.0, mt);
if (msg == NULL) {
 /* error */
}
TIBCO SmartSockets User’s Guide

Advanced Monitoring | 429
/* access the fields of interest from the returned message*/
if (!TipcMsgSetCurrent(msg, 0)) {
 /* error */
}

/* note that we do not have to access all the fields of the message */
if (!TipcMsgRead(data->msg,
 T_IPC_FT_STR, &client_name,
 T_IPC_FT_STR, &ident,
 T_IPC_FT_STR, &node_name,
 T_IPC_FT_STR, &user_name,
 T_IPC_FT_INT4, &pid,
 T_IPC_FT_STR, &project,
 NULL)) {
 /* error */
}

/* Output the information */
TutOut("RTclient name = %s\n", client_name);
TutOut("ident = %s\n", ident);
TutOut("node name = %s\n", node_name);
TutOut("user name = %s\n", user_name);
TutOut("pid = %d\n", pid);
TutOut("project = %s\n", project);

Running an RTclient With a Hot Backup
In many mission-critical applications, fault tolerance and reliability are important
requirements. The system requires continuous operation, 24 hours a day, 7 days a
week, regardless of hardware or software failures. Handling Network Failures In
Publish Subscribe on page 307, describes how RTserver and RTclient achieve
increased reliability in their communication by transparently checking for
problems that occur when connecting, sending messages, or receiving messages.

You can achieve a higher level of reliability in your system through the use of
software redundancy. Redundancy involves one or more backup processes for
each primary process. For example, if you want to ensure that a specified RTclient
continues to run regardless of problems that may occur in the network, you can
run one or more backup RTclients as a mirror for each primary RTclient.

To minimize down time, you typically want to run the backup RTclient in a hot
backup mode. This means the backup RTclient runs in parallel with the primary
RTclient, with the backup typically running on a different computer for increased
reliability. When the primary RTclient goes down or fails to respond for a given
amount of time, control is transferred to the backup RTclient, and it then takes
over as the primary, possibly spawning a new backup for itself.

Another easy way to implement a backup RTclient process is to use the SORTED
load balancing mode described in Chapter 3, Publish-Subscribe.
 TIBCO SmartSockets User’s Guide

430 | Chapter 5 Project Monitoring
When running a backup RTclient in parallel with the primary RTclient, these
requirements should be met so as to maximize continuous operation:

• The backup RTclient receives all the same data as the primary RTclient (they
both start subscribing to the same subjects at the same time, and they both
stop subscribing to the same subjects at the same time).

• The backup RTclient and the primary RTclient are functionally the same
software

• The backup RTclient is silent. This means it does not send out any messages to
other RTclients in the project. Only when an RTclient is the primary process
can it send out its results using messages.

SmartSockets provides a straightforward mechanism to meet these requirements
in running a primary RTclient with a hot backup. For example, if you want to
ensure than an RTclient runs continuously, two RTclients (both identical
programs) could be started on different machines with both subscribing to
identical subjects. Both RTclients receive the same messages and make equivalent
calculations, keeping their internal states consistent. The backup RTclient can run
in silent mode by setting the standard option Server_Msg_Send to FALSE, thus
preventing any messages from going out. Correspondingly, the primary RTclient
should have its Server_Msg_Send option set to TRUE, ensuring its results are sent
out. When the primary RTclient fails, the backup RTclient can have its
Server_Msg_Send option set to TRUE, now making it the primary RTclient.
Because there is now only a single RTclient running, a backup needs to be
restarted and have its state restored to that of the primary.

To demonstrate this simple strategy of running redundant RTclients, one a mirror
of the other, a complete example is shown and discussed in the following sections.
This example uses a user-defined RTclient to monitor and control the primary and
backup processes. This strategy is appealing in the fact that it is non-intrusive,
allowing you to achieve the software fault tolerance without having to make any
changes in the program used by the primary and backup RTclients.

Suppose that you want to run a hot backup for one RTclient in the project
user_manual. The subjects to subscribe to are set in a command file that is read at
startup. In this example, the RTclient is only interested in processing messages
sent to the chapter5 subject.
TIBCO SmartSockets User’s Guide

Advanced Monitoring | 431
This is an example of the startup command file for the primary RTclient. The
highlighted text is the text you must add to monitor the process for failure, and so
failover can occur, if necessary:

setopt subjects chapter5, primary_client
setopt server_msg_send true

The startup file for the backup RTclient is identical except it subscribes to the
backup_client subject instead of primary_client subject, and it would have its
Server_Msg_Send option set to FALSE as shown:

setopt subjects chapter5, backup_client
setopt server_msg_send false

Note that in both command files the programs subscribe to the chapter5 subject.
Sending a message to the chapter5 subject ensures that both the primary and
backup RTclient receive the same message. The backup_client subject is
reserved for messages that need to be sent to the hot backup only.

In the following example program, a user-defined RTclient (guardian.c) is used
to perform the task of monitoring a primary and backup program. This program
is referred to as the Guardian.

The source code files for this example are located in these directories:

UNIX:
$RTHOME/examples/smrtsock/manual

OpenVMS:
RTHOME:[EXAMPLES.SMRTSOCK.MANUAL]

Windows:
%RTHOME%\examples\smrtsock\manual

The online source files have additional #ifdefs to provide C++ support; these
#ifdefs are not shown to simplify the example.
 TIBCO SmartSockets User’s Guide

432 | Chapter 5 Project Monitoring
Guardian (Hot Backup Manager) Source Code

This is the complete C source code example for the Guardian program:

/* guardian.c -- RTclient example for managing a hot backup process */

/*

USAGE
 guardian.x <project name>

Also can use udrecv.c, udsend.c, primary.cm, and backup.cm to test.

This program is an RTclient that provides a primary and
backup RTclient for the project passed in as a command-line
argument. To use this, you must have two duplicate RTclients
with different startup command files.

In the first command file, which is for the primary RTclient, the
following lines should be added (or modified if they already exist):
 setopt server_msg_send TRUE
 setopt subjects <existing_subjects>, primary_client

The second command file, which is for the "hot backup", the
following lines should be added (or modified if they already exist):
 setopt server_msg_send FALSE
 setopt subjects <existing_subjects>, backup_client

You should also have shell scripts to start the primary and backup
RTclients named "startpcl" and "startbcl" respectively.

The guardian program then watches the primary_client and
backup_client and switches the backup over as needed when the primary
fails or restarts the backup if it fails.
*/

#define NOT_STARTED -1
#include <rtworks/ipc.h>

static T_STR project_name;
static T_INT4 num_primary = NOT_STARTED; /* Primary RTclient count */
static T_INT4 num_backup = NOT_STARTED; /* Backup RTclient count */

/* === */
/*..cb_default -- default callback to handle unexpected messages */
static void T_ENTRY cb_default(

T_IPC_CONN conn,
T_IPC_CONN_DEFAULT_CB_DATA data,
T_CB_ARG arg)

{
 T_IPC_MT mt;
 T_STR name;

TIBCO SmartSockets User’s Guide

Advanced Monitoring | 433
 /* print out the name of the type of the message */
 if (!TipcMsgGetType(data->msg, &mt)) {
 TutOut("Could not get message type from message: error
<%s>.\n",
 TutErrStrGet());
 return;
 }
 if (!TipcMtGetName(mt, &name)) {
 TutOut("Could not get name from message type: error <%s>.\n",
 TutErrStrGet());
 return;
 }
 TutOut("Unexpected message type name is <%s>\n", name);
} /* cb_default */

/* === */
/*..cb_subject_status -- callback to process MON_SUBJECT_SUBSCRIBE_STATUS messages */
static void T_ENTRY cb_subject_status(

T_IPC_CONN conn,
T_IPC_CONN_PROCESS_CB_DATA data,
T_CB_ARG arg)

{
 T_IPC_MSG msg = data->msg;
 T_IPC_MT mt;
 T_STR subject_name;
 T_STR lc_subject_name; /* lower-case version of subject_name */
 T_INT4 subject_count;
 T_REAL8 wall_time;
 T_STR time_str;
 T_STR *subscribe_client_names;

 /*
 * cb_subject_status is called when a MON_SUBJECT_SUBSCRIBE_STATUS
 * subject status message is received. Each time an RTclient starts
 * or stops subscribing to the primary_client or backup_client
 * subjects this function is called.
 */

 /* Get the current wall clock time and convert it to a string */
 wall_time = TutGetWallTime();
 time_str = TutTimeNumToStr(wall_time);

 /* Parse the subject status message for the subject id and */
 /* the number of RTclients subscribed to it. */

 /* Set current field */
 if (!TipcMsgSetCurrent(msg, 0)) {
 TutOut("Could not set current field of message: error <%s>.\n",
 TutErrStrGet());
 return;
 }
 TIBCO SmartSockets User’s Guide

434 | Chapter 5 Project Monitoring
 /* Get the fields of interest from the message */
 if (!TipcMsgNextStr(msg, &subject_name)
 || !TipcMsgNextStrArray(msg, &subscribe_client_names,
 &subject_count)) {
 TutOut("Unable to access MON_SUBJECT_SUBSCRIBE_STATUS");
 TutOut("message: error <%s>.\n", TutErrStrGet());
 return;
 }

 TutOut("Time = %s\n", time_str);
 TutOut("%d RTclients are subscribing to the %s subject.\n",
 subject_count, subject_name);

 /* make a copy of the subject name and convert to lower case */
 T_STRDUP(lc_subject_name, subject_name);
 TutStrLwr(lc_subject_name, lc_subject_name);

 if (strcmp(lc_subject_name, "primary_client") == 0) {
 num_primary = subject_count;
 }
 else if (strcmp(lc_subject_name, "backup_client") == 0) {
 num_backup = subject_count;
 }
 else {
 TutOut("Received SUBJECT_SUBSCRIBE_STATUS for unwanted");
 TutOut("subject %s.\n", lc_subject_name);
 T_FREE(lc_subject_name);
 return;
 }

 /* Prepare to send CONTROL messages later on. */
 mt = TipcMtLookupByNum(T_MT_CONTROL);
 if (mt == NULL) {
 TutOut("Could not look up control message: error <%s>.\n",
 TutErrStrGet());
 return;
 }

TIBCO SmartSockets User’s Guide

Advanced Monitoring | 435
 /*
 * There are four main cases that need to be covered. They are
 * listed below followed by the actions to be taken when the case
 * is encountered:
 * CASE 1: Neither primary nor backup RTclient is running.
 * start primary RTclient
 * start backup RTclient
 * CASE 2: Both primary and backup RTclients are running.
 * output message that all is OK
 * CASE 3: Primary RTclient fails; backup RTclient is running.
 * set server_msg_send option in backup RTclient to TRUE
 * Have backup start subscribing to the primary_client subject
 * Have backup stop subscribing to the backup_client subject
 * (This will then cause CASE 4 to occur);
 * CASE 4: Backup RTclient fails, primary RTclient is running.
 * Restart backup RTclient
 */

 /* Check if neither the primary RTclient nor backup RTclient have */
 /* been started yet */
 if (num_primary == 0 && num_backup == 0) {
 TutOut("Neither primary nor backup RTclient yet started.\n");
 TutOut("Starting primary RTclient...\n");
 TutSystem("startpcl &");
 TutOut("Starting backup RTclient...\n");
 TutSystem("startbcl &");
 }

 else if (num_primary == 1 && num_backup == 1) {
 TutOut("Both primary and backup RTclients are running!\n");
 }

 else if (strcmp(lc_subject_name, "primary_client") == 0) {
 if (num_primary == 1 && num_backup <= 0) {
 TutOut("Primary RTclient up and running! Waiting on ");
 TutOut("backup...\n");
 }
 else if (num_primary == 0 && num_backup <= 0) {
 TutOut("No primary RTclient yet; No report yet from backup
\n");
 }
 TIBCO SmartSockets User’s Guide

436 | Chapter 5 Project Monitoring
 /* Check if we have lost the primary RTclient */
 else if (num_primary == 0 && num_backup == 1){
 TutOut("Primary RTclient has failed!\n");

 TutOut("Switching the backup RTclient to be primary...\n");
 if (!TipcSrvMsgWrite("backup_client", mt, TRUE, T_IPC_FT_STR,
 "setopt server_msg_send TRUE", NULL)) {
 TutOut("Could not send setopt control message to ");
 TutOut("backup_client: error <%s>.\n", TutErrStrGet());
 }

 if (!TipcSrvMsgWrite("backup_client", mt, TRUE, T_IPC_FT_STR,
 "subscribe primary_client", NULL)) {
 TutOut("Could not send subscribe control message to ");
 TutOut("backup_client: error <%s>.\n", TutErrStrGet());
 }

 if (!TipcSrvMsgWrite("backup_client", mt, TRUE, T_IPC_FT_STR,
 "unsubscribe backup_client", NULL)) {
 TutOut("Could not send unsubscribe control message to ");
 TutOut("backup_client: error <%s>.\n", TutErrStrGet());
 }
 }
 else {
 TutOut("We have an irregular number of RTclients!\n");
 TutOut("Number of primary RTclients: %d\n", num_primary);
 TutOut("Number of backup RTclients: %d\n", num_backup);
 }
 }
 else if (strcmp(lc_subject_name, "backup_client") == 0) {
 if (num_primary <= 0 && num_backup == 1) {
 TutOut("Backup RTclient up and running! Waiting on ");
 TutOut("primary...\n");
 }
 else if (num_primary <= 0 && num_backup == 0) {
 TutOut("No backup RTclient yet; ");
 TutOut("No report received yet from primary RTclient.\n");
 }
 /* Check if we have lost the backup RTclient */
 else if (num_primary == 1 && num_backup == 0){
 TutOut("Backup RTclient is down!\n");
 TutOut("Starting a new backup RTclient!\n");
 TutSystem("startbcl &");
 }
 else {
 TutOut("We have an irregular number of RTclients!\n");
 TutOut("Number of primary RTclients : %d\n",
 num_primary);
 TutOut("Number of backup RTclients : %d\n",
 num_backup);
 }
 }

 TutOut("================================\n");
 T_FREE(lc_subject_name);
} /* cb_subject_status */
TIBCO SmartSockets User’s Guide

Advanced Monitoring | 437
/* === */
/*..main -- main program */
int main(argc, argv)
int argc;
char **argv;
{
 T_OPTION option;
 T_IPC_MT mt;

 /* Check the command-line arguments */
 if (argc != 2) {
 TutOut("Usage: guardian <project>\n");
 TutExit(T_EXIT_FAILURE);
 }

 /* Save the pointer to the command line argument */
 project_name = argv[1];
 TutOut("Monitoring project <%s>...\n", project_name);

 /* Set the project name */
 option = TutOptionLookup("project");
 if (option == NULL) {
 TutOut("Could not look up option named project: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (!TutOptionSetEnum(option, project_name)) {
 TutOut("Could not set the option named <project>: error
<%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* Set the time format for the FULL format */
 TutCommandParseStr("setopt time_format full");

 /* Create a connection to RTserver */
 if (!TipcSrvCreate(T_IPC_SRV_CONN_FULL)) {
 TutOut("Could not connect to RTserver: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 TIBCO SmartSockets User’s Guide

438 | Chapter 5 Project Monitoring
 /* Create callback to process MON_SUBJECT_SUBSCRIBE_STATUS msgs */
 mt = TipcMtLookupByNum(T_MT_MON_SUBJECT_SUBSCRIBE_STATUS);
 if (mt == NULL) {
 TutOut("Could not look up MON_SUBJECT_SUBSCRIBE_STATUS");
 TutOut("message type: error <%s>.\n", TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }
 if (TipcSrvProcessCbCreate(mt, cb_subject_status, NULL) == NULL)
{
 TutOut("Could not create MON_SUBJECT_SUBSCRIBE_STATUS");
 TutOut("process callback: error <%s>.\n", TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* Create default callback to handle unwanted message types */
 if (TipcSrvDefaultCbCreate(cb_default, NULL) == NULL) {
 TutOut("Could not create default callback: error <%s>.\n",
 TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* Start watching primary_client and backup_client subjects */
 TutOut("Starting to watch <primary_client> subject.\n");
 if (!TipcMonSubjectSubscribeSetWatch("primary_client", TRUE)) {
 TutOut("Could not start watching primary_client subject.\n");
 TutOut(" error <%s>.\n", TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 TutOut("Starting to watch <backup_client> subject.\n");
 if (!TipcMonSubjectSubscribeSetWatch("backup_client", TRUE)) {
 TutOut("Could not start watching backup_client subject.\n");
 TutOut(" error <%s>.\n", TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
 }

 /* If RTserver stops, then TipcSrvMainLoop will restart RTserver */
 /* and return FALSE. We can safely continue. */
 for (;;) {
 if (!TipcSrvMainLoop(T_TIMEOUT_FOREVER)) {
 TutOut("TipcSrvMainLoop failed: error <%s>.\n",
 TutErrStrGet());
 }
 }

 /* This line should never be reached */
 TutOut("This line should never be reached!\n");
 return T_EXIT_FAILURE;
} /* main */
TIBCO SmartSockets User’s Guide

Advanced Monitoring | 439
Compiling, Linking, and Running
To compile, link, and run the guardian program, first you must either copy the
program to your own directory or have write permission in these directories:

UNIX:
$RTHOME/examples/smrtsock/manual

OpenVMS:
RTHOME:[EXAMPLES.SMRTSOCK.MANUAL]

Windows:
%RTHOME%\examples\smrtsock\manual

In addition to the guardian program, these two other programs are provided so
you can test the application:
• udrecv.c

This program outputs field of COUNT message (an integer) and sends it back to
udsend.c (two instances of this program running to simulate a primary and
backup RTclient). This program takes a single command line argument, the
name of a command file. In the test these command files are primary.cm and
backup.cm.

• udsend.c

This program sends a COUNT message (an integer, incremented each time) to
the chapter5 subject; also has a callback to output the field of any COUNT
messages sent back to it from udrecv.c. COUNT is a user-defined message
type that consists of one field, an integer. The program udsend increments this
one time, each time it sends a message.

Step 1 Compile and link all three programs, guardian, udrecv, and udsend

UNIX:
$ rtlink -o guardian.x guardian.c
$ rtlink -o udrecv.x udrecv.c
$ rtlink -o udsend.x udsend.c

OpenVMS:
$ cc guardian.c
$ rtlink /exec=guardian.exe guardian.obj
$ cc udrecv.c
$ rtlink /exec=udrecv.exe udrecv.obj
$ cc udsend.c
$ rtlink /exec=udsend.exe udsend.obj
 TIBCO SmartSockets User’s Guide

440 | Chapter 5 Project Monitoring
Windows:
$ nmake /f gardw32m.mak
$ nmake /f udrcw32m.mak
$ nmake /f udsdw32m.mak

Step 2 Run the stguardn command

To run the test, run the stguardn command that starts guardian, two instances of
udrecv (one primary and one backup), and one udsend.

UNIX:
$ stguardn user_manual

OpenVMS:
$ @stguardn user_manual

Windows:
$ stguardn user_manual

This is an example of the output:

Monitoring project <user_manual>...
Connecting to project <user_manual> on <_node> RTserver.
Using local protocol.
Message from RTserver: Connection established.
Start subscribing to subject </_workstation1_2252>.
Starting to watch <primary_client> subject.
Starting to watch <backup_client> subject.
Time = Fri Mar 14 12:54:50.567 1997
1 RTclients are subscribing to the primary_client subject.
Primary RTclient up and running! Waiting on backup...
================================
Time = Fri Mar 14 12:54:50.689 1997
1 RTclients are subscribing to the backup_client subject.
Both primary and backup RTclients are running!
================================
TIBCO SmartSockets User’s Guide

Advanced Monitoring | 441
Step 3 Test failover by killing udrecv

Once both the primary and backup udrecv programs are running, along with
udsend, test the failover by killing the primary udrecv or backup udrecv
programs.

If the primary udrecv exits, then Guardian produces output similar to:

Time = Fri Mar 14 12:55:37.929 1997
0 RTclients are subscribing to the primary_client subject.
Primary RTclient has failed!
Switching the backup RTclient to be primary...
================================
Time = Fri Mar 14 12:55:38.138 1997
1 RTclients are subscribing to the primary_client subject.
Both primary and backup RTclients are running!
================================
Time = Fri Mar 14 12:55:38.180 1997
0 RTclients are subscribing to the backup_client subject.
Backup RTclient is down!
Starting a new backup RTclient!
================================
Time = Fri Mar 14 12:55:42.926 1997
1 RTclients are subscribing to the backup_client subject.
Both primary and backup RTclients are running!
================================

Once both the primary and backup udrecvs are running, if the backup udrecv
exits, then Guardian produces output similar to:

Time = Fri Mar 14 12:55:22.772 2002
0 RTclients are subscribing to the backup_client subject.
Backup RTclient is down!
Starting a new backup RTclient!
================================
Time = Fri Mar 14 12:55:27.752 2002
1 RTclients are subscribing to the backup_client subject.
Both primary and backup RTclients are running!
================================
 TIBCO SmartSockets User’s Guide

442 | Chapter 5 Project Monitoring
Discussion of the Guardian Program

Guardian uses the function TipcMonSubjectSubscribeSetWatch to set up
subscription monitoring on the primary_client and backup_client subjects:

if (!TipcMonSubjectSubscribeSetWatch("primary_client", TRUE)) {
 TutOut("Could not start watching primary_client subject.\n");
 TutOut(" error <%s>.\n", TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}

if (!TipcMonSubjectSubscribeSetWatch("backup_client", TRUE)) {
 TutOut("Could not start watching backup_client subject.\n");
 TutOut(" error <%s>.\n", TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}

Whenever the subscriber count for the primary_client subject changes, RTserver
sends a MON_SUBJECT_SUBSCRIBE_STATUS message to Guardian. An RTclient
message process callback function must be created for this message type within
Guardian:

mt = TipcMtLookupByNum(T_MT_MON_SUBJECT_SUBSCRIBE_STATUS);
if (mt == NULL) {
 TutOut("Could not look up MON_SUBJECT_SUBSCRIBE_STATUS");
 TutOut("message type: error <%s>.\n", TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}
if (TipcSrvProcessCbCreate(mt, cb_subject_status, NULL) == NULL) {
 TutOut("Could not create MON_SUBJECT_SUBSCRIBE_STATUS");
 TutOut("process callback: error <%s>.\n", TutErrStrGet());
 TutExit(T_EXIT_FAILURE);
}

Whenever an RTclient starts or stops subscribing to either the primary_client or
backup_client subjects, a MON_SUBJECT_SUBSCRIBE_STATUS message is
sent by RTserver to Guardian, causing the callback function cb_subject_status to
be executed. The function cb_subject_status provides the failover and starting of
the RTclients.

There are five cases that cb_subject_status must be able to handle:

1. Neither the primary nor the backup RTclient is running. In this case
cb_subject_status should start both the primary and backup RTclients.

TutSystem("startpcl &");
TutSystem("startbcl &");

The shell scripts startpcl and startbcl start the respective processes.

2. Both the primary and backup RTclients are running. In this case, operation is
normal and nothing needs to be done.
TIBCO SmartSockets User’s Guide

Advanced Monitoring | 443
3. The primary RTclient fails, and the backup RTclient is running. This is the
most interesting case as it requires the backup RTclient to be changed to the
primary RTclient. To do this, three actions are required:

a. A CONTROL message must be sent to the backup RTclient to set its
Server_Msg_Send option to TRUE. This activates the backup, causing it to
now start sending its messages to other RTclients.

if (!TipcSrvMsgWrite("backup_client", mt, TRUE, T_IPC_FT_STR,
 "setopt server_msg_send TRUE", NULL)) {
 TutOut("Could not send setopt control message to ");
 TutOut("backup_client: error <%s>.\n", TutErrStrGet());
}

b. The next step involves sending a CONTROL message to the backup
RTclient to start subscribing to the primary_client subject. In essence,
this makes the backup now the primary RTclient:

if (!TipcSrvMsgWrite("backup_client", mt, TRUE, T_IPC_FT_STR,
 "subscribe primary_client", NULL)) {
 TutOut("Could not send subscribe control message to ");
 TutOut("backup_client: error <%s>.\n", TutErrStrGet());
}

c. At this time, the RTclient is subscribing to messages for both the
primary_client and backup_client subjects. To complete the hot
failover, a CONTROL message is sent to the backup RTclient to stop
subscribing to the backup_client subject. This completes the transition of
the backup to the primary.

When the backup_client subject is no longer being subscribed to, a new
MON_SUBJECT_SUBSCRIBE_STATUS message is issued by RTserver,
specifying the process count for the backup_client subject is now zero,
thus causing case 4 (described below) to occur.

if (!TipcSrvMsgWrite("backup_client", mt, TRUE, T_IPC_FT_STR,
 "unsubscribe backup_client", NULL)) {
 TutOut("Could not send unsubscribe control message to ");
 TutOut("backup_client: error <%s>.\n", TutErrStrGet());
}

4. The primary RTclient is running and the backup fails. In this case, another
backup RTclient must be started.

TutSystem("startbcl &")

The ampersand (&) is critical in the call to TutSystem as it starts the process in
the background (in OpenVMS this is called spawning the process) and returns
immediately, without waiting for it to complete. Failure to specify the
ampersand (&) causes the Guardian process to hang.
 TIBCO SmartSockets User’s Guide

444 | Chapter 5 Project Monitoring
5. Otherwise case: If any of the above cases do not handle the
MON_SUBJECT_SUBSCRIBE_STATUS message, then an irregular number of
RTclients is running, and an error message is displayed.

A key question is whether one can lose any outgoing messages from using this
approach. The only time this happens is from the time RTserver detects the loss of
the primary RTclient to the time that Guardian is able to switch the backup
RTclient to be primary. This time period in most cases should be less than one
second. If the primary RTclient fails at the same time it is sending out messages,
there is potential loss of data. This risk can be further reduced by using
guaranteed message delivery. See Chapter 4, Guaranteed Message Delivery, for
more details.
TIBCO SmartSockets User’s Guide

| 445
Chapter 6 Using RTmon

This chapter presents detailed information about the tools available for
monitoring and managing your SmartSockets project.

Topics

• The RTmon Process, page 446

• RTmon Graphical Development Interface, page 447

• Monitoring Your Project with RTmon GDI, page 453

• Sending Messages with RTmon GDI, page 471

• Stopping RTmon GDI Processes, page 474

• RTmon Command Interface, page 475
 TIBCO SmartSockets User’s Guide

446 | Chapter 6 Using RTmon
The RTmon Process

You can monitor and manage your entire SmartSockets project using an RTmon
process. The RTmon is a standard RTclient that is non-intrusive, allowing you to
monitor and manage information about your project without changing the
running processes. RTmon also provides real-time system usage information on
processes, such as CPU and memory resources.

You can access RTmon using the RTmon Graphical Development Interface (GDI)
or through a built-in command-oriented interface called the RTmon Command
Interface (CI).

The RTmon GDI is a graphical point-and-click tool that is intuitive and easy to
use. RTmon supports many management sessions concurrently, providing
real-time information using multiple RTclient windows. This chapter presents
detailed information about invoking and using the RTmon GDI.

The CI, also referred to as RTmon runtime, is a command-oriented interface for
monitoring and managing your SmartSockets project.

The RTmon GDI runs as a separate process from the CI. Commands initiated in
the RTmon GDI are sent to RTmon CI to be executed. The RTmon CI, in turn, calls
on the TipcMon* API to execute the command. For example, initiating a poll
command executes a TipcMonTypePoll function, and initiating a watch command
executes a TipcMonTypeSetWatch function. Results are returned in standard
monitoring message types to the RTmon CI and then sent on to the RTmon GDI
for display.

It is assumed you are already familiar with using standard GDIs, including mouse
functions, graphical views, hierarchical pull-down menus, and so on.

The RTmon GDI has been deprecated and may be removed in a future release.
TIBCO SmartSockets User’s Guide

RTmon Graphical Development Interface | 447
RTmon Graphical Development Interface

The RTmon Graphical Development Interface (GDI) is a graphical point-and-click
interface for monitoring and managing processes and message-related
information in a distributed project. The RTmon GDI provides easy access to
many of the commands discussed in Chapter 9, Command Reference. In addition,
the GDI provides an assortment of tools for viewing projects, including graphical
trees, browsers, and watch windows.

The RTmon GDI and the RTmon CI are actually two separate processes that
communicate with each other using messages. In general, as you execute a GDI
function, commands are formatted and sent to the CI. Any output produced by
the execution of the command is then sent from the CI process back to the GDI
process. For more information about starting RTmon CI, see RTmon Command
Interface on page 475.

The content and function of the RTmon GDI on the Windows and Motif platforms
are identical.

The RTmon GDI has been deprecated and may be removed in a future release.
 TIBCO SmartSockets User’s Guide

448 | Chapter 6 Using RTmon
Starting a Graphical Development Interface Session
This section presents steps on how to invoke an RTmon GDI session, as well as
basic information about using the RTmon GDI. Type this command at the prompt
to invoke the RTmon GDI:

$ rtmon

Once the RTmon is finished initializing, the SmartSockets RTmon main window
appears, as shown in Figure 35. If a project is not explicitly set in the rtmon.cm
file, then an information window appears providing you with instructions. When
you select OK in the Information box, the Project Browser pop-up box appears
and allows you to select a project. Then the main window appears:

Figure 35 RTmon Main Window

Windows

The content and
function of the
RTmon GDI are
identical between the
Windows and Motif platforms.

Motif

The Menu
Bar

Provides
access to the
most
commonly
used RTmon
tools.

Output
Command
Interface

Displays
project status
information.

Input
Command
Interface

Provides a
command line for
user input. This
is only enabled
when the GDI is
paused.

Status Line

Displays the current
status of the runtime
process.

Command
Bar

Provides
point-and-click
command
buttons for the
most
commonly
used
TIBCO SmartSockets User’s Guide

RTmon Graphical Development Interface | 449
The six major functional regions of the RTmon Main window are:

Vertical and horizontal scroll bars are available for scrolling the Project Tree, the
Command Interface Output, and the Command Interface Input regions.

Menu Bar Provides point-and-click access to the most often used tools in an
RTmon project.

Project Tree Displays the processes that make up a project. The Project Tree is
displayed in a directory tree format, and is updated in real time.
The root of the tree represents the project name; the first-level
branches from the project represent the RTserver processes, and
the second-level branches represent the RTclient processes
attached to the RTserver. The third-level branches (the outermost
branches) represent the subjects to which each RTclient process is
subscribing.

Command Bar Displays the most commonly used commands in a command bar
format.

Status Line Displays the current status of the RTmon process.

Command
Interface Output

Displays status information about the RTmon runtime process.
Results from user-entered commands are displayed in this
region.

Command
Interface Input

Provides a command line for user input for the RTmon runtime
process. Results are then displayed in the Command Interface
Output region.
 TIBCO SmartSockets User’s Guide

450 | Chapter 6 Using RTmon
Figure 36 highlights the branches of the Project Tree.

Figure 36 RTmon Main Window Main Functional Regions

Menu Bar

The menu bar provides access to six pull-down menus:

Subjects

The third-level
branches display
the subjects to
which the
RTclients are
subscribing.

Project Name

The root-level
displays the
project name.

RTclients

The second-level
branches display the
RTclients that are
connected to the
RTservers.

RTserver Names

The first-level
branches display the
current RTserver
processes.

File Edits the rtmon.cm file and exits the RTmon GDI.

Run Runs one or more messages, provides process statistics, and pauses any
running processes.

View Clears the command output interface, toggles auto scrolling, or modifies
the view format in the Project Tree.

Watch Monitors a project, RTclient time, RTclient message buffers, RTclients
subscribing to subjects, subjects being subscribed to by RTclients, RTclient
messages received, RTclient messages sent, and RTserver connections.
This information is updated as changes occur.
TIBCO SmartSockets User’s Guide

RTmon Graphical Development Interface | 451
The RTmon GDI is intuitive and easy to use as it is designed like many standard
graphical interfaces. The following list presents some of the standard design
features.

• Menu options followed by a right-angled triangle indicate one or more child
pull-down menus.

• Items followed by an ellipsis indicate one or more child-windows.

• Items preceded by a square indicate a toggle option (i.e., selecting the menu
option disables or enables the feature).

• In many windows where lists are presented, multiple items in the list may be
selected simultaneously. To select more than one list item on Motif, highlight
an item and then press the Shift key while left clicking on one or more of the
other items in the list. To select more than one list item on Windows, highlight
an item and then press the Ctrl key while left clicking on one or more of the
other items in the list.

Project Tree

The Project Tree displays branches made up of the current project name, RTserver
names, RTclient names, and subject names. The project name is the root of the tree.
Branching off from the root are the RTserver processes, branching off of each
RTserver are the RTclient processes connected to that RTserver, and branching off
from each RTclient are the subjects to which that RTclient is subscribing. This
window is updated in real time as changes occur to RTservers, RTclients, or
subjects. For example, when a process subscribes or unsubscribes to a subject, the
subject portion of the tree for that process is updated immediately. The Project
Tree is useful for concise, up-to-date graphical snapshots of the project.

The Project Tree provides hot spots for accessing child windows. Double left click
on any item displayed in the tree and a pop-up window appears. For instance, if
you double left click on the project name, the Project Browser window appears.
Similarly, if you double left click on one of the subjects displayed in the Project
Tree, the Client Subjects Message Traffic window appears. Note that when you
invoke a window from the Project Tree a poll is executed automatically.

Poll Makes a one-time request for monitoring information about RTclients,
RTservers, message traffic related to a specific RTclient or subject, or an
RTserver buffer.

Help Lists all available commands or options in the terminal window from
which RTmon was started.
 TIBCO SmartSockets User’s Guide

452 | Chapter 6 Using RTmon
Command Bar

The Command Bar is located just beneath the Project Tree region, providing
point-and-click access to some of the most frequently used commands of the
RTmon GDI.

Status Line

The Status Line is located immediately below the Command Bar region,
presenting the current state of the RTmon process. The possible states include:

• Reading/Processing Messages

• Waiting For Command

Command Interface Output Region

The Command Interface Output Region displays standard output for the RTmon
process. The output area automatically scrolls each time new output is received.
This behavior may be bothersome if you are trying to look back at a message
previously written to the screen.

Select View>Auto Scroll from the Main menu to change the default scrolling
behavior. When auto scrolling is turned off, new output is written below the area
that is currently displayed.

Command Interface Input Region

The Command Interface Input Region provides a command line for manually
entering RTmon commands. Though the most common commands for running
and watching a project can be accessed through the Main menu bar or through the
Command Bar, most of the standard RTmon textual commands are available
using this command interface. The following commands are not available
through the GDI Command Interface Input region and must be executed from the
RTmon CI.

• poll command

• watch command

• unwatch command

For more information about the textual commands see Chapter 9, Command
Reference.

The command interface saves the output of the session into a buffer indefinitely,
consuming memory. To clear the memory buffer, select View > Clear Output from
the Main menu.
TIBCO SmartSockets User’s Guide

Monitoring Your Project with RTmon GDI | 453
Monitoring Your Project with RTmon GDI

The RTmon GDI has many built-in child windows for monitoring and managing
specifics about your project.

This section is more helpful if you read it as you walk through a session with the
RTmon GDI on your system.

Information Windows

Throughout the RTmon session, informational windows appear alerting you
when an urgent condition occurs or providing instructions. The most commonly
seen informational window appears when RTmon is invoked before a project is
specified in the rtmon.cm file, as described in Starting a Graphical Development
Interface Session on page 448.

After reading the information in provided in the window, click OK to close the
window and move on.

Selecting a Project to Monitor
Select Watch > Project Name from the Main menu to choose a new project. The
Project Browser window appears. The Project Browser window presents a list of
the current projects known by the RTserver processes. Highlight the project you
want to monitor. Select Change Project or double click on the project name to
select that project. Click on Close to close the window.

Selecting a Command File
You can source a command file (File > Source Cmd File), edit an existing command
file (File > Edit Cmd File), or save a command file (File > Save Cmd File). After
making your menu selection, a Command File window appears. To select the
command file, choose a directory and filename, then click OK.

The RTmon GDI has been deprecated and may be removed in a future release.
 TIBCO SmartSockets User’s Guide

454 | Chapter 6 Using RTmon
Monitoring RTclients

Checking Synchronization

Select Watch > Client Time... from the Main menu to view time information for one
or more of the RTclients in your project. The Watch Client Time window appears.
This is useful for observing whether all the RTclients are synchronized. The time
information displayed in this window is updated in real time, so changes are
displayed as they occur.

To watch an RTclient, highlight one or more of the RTclients displayed in the
Clients list, then left click on the Watch button. To stop watching an RTclient,
highlight the RTclient displayed in the Watched Clients list, and left click on the
Unwatch button.

Figure 37 Watch Client Time Window

Checking Buffer and Queue Size

Select Watch > Client Buffer... from the Main menu to view buffer information for
one or more of the RTclients in your project. The Watch Client Buffer window
appears. This is useful for viewing the read/write buffer and message queue size
(in bytes and number of messages). This window is similar to the Watch Client
Time window. The buffer information is displayed in real time, and you can use
the Watch and Unwatch buttons to select an RTclient for watching or to stop
watching.

Windows

Motif
TIBCO SmartSockets User’s Guide

Monitoring Your Project with RTmon GDI | 455
Checking Subjects Being Subscribed To

Select Watch > Client Subjects... from the Main menu to view the subject
subscription information for one or more of the RTclients in your project. The
Watch Clients Subjects window appears. This is useful for monitoring which
subjects your RTclients are subscribing to. Again, the subject information is
displayed in real time, and you can use the Watch and Unwatch buttons to select
an RTclient for watching or to stop watching.

Monitoring Subjects

Checking Clients Subscribed to a Subject

Select Watch > Subjects Subscribed... from the Main menu to view the RTclients
subscribed to one or more subjects. The Watch Clients in Subject window appears.
Instead of seeing the subjects that selected RTclients are subscribed to, you see the
RTclients listed by the subjects they subscribe to. The RTclient information
displayed in this window is updated in real time.

To watch a subject, highlight one or more of the subjects displayed in the Subjects
list, then left click on the Watch button. To stop watching a subject, highlight the
subject displayed in the Watched Subjects list, and left click on the Unwatch
button.
 TIBCO SmartSockets User’s Guide

456 | Chapter 6 Using RTmon
Monitoring Messages Being Received
Select Watch > Messages Received... from the Main menu to display the Watch
Messages Received window (shown in Figure 38).

Figure 38 Watched Messages Received Window

This window displays the known RTclients and the standard and user-defined
message types in real time. Select one RTclient from the Clients list and select the
Configure Watch Window... button or the Watch All Message Types button. You
can also access the same window by highlighting a specific message type from the
Select Message Type list and selecting the Watch Message Type button. Here is
what you can monitor:

• to monitor messages received by a specific RTclient, select the RTclient from
the Clients list in the Watch Messages Received window.

• to monitor all message types for that RTclient, select the Watch All Message
Types button.

• to monitor specific message types for an RTclient, select the RTclient from the
Clients list, highlight one or more message types from the Select Message
Types list, and then press the Watch Message Type button.

• to monitor multiple RTclients, you must select one RTclient at a time. The
system automatically polls that RTclient to retrieve the list of message types
applicable to that RTclient. When polling is finished, the types of messages
associated with that RTclient are displayed in the Select Message Type list.

The Watch Messages Received (client name) window appears when you select
either the Configure Watch Window, Watch All Message Types, or Watch Message
Type buttons.

Motif
TIBCO SmartSockets User’s Guide

Monitoring Your Project with RTmon GDI | 457
Viewing Messages Received By An RTclient

In the Watch Messages Received window, after you select an RTclient and click on
either the Configure Watch Window, Watch All Message Types, or Watch Message
Type buttons, a Watch Messages Received (client name) window for that RTclient
is shown. Multiple RTclient windows may be running simultaneously. Figure 39
shows the Watch Messages Received (client name) window. The Watch Messages
Received (client name) window provides access to information about messages
received by an RTclient.

Figure 39 Features of the Watch Messages Received Window

By default, the message types are displayed in real time (in Queue mode).
Depending on the data rate of the project, messages may build and clear too
quickly to view. When this happens, you need to change the default state of how
information is displayed in order to view the information about the messages.
The Seq. List mode displays messages in sequential order, allowing you to view
information about each message type in the order in which it is received. In this
sequential list mode, the list grows indefinitely unless you configure a maximum
number of messages to be displayed.

Queue Mode

Seq. List Mode

Online Toggle

Log File
Control Buttons

Message Viewer
Monitor and configure
the information displayed

Queue of Messages

Note that you must
suspend the queue
(using the Online
button) before you
can configure the
maximum number of
messages in the
queue.

in a specific message.
 TIBCO SmartSockets User’s Guide

458 | Chapter 6 Using RTmon
To specify the maximum number of messages to be displayed:

1. Press the Online button to stop the monitoring of messages.

2. Select the Seq. List Max Size button. (The button itself displays the configured
maximum numbered of messages if any, or <Unknown> is displayed if not
set.)

3. Enter in the maximum number of messages to be displayed and press the
Return key.

4. Press the Online button again to reactivate the monitoring of messages.

Saving Messages Received By An RTclient

You can save the messages in the queue to a log file, as well as display the log. You
can also configure the type of information displayed in the log file using the Log
File Filter button.

To start a log file:

1. Select the Online button to suspend the queue.

2. Select the Enable Log button.

3. Enter a log file name in the box.

4. Reactivate the queue by pressing the Online button again.

Viewing the Message Log File

Select the Online button to temporarily suspend the monitoring of messages, then
select the View Log Message button to display the Message Log Viewer. You can
view the log file through RTmon using the Message Log Viewer, as described, or
through any text editor.

You can change the information filtered to the log file by changing the defaults in
the Message Received Log Options window.
TIBCO SmartSockets User’s Guide

Monitoring Your Project with RTmon GDI | 459
Changing What Is Filtered to the Log File

To change the type information filtered to the log file, select Log File Filter in the
Watch Messages Received window. The Message Received Log Options window
appears. By default, all of the options are enabled. The Message Received log
options you can set are:

If both the Log Queue and the Log Messages options are disabled, no information
is filtered to the log.

Viewing Information About Individual Messages

To view detailed information about individual messages, select View Message in
the Watch Messages Received window. The Message Viewer window appears.
The information displayed in this window is message-specific.

When this window is open, you can highlight any of the messages listed in the
Watch Messages Received window and the information specific to the
highlighted message is displayed. Additionally, you can change the type of
information displayed. For instance, if you do not want to view the message data,
which can be very lengthy, toggle the Message Data option off. The settable
parameters for this view are:

Log Queue Info Filters and displays the timestamp of the message, RTclient
name, message type, queue position, and sequential counter.

Log Messages Filters and displays the body of the message. If disabled, only
the log queue information is filtered to the log.

Append Mode When enabled, new messages are appended to the existing log.

Message Type Displays the type of message being manipulated.

Sender Displays the name of the originator of the message.

Destination Displays the name of the subject to which the message is
published.

Maximum Displays the maximum size of the data buffer.

Size Displays the size of the message being received.

Current Displays the current field of a message.

Read Only Displays whether or not the message can be modified.

Priority Displays the priority level of the message. The default priority
level is zero. The range allowed is a 16-bit integer (-32768 to
32767).

Delivery Mode Displays the level of guarantee for a message when sent through
a connection. The delivery mode options are best effort, some,
and none. The default delivery mode is best effort.
 TIBCO SmartSockets User’s Guide

460 | Chapter 6 Using RTmon
Monitoring Messages Being Sent
Select Watch > Messages Sent... from the Main menu to display the Watch
Messages Sent window (shown in Figure 40).

Figure 40 Watch Messages Sent Window

This window displays the known RTclients and the standard and user-defined
message types. Select one RTclient from the Clients list. Here is what you can
monitor:

• to monitor messages sent from a specific RTclient, select the RTclient from the
Clients list in the Watch Messages Sent window

• to monitor all the message types for that RTclient, select the Watch All
Message Types button

LB Mode Displays the mode for load balancing. The load balancing
options are weighted, round_robin, sorted, and none. The
default mode is none.

User Property Displays a user-defined value that can be used for any purpose.
This property is not used internally by SmartSockets.

Num Fields Displays the number of fields that are included in the message
data.

Message Data Displays the payload of the message.

Windows

Motif
TIBCO SmartSockets User’s Guide

Monitoring Your Project with RTmon GDI | 461
• to monitor specific message types for an RTclient, select the RTclient from the
Clients list, highlight one or more message types from the Select Message
Types list, and then press the Watch Message Type button

• to monitor multiple RTclients you must select one RTclient at a time. The
system automatically polls that RTclient to retrieve the list of message types
applicable to that RTclient. When polling is finished, the types of messages
associated with that RTclient are displayed in the Select Message Type list.

The Watch Messages Sent (client name) child window, shown in Figure 41,
appears when you select any one of the action buttons in the Watch Messages Sent
window.

Viewing Messages Sent by an RTclient

In the Watch Messages Sent window, after you select an RTclient, either the
Configure Watch window, Watch All Message Types, or Watch Message Type
button must be pressed to open a Watch Messages Sent (client name) window for
that RTclient. Multiple RTclient windows can be displayed simultaneously.
Figure 41 shows the Watch Messages Sent (client name) window. The Watch
Messages Sent (client name) window provides access to information about
messages sent by an RTclient.

Figure 41 Features of the Watch Messages Sent Window

The messages appear in the list in sequential order in which they are sent. The list
grows indefinitely unless you configure a maximum number of messages to be
displayed.

Log File
Control Buttons

Message Viewer
Monitor and configure
the information displayed

Queue of Messages

in a specific message.

Maximum
Number of Messages
allowed in the queue.

Seq. List Max Size

Online Toggle
 TIBCO SmartSockets User’s Guide

462 | Chapter 6 Using RTmon
To specify the maximum number of messages to be displayed:

1. Press the Online button to suspend the monitoring of messages.

2. Select the Seq. List Max Size button. (The button itself displays the configured
maximum numbered of messages if any, or <Unknown> is displayed if not
set.)

3. Enter in the maximum number of messages to be displayed and press the
Return key.

4. Press the Online button again to reactivate the monitoring of messages.

The Watch Messages Sent window is very similar to the Watch Messages
Received window, and the logging functions and options are the same. See
Viewing the Message Log File on page 458, Changing What Is Filtered to the Log
File on page 459, and Viewing Information About Individual Messages on
page 459.
TIBCO SmartSockets User’s Guide

Monitoring Your Project with RTmon GDI | 463
Monitoring Server Connections
Select Watch > Server Connections... from the Main menu to display the Watch
Server Connections window. The Watch Server Connections window presents an
easy to read, real-time graphical display of information about the messages sent
and received and the bytes sent and received from the RTserver.

The graphical displays present the delta between polls, as shown in Figure 42.

Figure 42 Watch Server Connections Graphical Chart

Select Configure > Metrics... from the Watch Server Connections window to
display the Configure Metrics window. Use this window to configure the metric
values used in the graphical displays. You can also use the Configure pull-down
menu to scale the view to the current data.

Poll Interval Buttons
Enable automatic

polling by setting the
polling interval. Message Traffic Options

Pull-down menu presenting
four options:

Note that you need to execute a Poll a
few times to obtain the delta between

polls.

Displays Minimum and Maximum Settings

Bidirectional Displays

messages sent and received
and bytes sent and received.

The circles represent
the RTservers and the
size of the circle is
proportionate to the
RTserver message
load. The lines
represent a connection
between two RTservers,
and the line weight is
proportionate to the
amount of message
traffic on the
connection.

Windows

Motif
 TIBCO SmartSockets User’s Guide

464 | Chapter 6 Using RTmon
Monitoring RTservers
Select Poll > Server Information... from the Main menu to display the Server
Information window, shown in Figure 43. This window lists the RTservers in your
project. You can poll and monitor information about each of the RTservers.

Figure 43 Server Information Window

To display detailed monitoring information about one or more of the RTservers
listed in the window, highlight the RTserver(s), and press the Poll button. The
Server Information (server name) window appears, as shown in Figure 44.

Windows

Motif
You can view
multiple windows
simultaneously.
Highlight one or
more RTservers in the Servers list,
and select Poll.

Polling requests a one-time or
periodic display of information
about a given process, such as
an RTserver.
TIBCO SmartSockets User’s Guide

Monitoring Your Project with RTmon GDI | 465
Figure 44 Server Information Window (Server Name)

This table presents a description of the information fields in the Server
Information (server name) window when in full display mode. Note that those
fields displayed only when in full display mode are noted with an asterisk.

These views are in Full Display mode. If you do
not wish to view the window in full display
mode, toggle the Full Display button.

There are four action buttons in the
Server Information window: Poll Interval,
Full Display, Poll, and Close.

Motif

Windows

Field Name Description

Server Name Displays the name of the RTserver.

Node Name Displays the name of the node where the RTserver is
running.

Command File Name Displays the startup command filename for the
RTserver.

User Name Displays the name of the user who started the
RTserver.

PID Displays the process identification number of the
RTserver.

Process Identification Displays the process monitoring identification string.

No Daemon Flag Displays the value of the -no_daemon command-line
parameter. The options are true or false.
 TIBCO SmartSockets User’s Guide

466 | Chapter 6 Using RTmon
Architecture Displays the type of hardware and operating system
where the RTserver is running.

Integer Format Displays the integer format used by the RTserver. The
integer format options are big endian or little endian.

Real Format Displays the real format used by the RTserver (such as
IEEE or IBM 370).

Heap Memory
Boundary

Displays the value of the edge for the RTserver virtual
memory heap address space. This is used as a
memory consumption gauge for a process.

Delta Memory Since
Startup Last Poll

Displays the change in the heap memory boundary.

Displays the changes since the RTserver started.

Displays the changes from the point in time that the
RTserver was last polled.

Wall Displays the timestamp of the last poll.

CPU (secs) Displays the CPU usage (in seconds) since the
RTserver started.

Server Subscribes* Displays the RTservers that are subscribed on behalf
of the direct RTclients.

Client Subscribes* Displays the union of the all the subjects to which all
the direct RTclients are subscribed.

Direct Servers* Displays the names of the RTservers connected to the
RTserver that is being polled.

Direct Client Names* Displays the names of the RTclients connected to the
RTserver that is being polled.

Server Options* Displays the names and values of the options
available to the RTserver.

Field Name Description
TIBCO SmartSockets User’s Guide

Monitoring Your Project with RTmon GDI | 467
Checking Server Buffer Size

Select Poll > Server Buffer... from the Main menu to display the Server Buffer
window, as shown in Figure 45. This window lists the RTservers in your project.
To monitor buffer information for an RTserver, select one or more of the RTservers
and click on the Poll button.

Figure 45 RTserver Buffer Windows

Under normal circumstances, all the buffers
shown in this window should be empty
because an RTserver should rarely buffer data
for any RTclients.

To display the
buffer
information
about an RTserver,
highlight the RTserver in
the Servers list and press
the Poll button.

Polling requests
a one-time or
periodic display
of information
about a given process, such as an RTserver.

Windows

Motif
 TIBCO SmartSockets User’s Guide

468 | Chapter 6 Using RTmon
Viewing RTclients for an RTserver

Select Poll > Client Information... to display the Client Information window. This
window lists the RTclients in your project. There are four action buttons in the
Client Information window:

• Poll Interval

• Full Display

• Poll

• Close

To display detailed monitoring information about the RTclients, highlight one or
more of the RTclients in the Clients list and click on the Poll button. The Client
Information (client name) window appears, which is very similar to the Server
Information window shown in Figure 44.

The informational fields in the Client Information window when in full display
mode are:

Field Name Description

Client Name Displays the name of the RTclient.

Node Name Displays the name of the node where the RTclient
is running.

Project Displays the name of the current project.

User Name Displays the name of the user who started the
RTclient.

PID Displays the process identification number of the
RTclient.

Process Identification Displays the process monitoring identification
string.

Architecture Displays the type of hardware and operating
system where the RTclient is running.

Server Name Displays the name of the RTserver to which the
RTclient is connected.

Server Conn Name Displays the logical connection name of the
connection to the RTserver.
TIBCO SmartSockets User’s Guide

Monitoring Your Project with RTmon GDI | 469
Architecture Displays the type of hardware and operating
system where the RTclient is running.

Heap Memory Boundary Displays the value of the edge for the RTclient
virtual memory heap address space. This is used
as a memory consumption gauge for a process.

Delta Memory Since
Startup Last Poll

Displays the change in the heap memory
boundary.

Displays the changes since the RTclient started.

Displays the changes from the point in time that
the RTclient was last polled.

Wall Displays the timestamp of the last poll.

CPU (secs) Displays the CPU usage (in seconds) since the
RTclient started.

Subject Subscribes* Displays the names of the subjects to which the
RTclient is subscribed.

Options* Displays the names and values of the options
available to the RTclient.

Counted Licenses* Displays the licenses currently being used.

Extra Licenses* Displays the extra licenses currently being used, if
any.

Field Name Description

The asterisks mark the fields that are only displayed when in full display mode.
 TIBCO SmartSockets User’s Guide

470 | Chapter 6 Using RTmon
Viewing RTclient Message Traffic

Select Poll > Client Message Traffic... from the Main menu to display the Client
Message Traffic window. This window displays the RTclients in your project and
the associated incoming and outgoing message traffic for the specified RTclient.
To monitor the traffic information, highlight one or more of the RTclients from the
Clients list, and then press the Poll button. The RTclients appear in the Clients
Polled area.

When a poll interval is configured using the Poll Interval button, the information
displayed in this window is updated at the specified interval.

Viewing RTclient Message Traffic by Subject

Select Poll > Client Subject Message Traffic... from the Main menu to display the
Client Subject Message Traffic window. This window displays the RTclients in
your project and the associated incoming and outgoing message traffic for one or
more of the client-subject pairs in your project. To monitor the traffic information,
highlight one or more of the RTclients from the Clients list and one or more of the
subjects from the Subjects list, and then press the Poll button. The client-subject
pairs appear in the Clients Polled area.

To select an RTclient and all the subjects to which it is subscribing, highlight the
RTclient from the Clients list, and then press on the Find Subjects button.
Likewise, to select a subject and all the RTclients subscribed to the subject,
highlight the subject from the Subjects list and press the Find Clients button.

To remove all poll information from the Client Subjects Polled area, press the
Reset button.
TIBCO SmartSockets User’s Guide

Sending Messages with RTmon GDI | 471
Sending Messages with RTmon GDI

To build and send a message to a subject, press the Send button from the Main
RTmon window. The Send Message window appears.

There are many built-in attributes in the Send Message window. Figure 46
highlights the features built into this window.

Figure 46 Send Message Window

The RTmon GDI has been deprecated and may be removed in a future release.

Priority

The higher the number, the
higher the priority of the
message. The default
priority level is zero.

Publish To Subject

Click on the Select button to display
a list of the known subjects in your
project. Alternatively, type in a
subject name to be used.

Search

Enter in the message
type or scroll through
the Select Message
Type window.

Delivery Mode

Use the arrow button to
display the delivery mode
options.

Load Balancing

Use the arrow button to
display the load
balancing mode
options.

Delivery Timeout

The number in seconds to
wait for GMD to complete.

Refresh

To clear the information in the window, select the
Refresh button. This is useful when sending
multiple messages.

Send

After you fill in the fields for
sending a message, select the
send button. The information is
not cleared from the window until
you refresh the window (or close
and reopen the window).

Windows

Motif
 TIBCO SmartSockets User’s Guide

472 | Chapter 6 Using RTmon
To send a message:

1. Specify a Subject. Only one subject at a time may be specified. When you press
the Select button, the Subject Selection window appears. The subjects in your
project are displayed in the Known Subjects list. Select one of the subjects
displayed or type in the name of the subject in the Publish To Subject field.

2. Select a message type. The Search box speeds access to the Select Message
Type list by scrolling to the place in the Message Type list that corresponds to
the characters you type.

When a message type is selected and there is a grammar specified for that
message type, it is displayed in the top line of the Message Type Grammar
field. Additionally, one or more fields appear in the bottom portion of the
window, prompting you for more information. Depending on the message
type, the required information may be a simple text entry prompt, an editor of
the appropriate type, or a list of legal values. The types of prompts and editors
are defined in the table. If desired, set the priority of the message. The default
is zero.

3. Optionally, specify a delivery mode. The options are Best_Effort (the default),
Ordered, Some, and All. If Best_Effort is specified, a network failure might
cause the message to be lost or delivered out of order. If Ordered is specified, a
network failure might cause the message to be lost, but all delivered messages
are in the order they were published. This is critical if some of the receiving
clients are JMS clients because they cannot handle messages out of order. The
modes Some or All trigger GMD messaging, which guarantees delivery to
subscribers even during failures in addition to maintaining order during
recovery. If Some is selected, it means that the message is guaranteed to be
delivered to at least one subscriber. If All is selected, it means that the message
is guaranteed to be delivered to all subscribers.

4. Optionally, set the delivery timeout of the message.

5. Optionally, specify the load balancing mode to be used to deliver the message.
The load balancing options are None (the default), Round_Robin, Weighted,
and Sorted.

For more information about sending messages, refer to Chapter 1, Messages.
TIBCO SmartSockets User’s Guide

Sending Messages with RTmon GDI | 473
The prompts and editors used when sending messages are:
Prompts Editors

Simple Entry Prompt Most of the prompts for fields in the Send Message
window are simple entry boxes (INT2, INT4,
Identifier, REAL4 and REAL8). Enter the value and
press the Return key.

The value must be of the type specified in brackets
above the box. If it is not, you are notified of an error.

Group Entry Prompt Groups entry prompts ([Group]) have a slightly
different function from Simple entry prompts. This
entry prompt accepts an integer that specifies how
many entry prompts to provide of the types listed
inside the curly braces { 1..3 } in the Message Type
Grammar field.

When an integer is typed into this box and the Return
key is pressed, that number of entry prompts appears
below the group entry prompt.

See the discussion of groups in the section Grammar
on page 32.

Message Entry
Prompt

Message entry prompts ([Message]) provide a Build
Message window. This window is similar to the Send
Message window, except that it does not provide as
many sending options for the message.

A message built with the Build Message window is a
message within a message.

String Entry Prompt String entry prompts ([String]) are similar to the
simple entry prompt, with the addition of a More
button, invoking a String Editor.

The String Editor offers more capabilities than the
string entry prompt. In the String Editor, you can:

• enter new line characters

• view multiple lines of a string at once

• scroll through long strings with scroll bars

Once a multi-line string has been entered using the
String Editor, it is viewable in the string entry prompt
by using the arrow keys.
 TIBCO SmartSockets User’s Guide

474 | Chapter 6 Using RTmon
Stopping RTmon GDI Processes

On UNIX and OpenVMS, when the RTmon GDI is started from a terminal
emulator window, it is possible to stop it by typing Ctrl-c in the window where it
was invoked. This method of exiting a process is mentioned here because
sometimes during system development it is necessary to end a process that is in
an infinite loop or otherwise stuck.

Boolean Entry
Prompt

Boolean entry prompts ([BOOL]) allow you to choose
among the values Unknown, True, and False.

Array and Binary
Entry Prompts (INT2,
INT4, STR, REAL4,
REAL8)

If an entry prompt shows [INT2_ARRAY],
[INT4_ARRAY], [STR_ ARRAY], [REAL4_ARRAY],
[REAL8_ARRAY], or [BINARY] as its type, left click on
the box labeled <Empty> brings up an Item List Entry
editor.

This editor allows you to build lists of values of the
particular type displayed on the entry prompt you
selected:

• To add a value to the list, left click on the Add
button. An empty item box is displayed with the
cursor already positioned in it. Enter the value and
press the Return key.

• To delete an item, left click on the Del button to the
right of the item you want to delete.

For some types of items, an additional button labeled
More... is associated with each item in the list. Left
click on this button to bring up a String Editor. When
the list is complete, left click on the OK button.

Prompts Editors
TIBCO SmartSockets User’s Guide

RTmon Command Interface | 475
RTmon Command Interface

For more details on the commands available in RTmon, see Chapter 9 on
page 583.

Starting a Command Interface Session
Type this command at the prompt to invoke the RTmon CI:

$ rtmon -runtime

A banner displays that shows the version and release of SmartSockets that you
are running, and gives the contact information for TIBCO Product Support. After
the banner, the RTmon prompt appears.

MON>

You can enter any RTmon commands at the prompt. The most frequently used
commands are watch, poll, send, and run. After entering a watch, poll, or send
command, you should follow it with a run command to ensure the command is
executed:

MON> poll server_names
Polled for server_names.
MON> run
POLL> Current Servers:
/_workstation1.talarian.com_6848 [RTserver:
rtworks@workstation1.talarian.com]
/_workstation2_72522 [RTserver: RTWORKS@workstation2]
/_workstation3_11203 [RTserver: tom@workstation3]

The POLL> indicates RTmon is displaying the results of the poll. Type quit at the
RTmon prompt to exit from the RTmon CI.

You can set the text that shows up as the prompt using the Prompt option. MON is
the default prompt.
 TIBCO SmartSockets User’s Guide

476 | Chapter 6 Using RTmon
TIBCO SmartSockets User’s Guide

| 477
Chapter 7 Diagnosing Problems

It is often difficult to diagnose problems that are occurring within a distributed
application. SmartSockets supplies you with a number of runtime debugging
tools to aid in the debugging process. Some of the debugging tools available are:

• an RTmon process

• settable options within an RTclient or RTserver

• executable commands within an RTclient or RTserver

• callable API functions within an RTclient

This chapter describes how to detect and diagnose problems in the various
components of a SmartSockets project. If your SmartSockets license includes
multicast, check the special section, Multicast Troubleshooting on page 487.

Topics

• Using RTmon, page 478

• Debugging Messages, page 478

• Diagnosing Connection Problems, page 479

• Diagnosing Memory Problems, page 480

• Diagnosing RTclient Problems, page 481

• Diagnosing RTserver Problems, page 484

• Multicast Troubleshooting, page 487

• Summary, page 491
 TIBCO SmartSockets User’s Guide

478 | Chapter 7 Diagnosing Problems
Using RTmon

The primary tool to use in debugging a SmartSockets project is RTmon. RTmon is
a stand-alone standard RTclient built specifically for monitoring and debugging
distributed applications that use RTservers for publish-subscribe
communications. RTmon cannot be used to monitor and debug peer-to-peer
connections.

Debugging Messages

One of the easiest ways to debug message-related problems is to write messages
to a message file. Message files do not contain all properties of a message (such as
the priority and sender properties), but message files are relatively compact and
easy to read.

In RTclients and RTservers, several options are available to easily start or stop
logging messages to message files. Use the TipcMsgFileWrite function in any code
to write a message to a message file. RTmon can also read messages being sent to
an RTclient, as well as log them into a message file.

If you need more precise details about messages or if message files are not
working, use the TipcMsgPrint function to print all the information about a
message. This is useful for validating that all the properties of a message have
been set correctly and that the message data uses the expected field types and
field values. The option Real_Number_Format controls the level of precision
SmartSockets uses to print real numbers, including the real number fields in
messages.

Debugging Message Types and Message Files

Messages cannot be written to message files if the field types in the message do
not exactly match the grammar listed in the message type (unless the verbose
format is used in the grammar when the message type is created). In this
situation, use the TipcMtPrint and TipcMsgPrint functions to print and compare
message type information to message field types, and resolve the field type
mismatches.
TIBCO SmartSockets User’s Guide

Diagnosing Connection Problems | 479
Diagnosing Connection Problems

The most common connection problems are usually related to messages, and the
methods in the previous section can be used. However, connection-related
problems can also involve the improper use of callbacks. As discussed earlier,
RTmon cannot be used to debug direct peer-to-peer connections that do not use
RTserver.

Receiving Unwanted Messages
When a message is processed with TipcConnMsgProcess and there are no
connection process callbacks for messages of that type and no connection default
callbacks, TipcConnMsgProcess silently does nothing with the message. This is
called an unwanted message. Receiving a large number of unwanted messages
can noticeably slow processes. It is always a good practice to use
TipcConnDefaultCbCreate to create a connection default callback that calls
TipcMsgPrintError for unwanted messages. The output from TipcMsgPrintError
is similar to:

WARNING: Received unwanted message at time 19.
type = numeric_data
sender = </_workstation.talarian.com_5031>
sending server = </_workstation.talarian.com_4982>
dest = </eps>
max = 2048
size = 64
current = 0
read_only = false
priority = 0
delivery_mode = best_effort
ref_count = 1
seq_num = 0
resend_mode = false
user_prop = 0
data (num_fields = 4):
 str "y"
 real8 2
 str "z"
 real8 3
 TIBCO SmartSockets User’s Guide

480 | Chapter 7 Diagnosing Problems
Diagnosing Memory Problems

One of the following will occur if an application is unable to allocate enough
memory to satisfy a request:

Certain messages, such as protocol messages and GMD messages, will trigger a
call to abort() (the application will core) when the available memory is exhausted.
The only exception is when decoding, in which case the failure is promoted from
dropping the message to dropping the connection. Should this occur, a warning
with diagnostic information is printed to the location specified by the trace_file
option (stdout by default).

If the application runs out
of memory while it is.... The result is....

reading a message the connection is dropped

decoding a message the message is dropped

sending a message the message is dropped
TIBCO SmartSockets User’s Guide

Diagnosing RTclient Problems | 481
Diagnosing RTclient Problems

RTclient can use API functions to help diagnose problems. Options and
commands can also be used to debug RTclient in many situations without
requiring any programming. RTmon should be used whenever possible to help
pinpoint and debug problems within RTclients.

Connections and Messages
RTclient uses connections and messages, and you need the techniques described
in the previous sections. Always use TipcSrvDefaultCbCreate to create a default
callback in the connection to RTserver. The callback function then calls
TipcMsgPrintError to immediately expose unwanted messages. The function
TipcSrvPrint can be used to print all the information about the connection to
RTserver.

Why RTclient Is Not Receiving Data
During the development of a project with RTclient, it can be puzzling why an
RTclient process does not appear to be receiving data. There are several reasons
why this might occur, including:

• the Server_Names option of RTclient is not the same as that for the other
RTclient processes, or the RTclient processes are using different groups of
RTserver processes

• the Project option of RTclient is not the same as that for the other RTclient
processes. If this happens, RTserver does not create the logical link needed so
that messages flow between RTclient and the rest of the project.

• no data is really being sent, or the sending RTclient process has the option
Server_Msg_Send set to FALSE

• the sending RTclient process is using message type numbers that are different
from the message type numbers being used by the receiving RTclient
processes

• the sending RTclient process is sending the message to the wrong subject

• the sending RTclient has aborted for some reason

• the sending or receiving RTclient or RTserver is out of memory
 TIBCO SmartSockets User’s Guide

482 | Chapter 7 Diagnosing Problems
Tracing Lost Messages
Message files can often be used to incrementally track down why data is not being
received. You can start at either the sending or receiving RTclient process and
work through the connections to find the problem. The RTclient and RTserver
logging options can be used to trap the flow of data at various points.

For example, if a subscribing RTclient does not appear to be receiving any
messages from a publishing RTclient, try setting the option Log_In_Data in the
subscribing RTclient to see if it is really receiving the messages. If the messages
appear in the resulting message file, then the problem lies in that subscribing
RTclient. It might not be creating the proper connection process callbacks.

If the messages do not appear in the resulting message file, try setting the option
Log_Out_Data in the publishing RTclient to determine if it is really sending the
messages.

If the problem appears to lie in RTserver, you can log messages in RTserver to
debug the problem. See Useful Commands on page 483 for more information on
RTserver debugging commands.

Useful Options
These RTclient options can be used for debugging:

The Log_* options allow you to easily write messages into message files when
entering or leaving RTclient.

Command_Feedback have RTclient provide feedback on commands executed.

Log_In_Data file to write incoming data-related messages.

Log_In_Internal file to write incoming internal messages.

Log_In_Status file to write incoming status messages.

Log_Out_Data file to write outgoing data-related messages.

Log_Out_Internal file to write outgoing internal messages.

Log_Out_Status file to write outgoing status messages.
TIBCO SmartSockets User’s Guide

Diagnosing RTclient Problems | 483
Useful Commands
These RTclient commands are provided to make debugging easier:

The setopt command (when issued without any arguments) prints the current
setting of all RTclient options.

The stats command provides information about the CPU usage of RTclient. The
information includes the total amount of CPU and wall clock time since RTclient
was started, the amount of memory the program is using (sbrk address), and the
differences since the last stats command was issued. Below is an example of the
stats command:

CLIENT> stats
Total accumulated CPU time: 3.866 seconds
Total frames processed: 12
Current sbrk address: 251840
Differences since last stats command:
 CPU time, 0.383 seconds, wall time, 11.174 seconds
 Frame count: 5, Frame rate: 0.447 frames per second
 Sbrk address changed by 0 bytes.
CLIENT>

The subscribe command (when issued without any arguments) prints a list of
the subjects to which RTclient is currently subscribing.

setopt sets or displays the value of an option.
stats returns information on memory usage, elapsed wall clock, and CPU

time.
subscribe lists the subjects being subscribed to.
 TIBCO SmartSockets User’s Guide

484 | Chapter 7 Diagnosing Problems
Diagnosing RTserver Problems

The default for starting RTserver is to start the optimized version, in which
validations and checking are turned off. Your first step in diagnosing RTserver
problems is to ensure you are running the check version of RTserver so you can
collect more information about whatever problem you are having. Start RTserver
using:

rtserver -check

This starts the check (also called debug) version of RTserver.

Because RTserver does not have any API functions, no C/C++ code can be added
to RTserver to help diagnose problems. There are several files, command-line
arguments, options, and commands available to debug RTserver without
requiring any programming. Also, RTmon can be used to poll or watch
information in RTserver. These and other debugging features are described below.

Files Created by RTserver
When RTserver starts, it creates a debug file as specified by the -trace_file
argument specified on the rtserver command that you used when you started
the RTserver. If you did not specify the -trace_file argument, the default is to
use standard output (stdout), which is printed to the console.

If RTserver crashes or is having problems, the debug file (if you specified one) is
the first place to look.

Each time RTserver prints something to its debug file, it immediately flushes the
data to disk so that it can be easily typed out. When RTserver exits cleanly, it
checks the size of the debug file and automatically removes the debug file if the
file is empty. This automatic cleanup prevents hundreds or even thousands of
useless debug files from clogging the filesystem that contains the directory where
the debug files are written. The size of the debug file can be regulated with the
Trace_File_Size option. If RTserver crashes, this debug file is a good place to look
for error messages. The operating system modification date of the debug file can
be used to correlate debug files with previous RTserver sessions.
TIBCO SmartSockets User’s Guide

Diagnosing RTserver Problems | 485
On OpenVMS, RTserver also creates these files when RTserver starts a detached
background process:

• stdout is stored in SYS$SCRATCH:RTSERVER_OUT_Node_User_Counter.TMP.

• stderr is stored in SYS$SCRATCH:RTSERVER_ERR_Node_User_Counter.TMP. This
file is not created unless RTserver writes something to stderr.

• a small command procedure is stored in the file
SYS$SCRATCH:RUN_RTSERVER_Node_User_Counter.TMP.

• an empty lock file, SYS$SCRATCH:RTSERVER_Node_Pid_OK.TMP. RTserver waits
for the detached background process to create this file once it has finished
initialization.

For OpenVMS:

If RTserver fails to start successfully on OpenVMS, you can look at these files for
information such as stack traces and error messages.

Node is the network node name of the computer on which RTserver is running.

User is the user name of the account starting RTserver.

Counter is a small number, used to generate the OpenVMS process name of the
RTserver process.

Pid is the operating system process identifier of the RTserver.
 TIBCO SmartSockets User’s Guide

486 | Chapter 7 Diagnosing Problems
Useful Command-Line Arguments
The most useful RTserver command-line arguments for debugging are:

• -trace_file, which allows you to specify a file name for the debug file and
have the debug file saved rather than printed to the console

• -trace_level, which allows you to specify what amount of information gets
written to the debug file

There are many different levels of trace information you can have written to the
debug file. The most detailed setting is debug. For complete information on the
settings for trace level, see Starting RTserver on page 288.

Useful Options
These RTserver options are useful for debugging:

• Command_Feedback — have RTserver provide feedback on commands
executed.

• Log_In_Client — file to log incoming messages from RTclient processes.

• Log_Out_Client — file to log outgoing messages to RTclient processes.

• Log_In_Server — file to log incoming messages from other RTserver
processes.

• Log_Out_Server — file to log outgoing messages to other RTserver processes.

• Trace_File — specify name and location of the trace file.

• Trace_Flags — format of the information in the trace file.

• Trace_Level — specify level of detail for the trace information being put in the
trace file.

• Verbose — have RTserver output debugging information.

The Log_* options allow you to easily log messages into message files entering or
leaving RTserver. The Trace_Level and Verbose options provide a way to watch
the detailed operations of RTserver. When the Verbose option is set to TRUE,
RTserver prints out much information to the debug file as new processes connect,
existing processes disconnect, and subjects are operated on. Setting Verbose to
TRUE is equivalent in level of detail to setting Trace_Level to verbose.
TIBCO SmartSockets User’s Guide

Multicast Troubleshooting | 487
Multicast Troubleshooting

This section provides several general multicast troubleshooting tips to help you
deploy your multicast applications. These tips are not applicable to unicast
systems.

Verify Your Configuration
Before trying to resolve a complicated multicasting issue, follow these tips to
eliminate or avoid basic problems:

• Become familiar with the operation of your multicast application on a simple
network before trying to make it work on a complicated one.

• The "bottom-up" approach is generally best. First focus on getting the lowest
layers of the network stack working.

• Verify that the network has good unicast connectivity between the sender and
all receivers before addressing multicast connectivity problems.

• Ensure that multicast has been enabled across the test or production
environment by checking that the switches and routers are multicast-enabled.

• From a network point of view, try connecting your sending and receiving
hosts to the same hub, not a switch or a router, and confirm that you have
multicast connectivity. Once that works, move on to more complicated
multicast networks.

• From a SmartSockets point of view, try testing with two receiving clients that
are on the same subnet as your RTgms process. Once that works, expand the
test to other subnets.

Verify Your PGM Option Settings
Some common problems are caused because the options affecting PGM
configuration are not set correctly. Check the value of an option by looking at how
it is set in the applicable command (.cm) file.

Group_Names Option

Set in the $RTHOME/standard/rtgms.cm file for your RTgms process.

Check that the receiving RTclients and the RTgms to which they are connecting
use the same value for Group_Names. For more information on setting options
for RTclients, see RTclient Options Summary on page 501. For more information
on the option, see Group_Names on page 537.
 TIBCO SmartSockets User’s Guide

488 | Chapter 7 Diagnosing Problems
Pgm_Udp_Encapsulation Option

Set in the $RTHOME/standard/mcast.cm file for your RTgms and RTclient
processes.

Check that the receiving RTclients and the RTgms to which they are connecting
use the same value for Pgm_Udp_Encapsulation. If the value is not present in
those files, the default value is used and does match correctly.

If Pgm_Udp_Encapsulation is set to 0 and your operating system is UNIX, all
receiving RTclients and the RTgms processes must be run as root. If
Pgm_Udp_Encapsulation is set to 0 and your operating system is Windows 2000,
all receiving RTclients and the RTgms processes must have administrator
authority.

If Pgm_Udp_Encapsulation is set to 1 to use UDP encapsulation, no PGM
subscribers can be run on the machine where RTgms is running. This is because
NAKs from PGM might not be correctly processed by the UDP protocol when
RTgms and a PGM subscriber are running on the same machine. This problem
does not occur when PGM is using raw IP sockets (Pgm_Udp_Encapsulation set
to 0).

For more information on the option, see Pgm_Udp_Encapsulation on page 667.

Pgm_Source_Group_Ttl and Pgm_Receive_Nak_Ttl Options

Set in the $RTHOME/standard/mcast.cm file for your RTgms and RTclient
processes.

These options must be set to the number of router hops a packet of data takes. The
number is calculated starting from the source, the RTgms, and ends with the
subscriber, the receiving RTclient. The default value of these options is 1, which
does not allow the packet to go beyond the first hop, either a router or switch. For
more information on these options, see Pgm_Source_Group_Ttl on page 663 and
Pgm_Receive_Nak_Ttl on page 660.
TIBCO SmartSockets User’s Guide

Multicast Troubleshooting | 489
Tracing Problems to Their Source
Once you eliminate simple problems, tracing the source of a problem can be
complicated in a multicast application. Here are some useful tips:

• Make sure that multicast streams are being generated with a TTL adequate to
reach their destination via the longest-possible path through the network. See
Troubleshooting Multicast Problems with Cisco Systems Routers on page 490
to check whether the TTL is too low.

• Start at the source and trace your way through each switch and router to all
receivers.

• Use the SmartSockets PGM pthrpt command on the source to generate test
streams. For example:

pthrpt -t 10 -r 10000 -m 224.13.13.13

generates a 10 Kbps stream with a TTL of 10 to group address 224.13.13.13.
You can ask TIBCO Product Support for more information about PGM
commands or how to get the SmartPGM User’s Guide.

• Use the SmartSockets PGM pbw command or Cisco Systems IOS show ip
mroute active command for monitoring the presence of test streams. See
Troubleshooting Multicast Problems with Cisco Systems Routers on page 490.

• Test receiver to last-hop router communication by running the SmartSockets
Multicast pthrpt command on the receiver.

• On UNIX, use the tcpdump command or the Solaris snoop command to
monitor test streams.

• If you see packet loss as multicast rates go up, look for routers or switches that
are configured to limit the broadcast rate. These generally also limit the
multicast rate. For example, Cisco Systems Catalyst 5000 series switches can
be configured to limit the packet for each second or percentage of broadcast
and multicast traffic with the set port broadcast command.

• Try using UDP encapsulation to see if the network will pass UDP even if it is
not passing PGM. This behavior has been seen in some networks with
Catalyst 4000 series switches. See UDP Encapsulation of PGM on page 678.
 TIBCO SmartSockets User’s Guide

490 | Chapter 7 Diagnosing Problems
Troubleshooting Multicast Problems with Cisco Systems Routers
A Cisco Systems router might refuse to forward multicast packets because their
TTL (Time To Live) is too small. Use the IOS command show ip traffic and
watch the number of bad hop count packets shown on the second line of output.
This counter increments every time IOS throws a packet away because its TTL
was too small. For example:

Router> show ip traffic
 IP statistics:
 Rcvd: 322205025 total, 8805271 local destination
 2 format errors, 0 checksum errors, 185555472 bad hop
count

This shows that 59% (185555472/(322205025 - 8805271)) of all traffic that could
have been forwarded was not because the TTL was too small.

The IOS command show ip mroute active is a quick way to see the most active
multicast traffic passing through a router. For example:

Router> show ip mroute active
 Active IP Multicast Sources - sending >= 4 kbps

 Group: 224.13.13.13, (?)
 Source: 10.168.4.5 (Lisle.Stress1.Talarian.Com)
 Rate: 3 pps/12 kbps(1sec), 9 kbps(last 25 secs), 10 kbps(life
avg)

The IOS command show ip mroute count is often helpful in determining if a
router can see a multicast stream, how fast the stream is going, if the stream is
being forwarded, and if not, why not. For example:

Router> show ip mroute count
 IP Multicast Statistics
 8 routes using 4024 bytes of memory
 6 groups, 0.33 average sources per group
 Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kilobits
per second
 Other counts: Total/RPF failed/Other drops(OIF-null, rate-limit
etc)

 Group: 225.0.11.66, Source count: 0, Group pkt count: 0
 Group: 225.0.11.68, Source count: 0, Group pkt count: 0
 Group: 224.0.1.40, Source count: 0, Group pkt count: 0
 Group: 224.0.1.1, Source count: 1, Group pkt count: 1
 Source: 216.0.13.9/32, Forwarding: 1/0/76/0, Other: 2/1/0
 Group: 225.0.11.11, Source count: 0, Group pkt count: 0
 Group: 224.13.13.13, Source count: 1, Group pkt count: 108
 Source: 10.168.4.5/32, Forwarding: 108/3/537/12, Other: 108/0/0

Note the last group. It shows that the router is seeing 3 packets for each second
and 12 Kbps to the group 224.13.13.13 from source 10.168.4.5.
TIBCO SmartSockets User’s Guide

Summary | 491
See the Cisco Systems web site for excellent starting points for additional
multicast troubleshooting information:

• Basic Multicast Troubleshooting Tools page covers the IOS commands that are
most useful in troubleshooting multicast problems. Because this page also
discusses host commands such as netstat, it might be of interest even if you
do not have Cisco Systems routers.

• IP Multicast Troubleshooting Guide contains links to several case studies that
illustrate use of the above tools and appropriate troubleshooting techniques.

Multicast Testing Tools
These tools can be useful in troubleshooting and monitoring multicast networks:

• Ethereal (for UNIX)

• Tcpdump (for UNIX)

• WinDump (Tcpdump for Windows)

• NLANR Multicast Beacon

• MBone tools for Windows

Summary

SmartSockets provides many tools that allow you to better understand the
internal processing as data is received, processed, and sent out to other RTclient
processes. You can inspect the major components of messages, connections,
RTclient and RTserver, look at the CPU usage, and even control the RTclient and
RTserver execution. These tools make it much easier for you to debug projects that
are built using SmartSockets.
 TIBCO SmartSockets User’s Guide

http://www.cisco.com/warp/public/105/57.html
http://www.cisco.com/warp/public/105/57.html
http://www.cisco.com/warp/public/105/57.html
http://www.cisco.com/warp/public/105/mcastguide0.html
http://www.ethereal.com
http://www.tcpdump.org
http://netgroup-serv.polito.it/windump
http://dast.nlanr.net/Projects/Beacon
http://www.softlab-nsk.com/Pro/Mbone.html

492 | Chapter 7 Diagnosing Problems
TIBCO SmartSockets User’s Guide

| 493
Chapter 8 Options Reference

This chapter describes the options available to RT processes such as RTservers and
RTclients. You can set these options in various ways, depending on the option
and the type of RT process. For information on options that apply only to RTgms,
see Chapter 10, Using Multicast.

Topics

• Setting Option Values, page 494

• Startup Command Files, page 498

• RTclient Options Summary, page 501

• RTserver Options Summary, page 505

• RTmon Options Summary, page 509

• Multi-Thread Mode, page 512

• Option Reference, page 514
 TIBCO SmartSockets User’s Guide

494 | Chapter 8 Options Reference
Setting Option Values

The most common way to set an option value is by specifying the setopt
command with the option name and value in the startup command file for the RT
process. Every RT process searches for command files upon startup, and executes
the commands in those files. If you want to set the value for a named option, use
the setnopt command with the option name and value in the startup command
file. See Startup Command Files on page 498.

You can also use a CONTROL message. CONTROL messages are messages of
type CONTROL and can contain any valid command. To change an option value,
use a CONTROL message that contains the setopt or setnopt command.
CONTROL messages can be used for any RT process. The examples in Working
With RTclient on page 175 show how to compose and send CONTROL messages.
CONTROL messages received by an RT process are logged to the RT processes
trace file if enabled.

You are not required to set any option values. All required options have default
values that are used at startup. However, tailoring the option values to optimize
your SmartSockets system is key to unleashing the power and flexibility of this
messaging system.

For information on setting options for RTgms, see RTgms Options on page 650.

RTclient Options
RTclient options can be set to specific values by defining them in a command file,
by calling the API function TutCommandParseStr, or by calling one of the
TutOptionSetType API functions. You can also send a CONTROL message to a
subject to which the RTclient is subscribed.
TIBCO SmartSockets User’s Guide

Setting Option Values | 495
RTserver Options
RTserver options can be set to specific values by defining them in the
rtserver.cm command file. Option values that have been specified in the
command file are set each time RTserver is started, or they can be modified using
the setopt command in a CONTROL message.

Certain options can be modified dynamically for a particular RTserver connection
using an ADMIN_SET message. When you send the message to a particular
RTserver process, the options apply only to outbound data sent on the specified
connection. The connection can be:

• a connection between an RTserver and an RTclient

• a connection between two RTservers

• a group channel between an RTserver and an RTgms

The options that can be set this way are for network bandwidth rate control. For
more information on bandwidth rate control, see Controlling Network
Bandwidth and Usage on page 305.

The ADMIN_SET message used for RTservers is:

T_MT_ADMIN_SET_OUTBOUND_RATE_PARAMS
T_STR connection
T_INT4 token_rate
T_INT4 max_tokens
T_REAL8 burst_interval

where:
connection for an RTclient or RTserver connection, connection is the unique subject

name of the RTclient or RTserver for which you want these options
set, and for an RTgms connection, connection must be the multicast
group name of the connection, matching an existing group name
specified by the Group_Names option.

token_rate is the rate, in bytes a second, at which tokens accumulate. A value of
-1 indicates no change.

If the value you specified for connection is the unique subject name of
an RTclient, token_rate is equivalent to the Client_Token_Rate option.

If the value you specified for connection is the unique subject name for
an RTserver, token_rate is equivalent to the Server_Token_Rate option.

If the value you specified for connection is the group name for a
connection to an RTgms, token_rate is equivalent to the
Group_Token_Rate option.
 TIBCO SmartSockets User’s Guide

496 | Chapter 8 Options Reference
RTmon Options
RTmon options can be set to specific values by defining them in the rtmon.cm
command file. Option values that have been specified in the command file are set
each time the RTmon is started, or they can be modified from the RTmon
command interface using the setopt command.

max_tokens is the maximum number of tokens that can accumulate. A value of -1
indicates no change.

If the value you specified for connection is the unique subject name of
an RTclient, max_tokens is equivalent to the Client_Max_Tokens option.

If the value you specified for connection is the unique subject name for
an RTserver, max_tokens is equivalent to the Server_Max_Tokens
option.

If the value you specified for connection is the group name for a
connection to an RTgms, max_tokens is equivalent to the
Group_Max_Tokens option.

burst_interval is the burst interval in number of seconds. A value of -1.0 indicates
no change.

If the value you specified for connection is the unique subject name of
an RTclient, burst_interval is equivalent to the Client_Burst_Interval
option.

If the value you specified for connection is the unique subject name for
an RTserver, burst_interval is equivalent to the Server_Burst_Interval
option.

If the value you specified for connection is the group name for a
connection to an RTgms, burst_interval is equivalent to the
Group_Burst_Interval option.
TIBCO SmartSockets User’s Guide

Setting Option Values | 497
Specifying Options
Option names are shown in mixed case in this reference to differentiate them from
commands, but options are not case sensitive.

When entering multiple values for list options, they must be separated by
commas. Values for options of types String or String List can be entered with or
without double quotes, with these exceptions:

• double quotes must be used for values that include a space, tab, comma, or
semicolon

• quotes must not be used for keyword values, such as _all

You can use the standard C comment indicator // to comment out a line in a
command file. For example:

setopt project ST1A
setopt server_names workstation1
//setopt server_disconnect_mode gmd_failure
setopt server_disconnect_mode warm

In this case, the value warm is used for Server_Disconnect_Mode.

For Java, instead of C, see the TIBCO SmartSockets Java Library User’s Guide and
Tutorial.
 TIBCO SmartSockets User’s Guide

498 | Chapter 8 Options Reference
Startup Command Files

RTclient
An RTclient process does not have any standard startup command files. It is up to
you to decide whether command files should be loaded, and to create and define
those files. Startup command files can be loaded with the TutCommandParseFile
function. For information on creating and using RTclient command files, see the
TIBCO SmartSockets Tutorial.

This example illustrates a typical RTclient command file:

setopt project HST
setopt server_names workstation1

RTserver
An RTserver process has a standard startup command file, named rtserver.cm.
The RTserver startup command files contain generic information that RTserver
needs to know, such as how to locate and connect with RTclient processes, how to
locate and connect with other RTserver processes, and how often to check for
network failures.

This example illustrates a typical RTserver startup command file:

setopt editor emacs
setopt real_number_format %f
setopt server_read_timeout 10

RTserver recognizes three levels of startup command files. When first invoked, it
searches for and executes the commands in each file, in this order:

1. the system-level rtserver.cm file in the SmartSockets standard directory

RTserver searches for a system-level process command file rtserver.cm in
the SmartSockets directory standard, in RTHOME:

— UNIX: $RTHOME/standard

— OpenVMS: RTHOME:[STANDARD]

— Windows: %RTHOME%\standard

The rtserver.cm file can be modified to reflect RTserver options that are
meant to be system-wide. To edit this file, change the current directory to the
SmartSockets standard directory and use an editor to add or change the
system-wide option settings.
TIBCO SmartSockets User’s Guide

Startup Command Files | 499
2. the user-level rtserver.cm file in the user’s home directory

RTserver searches for an rtserver.cm file in the user’s home directory and, if
found, executes the commands in that file. This file is the ideal place to set
options specific to all your projects. To create this file, use an editor to open a
new file named rtserver.cm in your home directory and add the options you
choose.

The location of the home directory that RTserver searches varies by operating
system:

— UNIX: $HOME

— OpenVMS: SYS$LOGIN

— Windows: %HOME%

3. the file specified by the -command argument, or the local-level rtserver.cm
file in the current directory (if the -command argument is not specified)

RTserver reads and executes the rtserver.cm file found in the current
directory, that is, the directory from which RTserver is being run. Use this file
for any application-specific option declarations. The local command file is
read last, allowing you to override any values set for RTserver options in other
command files.

RTmon
An RTmon process has a standard startup command file, named rtmon.cm. The
RTmon startup command files contain generic information that RTmon needs to
know, such as what values to use for IPC-related timeouts, what project to
monitor, and what node RTserver resides on.

This example illustrates a typical RTmon startup command file:

setopt project HST
setopt server_names cosmos
setopt editor emacs

If you have configured Basic Security features (as outlined in Security on
page 275), RTserver also loads the command file sdbasic.cm. To locate this file,
RTserver uses the same three discovery techniques outlined here for locating
rtserver.cm.
 TIBCO SmartSockets User’s Guide

500 | Chapter 8 Options Reference
RTmon recognizes three levels of startup command files. When first invoked, it
searches for and executes the commands in each file, in this order:

1. the system-level rtmon.cm file in the SmartSockets standard directory

RTmon searches for a system-level process command file rtmon.cm in the
SmartSockets directory standard, in RTHOME:

— UNIX: $RTHOME/standard

— OpenVMS: RTHOME:[STANDARD]

— Windows: %RTHOME%\standard

This file can be modified to reflect RTmon options that are meant to be
system-wide. To edit this file, change to the directory and use an editor to add
or change the system-wide option settings.

2. the user-level rtmon.cm file in the user’s home directory

RTmon searches for an rtmon.cm file in the user’s home directory (specified
by the HOME environment variable) and, if found, executes the commands in
that file. This file is the ideal place to set options specific to all your projects. To
create this file, use an editor to open a new file named rtmon.cm in your home
directory:

— UNIX: $HOME

— OpenVMS: SYS$LOGIN

— Windows: %HOME%

and use the editor to add the options you choose.

3. the file specified by the -command argument, or the local-level rtmon.cm file in
the current directory (if the -command argument is not specified)

RTmon reads and executes the rtmon.cm file found in the current directory,
that is, the directory from which RTmon is being run. It is in this file that you
place any project-specific option declarations, such as the name of the project
and where to find RTserver. The local command file is read last, allowing you
to override any values set for RTmon options in other command files.
TIBCO SmartSockets User’s Guide

RTclient Options Summary | 501
RTclient Options Summary

The table summarizes the relevant options available in all RTclient processes. All
of these options can be modified using the setopt command from the RTclient
command interface.

Table 15 RTclient Options

Option Name Type Default

Auth_Data_File String None

Backup_Name String UNIX: ~

OpenVMS: None

Windows: ~

Catalog_File String $RTHOME/standard/tal_ss.cat

Catalog_Flags String List id

Command_Feedback Identifier interactive

Compression Boolean FALSE

Compression_Args String 6

Compression_Name String zlib

Compression_Stats Boolean FALSE

Default_Msg_Priority Numeric 0

Default_Protocols Identifier List UNIX: local, tcp

OpenVMS: tcp

Windows: tcp

Default_Subject_Prefix String None

Editor String UNIX: vi

OpenVMS: edt

Windows: notepad
 TIBCO SmartSockets User’s Guide

502 | Chapter 8 Options Reference
Enable_Control_Msgs String List echo,quit

Group_Names String List rtworks

Ipc_Gmd_Auto_Ack Boolean TRUE

Ipc_Gmd_Auto_Ack_Policy String first_destroy

Ipc_Gmd_Directory String UNIX: /tmp/rtworks

OpenVMS: sys$scratch

Windows: %TEMP%\rtworks

Ipc_Gmd_Type String default, which means file-based GMD is
attempted

Log_In_Data String None

Log_In_Internal String None

Log_In_Msgs String None

Log_In_Status String None

Log_Out_Data String None

Log_Out_Internal String None

Log_Out_Msgs String None

Log_Out_Status String None

Monitor_Ident String RTclient

Monitor_Scope String /*

Pgm_* For information on these options, see
Chapter 10, Using Multicast.

Project Identifier rtworks

Proxy_Password String UNKNOWN

Proxy_Username String UNKNOWN

Table 15 RTclient Options (Cont’d)

Option Name Type Default
TIBCO SmartSockets User’s Guide

RTclient Options Summary | 503
Real_Number_Format String %g

Sender_Get_Reply Boolean FALSE

Server_Async_Subscribe Boolean TRUE

Server_Auto_Connect Boolean TRUE

Server_Auto_Flush_Size Numeric 8192

Server_Delivery_Timeout Numeric 30.0

Server_Disconnect_Mode Identifier gmd_failure

Server_Gmd_Dir_Name String UNKNOWN

Server_Keep_Alive_Timeout Numeric 15.0

Server_Max_Reconnect_Delay Numeric 30.0

Server_Msg_Send Boolean TRUE

Server_Names String List _node

Server_Read_Timeout Numeric 30.0

Server_Start_Delay Numeric 1.0

Server_Start_Max_Tries Numeric 1

Server_Start_Timeout Numeric 30.0

Server_Write_Timeout Numeric 30.0

Socket_Connect_Timeout Numeric 5.0

Subjects String List None

Time_Format Identifier UNKNOWN

Trace_File String UNKNOWN

Trace_File_Size Integer 0

Table 15 RTclient Options (Cont’d)

Option Name Type Default
 TIBCO SmartSockets User’s Guide

504 | Chapter 8 Options Reference
The options in this table that begin with Pgm are only valid for multicast. These
options are documented in Chapter 10, Using Multicast.

Trace_Flags String List prefix

Trace_Level String UNKNOWN

Udp_Broadcast_Timeout Numeric 5.0

Unique_Subject String _Node_Pid

Verbose Boolean FALSE

Table 15 RTclient Options (Cont’d)

Option Name Type Default
TIBCO SmartSockets User’s Guide

RTserver Options Summary | 505
RTserver Options Summary

The table summarizes the options available in RTserver. All of these options can
be modified using the setopt command in the RTserver startup command file, or
through a CONTROL message.

Table 16 RTserver Options

Option Name Type Default

Auth_Data_File String None

Authorize_Publish Boolean TRUE

Backup_Name String UNIX: ~

OpenVMS: None

Windows: ~

Catalog_File String $RTHOME/standard/tal_ss.cat

Catalog_Flags String List id

Client_Burst_Interval Numeric 0.5

Client_Connect_Timeout Numeric 10.0

Client_Drain_Subjects Integer 1000

Client_Drain_Timeout Real (seconds) 0.0

Client_Keep_Alive_Timeout Numeric 0.0

Client_Max_Buffer Numeric 10000000

Client_Max_Tokens Numeric 0

Client_Read_Timeout Numeric 0.0

Client_Reconnect_Timeout Numeric 30.0

Client_Threads Numeric 1

Client_Token_Rate Numeric 0

Command_Feedback Identifier interactive
 TIBCO SmartSockets User’s Guide

506 | Chapter 8 Options Reference
Compression Boolean FALSE

Compression_Args String 6

Compression_Name String zlib

Compression_Stats Boolean FALSE

Conn_Max_Restarts Numeric 0

Conn_Names String List UNIX: local, tcp

OpenVMS: tcp

Windows: tcp

Default_Connect_Prefix Identifier connect_one

Default_Msg_Priority Numeric 0

Default_Protocols Identifier List UNIX: local, tcp

OpenVMS: tcp

Windows: tcp

Default_Subject_Prefix String /

Disable_Mon_Watch_Types String List None

Enable_Control_Msgs String List echo,quit

Enable_Stop_Msgs Boolean TRUE

Gmd_Publish_Timeout Numeric 300.0

Group_Burst_Interval Numeric 0.5

Group_Max_Buffer Numeric 10000000

Group_Max_Tokens Numeric 0

Group_Token_Rate Numeric 0

Log_In_Client String None

Table 16 RTserver Options (Cont’d)

Option Name Type Default
TIBCO SmartSockets User’s Guide

RTserver Options Summary | 507
Log_In_Group String None

Log_In_Server String None

Log_Out_Client String None

Log_Out_Group String None

Log_Out_Server String None

Max_Client_Conns Numeric 200

Max_Server_Accept_Conns Numeric -1

Max_Server_Connect_Conns Numeric -1

Max_Server_Conns Numeric -1

Multi_Threaded_Mode Boolean FALSE

Proxy_Password String UNKNOWN

Proxy_Username String UNKNOWN

Real_Number_Format String %g

Server_Burst_Interval Numeric 0.5

Server_Connect_Timeout Numeric 10.0

Server_Connection_Names String List UNKNOWN

Server_Keep_Alive_Timeout Numeric 15.0

Server_Max_Tokens Numeric 0

Server_Names String List UNKNOWN

Server_Num_Threads Numeric 1

Server_Read_Timeout Numeric 30.0

Server_Reconnect_Interval Numeric 30.0

Table 16 RTserver Options (Cont’d)

Option Name Type Default
 TIBCO SmartSockets User’s Guide

508 | Chapter 8 Options Reference
Server_Threads Numeric 0

Server_Token_Rate Numeric 0

Sm_Security_Driver String None

Socket_Connect_Timeout Numeric 5.0

Srv_Client_Names_Min_Msgs Boolean FALSE

Srv_Subj_Names_Min_Msgs Boolean FALSE

Time_Format Identifier hms

Trace_File String UNKNOWN

Trace_File_Size Integer 0

Trace_Flags String List prefix

Trace_Level String UNKNOWN

Udp_Broadcast_Timeout Numeric 5.0

Unique_Subject String _Node_Pid

Verbose Boolean FALSE

Zero_Recv_Gmd_Failure Boolean FALSE

Table 16 RTserver Options (Cont’d)

Option Name Type Default
TIBCO SmartSockets User’s Guide

RTmon Options Summary | 509
RTmon Options Summary

The table summarizes the options available in RTmon. Because RTmon is a type
of RTclient, most of the RTclient options are supported for RTmon and work in the
same way for both RTclient and RTmon. All of the RTmon options can be
modified using the setopt command from the RTmon command interface.

Table 17 RTmon Options

Option Name Type Default

Auth_Data_File String None

Backup_Name String UNIX: ~

OpenVMS: None

Windows: ~

Catalog_File String $RTHOME/standard/tal_ss.cat

Catalog_Flags String List id

Command_Feedback Identifier interactive

Compression Boolean FALSE

Compression_Args String 6

Compression_Name String zlib

Compression_Stats Boolean FALSE

Default_Msg_Priority Numeric 0

Default_Protocols Identifier List UNIX: local, tcp

OpenVMS: tcp

Windows: tcp

Default_Subject_Prefix String None

Editor String UNIX: vi

OpenVMS: edt

Windows: notepad
 TIBCO SmartSockets User’s Guide

510 | Chapter 8 Options Reference
Enable_Control_Msgs String List echo,quit

Ipc_Gmd_Directory String UNIX: /tmp/rtworks

OpenVMS: sys$scratch

Windows: %TEMP%\rtworks

Ipc_Gmd_Type String default, which means file-based GMD
is attempted

Log_In_Data String None

Log_In_Internal String None

Log_In_Msgs String None

Log_In_Status String None

Log_Out_Data String None

Log_Out_Internal String None

Log_Out_Msgs String None

Log_Out_Status String None

Monitor_Scope String /*

Project Identifier rtworks

Prompt String "Mon> "

Proxy_Password String UNKNOWN

Proxy_Username String UNKNOWN

Real_Number_Format String %g

Server_Auto_Connect Boolean TRUE

Server_Auto_Flush_Size Numeric 8192

Server_Delivery_Timeout Numeric 30.0

Table 17 RTmon Options

Option Name Type Default
TIBCO SmartSockets User’s Guide

RTmon Options Summary | 511
Server_Disconnect_Mode Identifier gmd_failure

Server_Keep_Alive_Timeout Numeric 15.0

Server_Max_Reconnect_Delay Numeric 30.0

Server_Msg_Send Boolean TRUE

Server_Names String List _node

Server_Read_Timeout Numeric 30.0

Server_Start_Delay Numeric 1.0

Server_Start_Max_Tries Numeric 1

Server_Start_Timeout Numeric 30.0

Server_Write_Timeout Numeric 30.0

Socket_Connect_Timeout Numeric 5.0

Subjects String List None

Time_Format Identifier hms

Trace_File String UNKNOWN

Trace_File_Size Integer 0

Trace_Flags String List prefix

Trace_Level String UNKNOWN

Udp_Broadcast_Timeout Numeric 5.0

Unique_Subject String _Node_Pid

Verbose Boolean FALSE

Table 17 RTmon Options

Option Name Type Default
 TIBCO SmartSockets User’s Guide

512 | Chapter 8 Options Reference
Multi-Thread Mode

In single-thread mode, the server uses one thread for all client and server
connections. In multi-thread mode, the server distributes connections to several
I/O threads.

Multi-thread mode is enhanced in Release 6.7 (and later). This enhancement lets
you configure two separate pools of threads:

• a client thread pool, for connections from clients with ordinary traffic levels

• a server thread pool, for connections from servers and high-traffic clients
(such as TIBCO SmartSockets Cache, which handles volume comparable to a
server)

Four options configure this feature:

• Multi_Threaded_Mode

• Client_Threads

• Server_Threads

• Server_Connection_Names

Special Values If either Client_Threads or Server_Threads is non-zero, then RTserver operates in
multi-thread mode.

If one (but not both) of Client_Threads or Server_Threads is zero, then all
connections use I/O threads from the other (non-zero) pool.

The default configuration (zero for both Client_Threads and Server_Threads)
specifies single-thread mode—one I/O thread services all client and server
connections. (This default preserves backward compatibility.)
TIBCO SmartSockets User’s Guide

Multi-Thread Mode | 513
To run in multi-thread mode, your RTserver must be licensed for the
SmartSockets MP option. Furthermore, multi-thread mode is not available on all
platforms. Attempting to configure multi-thread mode without an appropriate
license or on a platform that does not support it, results in a warning message
when RTserver starts, and it starts in single-thread mode.

This enhancement supersedes the deprecated option Server_Num_Threads.

Although the server does not enforce a maximum number of threads in these
pools, we advise caution when using large values; larger values do not necessarily
result in better performance.

The optimal number of threads depends on the operational parameters of your
deployment, such as the number of processors, the subject namespace, message
fan-out characteristics, message rate, disk I/O rate, compression, the number of
RTserver-to-RTclient connections, and the number of RTserver-to-RTserver
connections (cloud configuration).

We recommend that you empirically determine the optimal size of the thread
pools for your deployment. We suggest that you begin tuning with the values in
Table 19, and adjust them based on the results of your testing. We caution that the
optimal values can change significantly when the operational parameters of your
deployment vary; when they do change, we strongly recommend that you re-test
to determine the best values.

Table 18 Tuning the Number of I/O Threads

Number of CPUs Initial Number of Total Threads

2–3 Our testing has not shown any benefit to adjusting these
parameters on computers with fewer than 4 processors.
We recommend single-thread mode.

4 or more We recommend that you begin tuning by setting
Client_Threads and Server_Threads so that their sum is
the number of CPUs plus 1. The way in which you
allocate that total to clients and servers will depend on
the needs of your deployment.

For example, an RTserver routing hub running on an
8-CPU computer might allocate 2 threads to server
connections, and 7 threads to client connections (for a
total of 9 threads).
 TIBCO SmartSockets User’s Guide

514 | Chapter 8 Options Reference
Option Reference

Auth_Data_File

The Auth_Data_File option specifies the file containing file-based credentials.
This option is useful for legacy applications that need to send credentials to a
security driver. A credentials file may be created using RTacl.

Authorize_Publish

When a security driver is installed, the Authorize_Publish option specifies
whether the RTserver is required to authorize every RTclient publish. Setting this
option to FALSE is equivalent to authorizing all publishes regardless of subject
and message type. The security driver is not queried for authorization.

Used for: RTclient, RTserver, RTmon, and RTgms processes

Type: String

Default Value: None

Valid Values: Any valid filename

Used for: RTserver

Type: Boolean

Default Value: TRUE

Valid Values: TRUE or FALSE
TIBCO SmartSockets User’s Guide

Backup_Name | 515
Backup_Name

The Backup_Name option specifies the extension given to a backup file created
when a file is opened in write mode. This includes all files created in the RT
process (RTclient, RTserver, or RTmon) except for those created in RTsdb and view
files.

The backup file has the same name as the existing file with the addition of the
extension specified in this option. For example, if the default value of
Backup_Name is used on a UNIX system, a file named satellite1 would have a
backup file named satellite1~. To turn off the creation of backup files, set the
option to UNKNOWN.

If, while running RTclient, a file becomes corrupted, the backup file can be
renamed (by dropping the extension) to recover the earlier version.

This option must precede any other file options (including Trace_File) within the
command file.

Catalog_File

The Catalog_File option specifies the filename used for the SmartSockets resource
catalog. In general, use the default name.

Used for: RTclient, RTserver, RTmon, RTgms processes

Type: String

Default Value: • UNIX and Windows: ~

• OpenVMS: none

Valid Values: Any valid filename characters

Used for: RTserver, RTclient, and RTmon processes

Type: String

Default Value: $RTHOME/standard/tal_ss.cat

Valid Values: Any valid catalog filename
 TIBCO SmartSockets User’s Guide

516 | Chapter 8 Options Reference
Catalog_Flags

The Catalog_Flags option specifies how to format the catalog strings. If you
specify id, the catalog string identifier is included. Unsetting the option using
either unsetopt or using setopt to change the value to unknown clears all the
flags.

Client_Burst_Interval

The Client_Burst_Interval option specifies the burst interval in seconds used for a
connection to an RTclient. When the RTserver has used up all its tokens on an
RTclient connection (there are 0 tokens accumulated), the RTserver must wait for
this burst interval before checking for more tokens to determine if it can send
more data on its RTclient connection.

For more information, see the related options Client_Max_Tokens and
Client_Token_Rate.

Used for: RTserver, RTclient, and RTmon processes

Type: String List (Identifiers)

Default Value: id

Valid Values: id or unknown

Used for: RTserver only

Type: Real Number

Default Value: 0.5

Valid Values: Any real number from 0.0 to 600.0, inclusive
TIBCO SmartSockets User’s Guide

Client_Connect_Timeout | 517
Client_Connect_Timeout

The Client_Connect_Timeout option specifies the maximum amount of time (in
seconds) the RTserver or RTgms process waits when trying to read a
CONNECT_CALL initialization message from a new RTclient process. If the
RTserver or RTgms does not receive the message within the timeout period, it
destroys the connection to the new RTclient process.

This option is required and cannot be unset.

Client_Drain_Subjects

When a client disconnects, the server must clean up its destroyed subscriptions.
When the number of destroyed subjects is very large, the clean-up task could
interfere with the server’s responsiveness to active clients. Two options let you
spread the clean-up effort over time, so active clients still receive prompt service:

• Client_Drain_Timeout specifies the interval to wait between clean-up
sessions.

• Client_Drain_Subjects specifies the number of subjects to remove at each
interval—until the server has removed all destroyed subjects.

Used for: RTserver and RTgms only

Type: Real Number

Default Value: 10.0

Valid Values: Any real number greater than 0

Used for: RTserver

Type: Integer

Default Value: 1000

Valid Values: Any integer greater than 0
 TIBCO SmartSockets User’s Guide

518 | Chapter 8 Options Reference
Client_Drain_Timeout

When a client disconnects, the server must clean up its destroyed subscriptions.
When the number of destroyed subjects is very large, the clean-up task could
interfere with the server’s responsiveness to active clients. Two options let you
spread the clean-up effort over time, so active clients still receive prompt service:

• Client_Drain_Timeout specifies the interval to wait between clean-up
sessions.

• Client_Drain_Subjects specifies the number of subjects to remove at each
interval—until the server has removed all destroyed subjects.

The Client_Drain_Timeout option specifies the interval (in seconds) to wait before
unsubscribing subjects from destroyed RTclient connections.

When Client_Drain_Timeout is set to 0.0 (the default), this functionality is
disabled—the server cleans up all the destroyed subjects in a single batch.

Used for: RTserver

Type: Real Number

Default Value: 0.0

Valid Values: Any real number in the range [0.0, 60.0]
TIBCO SmartSockets User’s Guide

Client_Keep_Alive_Timeout | 519
Client_Keep_Alive_Timeout

The Client_Keep_Alive_Timeout option specifies how long (in seconds) to wait
when checking if an RTclient is still alive. If more than Client_Read_Timeout
seconds have occurred since the RTserver last heard from the RTclient, the
RTserver sends a keep alive message to the RTclient. The RTserver waits for the
number of seconds you specify here in Client_Keep_Alive_Timeout to hear back
from the RTclient. If the RTserver does not hear back from the RTclient in that
time, the RTserver destroys the connection to that RTclient. When
Client_Keep_Alive_Timeout is set to 0.0, the keep alives are disabled.

If you enable the server-to-client keep alives by setting
Client_Keep_Alive_Timeout and Client_Read_Timeout to values other than 0.0,
the RTclients connected to this RTserver must be able to process the keep alive
messages from the RTserver, using either TipcSrvMsgProcess or
TipcSrvMainLoop.

Client_Max_Buffer

The Client_Max_Buffer option specifies the maximum number of bytes of data
that are allowed to be buffered to each RTclient process. This maximum buffer
size is used to check for possible network failures. To prevent a large backlog from
consuming all available process memory, RTserver limits the buffer size of each
RTclient connection to Client_Max_Buffer bytes of data; if a client or server
connection consumes too slowly, so that the buffer grows beyond this limit, then
RTserver destroys the connection.

This option is required and cannot be unset.

Used for: RTserver only

Type: Real Number

Default Value: 0.0

Valid Values: Any real number 0.0 or greater

Used for: RTserver and RTgms only

Type: Integer

Default Value: 10000000

Valid Values: Any integer greater than 0
 TIBCO SmartSockets User’s Guide

520 | Chapter 8 Options Reference
Client_Max_Tokens

The Client_Max_Tokens option specifies the maximum number of tokens that can
accumulate for connections to RTclients. The default value of 0 specifies that an
unlimited number of tokens can accumulate.

For more information, see the related options Client_Burst_Interval and
Client_Token_Rate.

Client_Read_Timeout

The Client_Read_Timeout option specifies how often (in seconds) data is
expected to be available for reading on a connection between an RTserver and an
RTclient. This timeout is used to check for possible network failures or ghost
clients. If a read timeout occurs, the RTserver sends a keep alive message to the
RTclient. The RTserver waits for the number of seconds you specify in
Client_Keep_Alive_Timeout to hear back from the RTclient. If the RTserver does
not hear back from the RTclient in that time, the RTserver destroys the connection
to that RTclient. Checking for read timeouts is disabled if Client_Read_Timeout is
set to 0.0. The larger the value for Client_Read_Timeout, the longer the RTserver
waits to detect a possible RTclient failure.

If you enable the server-to-client keep alives by setting
Client_Keep_Alive_Timeout and Client_Read_Timeout to values other than 0.0,
the RTclients connected to this RTserver must be able to process the keep alive
messages from the RTserver, using either TipcSrvMsgProcess or
TipcSrvMainLoop.

Used for: RTserver only

Type: Integer

Default Value: 0

Valid Values: Any integer from 0 to 2147483647, inclusive

Used for: RTserver only

Type: Real Number

Default Value: 0.0

Valid Values: Any real number 0.0 or greater
TIBCO SmartSockets User’s Guide

Client_Reconnect_Timeout | 521
Helpful Read Timeout Tips

If you are enabling keep alives with a read timeout, you can reduce network
traffic by setting the options Client_Read_Timeout and Server_Read_Timeout to
different values. If they are set to the same value, other than 0.0, the RTclient and
RTserver send a keep-alive message at the same time to each other. This is
unnecessary, as only one keep-alive message and response is needed to keep the
connection open.

The RT process you set to have the smaller read timeout, whether it is the RTclient
or the RTserver, becomes the process that generally sends the keep-alive
messages. For more efficient RTserver processing, we recommend that you set the
value for Server_Read_Timeout to be smaller than the value for
Client_Read_Timeout, or set Client_Read_Timeout to 0.0 to disable
server-to-client keep alives. This places the burden of sending keep-alives on the
RTclient, which only has one RTserver to check on, instead of on the RTserver,
which might support many RTclients.

Client_Reconnect_Timeout

The Client_Reconnect_Timeout option specifies the maximum amount of time (in
seconds) RTserver waits for a warm RTclient to reconnect after the RTclient
disconnects for any reason from RTserver. The option Server_Disconnect_Mode in
RTclient controls whether or not all RTserver processes perform this wait. If
Server_Disconnect_Mode is warm, all RTserver processes save the subject
information about the RTclient and buffer messages for GMD so no messages are
lost. If Server_Disconnect_Mode is gmd_failure or gmd_success, then no
waiting takes place.

Used for: RTserver only

Type: Real Number

Default Value: 30.0

Valid Values: Any real number greater than 0
 TIBCO SmartSockets User’s Guide

522 | Chapter 8 Options Reference
RTserver does not synchronously wait for the RTclient to reconnect, but instead
includes the timeout in its main processing loop. If the warm RTclient does not
reconnect to RTserver within Client_Reconnect_Timeout seconds, then RTserver
clears the guaranteed messages that have not been acknowledged by the RTclient
process and sends a GMD_NACK message back to the sender of these messages.
The warm RTclient can reconnect to this RTserver or any other RTserver that this
RTserver is connected to (either directly or indirectly).

This option is required and cannot be unset.

Client_Threads

Client_Threads determines the number of threads in the pool for client
connections.

Used for: RTserver process only

Type: Integer

Default Value: 0

Valid Values: Any non-negative integer

For important background information and the semantics of special values, see
Multi-Thread Mode on page 512.

This option is one of four that replace the deprecated option
Server_Num_Threads:

• Multi_Threaded_Mode

• Server_Threads

• Client_Threads

• Server_Connection_Names
TIBCO SmartSockets User’s Guide

Client_Token_Rate | 523
Client_Token_Rate

The Client_Token_Rate option specifies the rate, in bytes a second, at which
tokens accumulate for RTclient connections. Specifying a value of 0 disables client
bandwidth control.

For more information, see the related options Client_Burst_Interval and
Client_Max_Tokens.

Command_Feedback

The Command_Feedback option specifies when feedback is displayed after a
command is successfully executed. If the command results in an error such as
incorrect syntax, feedback is always displayed, regardless of the value of
Command_Feedback. The three possible values for Command_Feedback are:

Setting the option to always is useful for learning more about how the RT process
(RTclient, RTserver, or RTmon) works and if any commands are being sent in from
other processes with CONTROL messages. A value of never is the most efficient.

This option is required and cannot be unset.

Used for: RTserver only

Type: Integer

Default Value: 0

Valid Values: Any integer from 0 to 2147483647, inclusive

Used for: RTclient, RTserver, RTmon processes

Type: String (Identifier)

Default Value: interactive

Valid Values: always or interactive or never

always feedback is always given, regardless of how the command was
executed, interactively or using a CONTROL message.

interactive feedback is only given when the command is entered
interactively.

never feedback is never given.
 TIBCO SmartSockets User’s Guide

524 | Chapter 8 Options Reference
Compression

The Compression option specifies whether connection-level compression is
enabled. If set to TRUE then all data sent on all connections is compressed. An
alternative to using the Compression option is to set the compression property of
the enhanced LCN in either the Conn_Names option or the Server_Names option.
The actual compression algorithm used is specified by the Compression_Name
option.

Compression_Args

The Compression_Args option allows arguments specific to the compression
library specified by the Compression_Name option to be passed to it. Currently,
the only available compression library is ZLIB. The valid argument for the ZLIB
library is an integer value from 1 to 9, which specifies the compression level. 1
gives the best speed, 9 gives the best compression.

Used for: RTclient, RTserver, RTmon, RTgms processes

Type: Boolean

Default Value: FALSE

Valid Values: TRUE or FALSE

Used for: RTclient, RTserver, RTmon, RTgms processes

Type: String

Default Value: 6

Valid Values: Valid arguments for the library specified by Compression_Name
TIBCO SmartSockets User’s Guide

Compression_Name | 525
Compression_Name

The Compression_Name option specifies what SmartSockets compression library
is used to perform connection-level compression and message compression.
Currently, the only available compression library is ZLIB.

Compression_Stats

The Compression_Stats option specifies whether compression statistics are
printed. When set to TRUE, compression statistics are printed approximately every
30 seconds.

Used for: RTclient, RTserver, RTmon, RTgms processes

Type: String

Default Value: zlib

Valid Values: Any valid SmartSockets compression library

Used for: RTclient, RTserver, RTmon, RTgms processes

Type: Boolean

Default Value: FALSE

Valid Values: TRUE or FALSE

Enabling compression statistics is intended for debugging purposes only because
it lowers performance.
 TIBCO SmartSockets User’s Guide

526 | Chapter 8 Options Reference
Conn_Max_Restarts

The Conn_Max_Restarts option specifies the maximum number of times that
RTserver restarts a server connection if an error occurs while accepting a new
RTclient or RTserver. If RTserver does not restart the connection, then the
connection cannot be used to rendezvous with any new processes. These errors
are rare but can occur if a network or system failure occurs. If Conn_Max_Restarts
is set to 0, then RTserver always restarts a server connection. For a discussion of
how a server connection accepts a client connection, see The Server Accepts the
Client on page 105.

This option is required and cannot be unset.

Conn_Names

Used for: RTserver only

Type: Integer

Default Value: 0

Valid Values: Any integer 0 or greater

Used for: RTserver and RTgms only

Type: String List

Default Value: For RTserver:

• UNIX: local, tcp

• Windows: tcp

• OpenVMS: tcp

For RTgms:

• UNIX: pgm:_node:local.5104, pgm:_node:tcp.5104

• Windows: pgm:_node:tcp.5104

Valid Values: Any valid logical connection name or names, separated by
commas (,)
TIBCO SmartSockets User’s Guide

Conn_Names | 527
The Conn_Names option specifies a list of logical connection names used by
RTclient processes and other RTserver processes to find this RTserver or used by
RTclient processes to find this RTgms process. Each logical connection name has
either of these forms:

• protocol:node:address, which can be shortened to protocol:node, protocol, or node, for
most normal connections to an RTserver

When protocol is tcp or a TCP-based protocol on a multi-homed machine, you
can set node to either of these keywords:

• pgm:node:unicast_protocol.address, used when the logical connection is for
multicast, to enable RTclients to find this RTgms

• proxy:node:address@protocol:dest_node:dest_address, which is used when the logical
connection is through a proxy server (for example, a web proxy server with
HTTP CONNECT enabled) to the RTserver.

The logical connection names are separated by commas (,). For more information
about valid protocols, nodes, and addresses, see Logical Connection Names for
RT Processes on page 192.

This option is required and cannot be unset.

_node causes RTserver to listen only on the default IP address for the
machine.

_any causes RTserver to listen on all IP addresses for the machine.

For Conn_Names, you must specify the full domain name for node when using
pgm.

Using the keyword _any in Conn_Names is discouraged for RTserver to RTserver
connections. When an RTserver connects to another RTserver whose
Conn_Names use _any, the RTserver might attempt to reconnect every
Server_Reconnect_Interval seconds. This is a known problem and will be fixed in
a future release.
 TIBCO SmartSockets User’s Guide

528 | Chapter 8 Options Reference
Default_Connect_Prefix

The Default_Connect_Prefix option specifies the default connect prefix to use
when one is not specified in a value in the Server_Names option. There are four
possible values:

Using a connect prefix of connect_all causes all RTservers to interconnect as
much as possible, while a connect prefix of connect_one allows precise control
over the RTserver topology.

Used for: RTserver only

Type: String (Identifier)

Default Value: connect_one

Valid Values: • connect_all

• connect_one

• connect_all_stop

• connect_one_stop

connect_all connect to all RTservers that the new RTserver is connected
to.

connect_one connect only to the new RTserver, and not to all the
RTservers it is connected to.

connect_all_stop connect to all RTservers that the new RTserver is connected
to, and stop traversing Server_Names if the first connection
succeeded (most closely emulates Version 3.5 behavior).

connect_one_stop connect only to the new RTserver, not to all the RTservers it
is connected to, and stop traversing Server_Names if the
first connection succeeded.
TIBCO SmartSockets User’s Guide

Default_Msg_Priority | 529
Default_Msg_Priority

The Default_Msg_Priority option specifies the default priority for newly created
messages. The message priority property controls where an incoming message is
inserted into a connection’s message queue. When a message is created, its
priority is initialized to the message type priority (if set) or to
Default_Msg_Priority (if the message type priority is unknown).

Default_Protocols

The Default_Protocols option specifies a list of IPC protocols to try if no protocol
is listed in a logical connection name in the Server_Names or Conn_Names
options. For further information regarding protocols, see Creating a Connection
to RTserver on page 189.

Used for: RTclient, RTserver, RTmon, and RTgms processes

Type: Integer

Default Value: 0

Valid Values: Any integer between -32768 and 32767, inclusive

Used for: RTclient, RTserver, RTmon processes

Type: String (Identifier) List

Default Value: • UNIX: local, tcp

• Windows: tcp

• OpenVMS: tcp

Valid Values: local, tcp
 TIBCO SmartSockets User’s Guide

530 | Chapter 8 Options Reference
Default_Subject_Prefix

The Default_Subject_Prefix option specifies the qualifier to prefix to message
subject names that do not start with /. Subject names are organized in a
hierarchical namespace where the components are delimited by /. A subject name
that starts with / is called an absolute subject name. All non-absolute subject
names have Default_Subject_Prefix prefixed to them so as to create a fully
qualified name for the hierarchical subject namespace. For more information
about Default_Subject_Prefix, see Subjects on page 158.

A default prefix is required for all RTservers, whether you use the default value
for RTserver (/) or set it to another value. When specifying this value for an
RTserver, do not unset this value or set it to UNKNOWN.

The other RTprocesses, RTclient, RTmon and RTgms, use the value set for the first
RTserver they connect to if their own value for Default_Subject_Prefix is unset or
set to UNKNOWN.

Used for: RTclient, RTserver, RTmon, and RTgms processes

Type: String

Default Value: • RTserver: /

• RTclient, RTmon, RTgms: UNKNOWN

Valid Values: Any valid prefix character, and also UNKNOWN for RTclient,
RTmon, or RTgms
TIBCO SmartSockets User’s Guide

Disable_Mon_Watch_Types | 531
Disable_Mon_Watch_Types

The Disable_Mon_Watch_Types option specifies a comma-separated list of watch
types to be ignored by the server. Legal values are as accepted by the RTmon
watch command listed in watch on page 634 or _all for all watches.

There is no client notification if a watch is denied by the server (the client will
think it is watching, but will receive no messages), however a warning message is
emitted to the trace log.

A warning is emitted upon rejecting a watch.

Used for: RTserver

Type: String List

Default Value: None

Valid Values: • One or more of the watch values described in watch on
page 634, separated by commas (,)

• _all

• UNKNOWN

If an item in the list is prefixed with '!', then the behavior is negated. For example,
the value "!client_names,_all" will disable all watches except client_names.

The value UNKNOWN is a keyword. Do not enclose it in double quotation characters
(").
 TIBCO SmartSockets User’s Guide

532 | Chapter 8 Options Reference
Editor

The Editor option specifies which text editor (or program) is used when the RT
process initiates an editor session. Depending on the system configuration,
possible values for this option include emacs, vi (for UNIX), edt (for OpenVMS),
Notepad, write (for Windows), and other editors such as textedit (for Solaris).

Also, any program or shell script can be specified as the value of the Editor
option. For example, if you specified cat as the value:

CLIENT> setopt editor cat

the name of the file is fed to the cat program and the file is output to standard
output. This option is required and cannot be unset.

Used for: RTclient, RTmon, and RTgms processes

Type: String

Default Value: • UNIX: vi

• Windows: notepad

• OpenVMS: edt

Valid Values: Any valid program or shell script name
TIBCO SmartSockets User’s Guide

Enable_Control_Msgs | 533
Enable_Control_Msgs

The Enable_Control_Msgs option is a string list specifying the commands
allowed in a CONTROL message. The default allows the inclusion of the echo
and quit commands in a CONTROL message. When this option is set to
UNKNOWN, all commands (including echo and quit) are disabled. Setting this
option to _all allows the inclusion of all valid commands in a CONTROL
message.

Security-conscious sites should set this option carefully, as inadvertent or
malicious misuse can cause damage to the system, the data, or the application.
There are several commands that may be dangerous when executed. Specifically,
the alias, connect, disconnect, retrieve, setopt, sh, source, subscribe,
unalias, unsetopt, and unsubscribe commands should only be specified with
extreme caution.

A warning is emitted upon rejecting a control message.

Used for: RTclient, RTserver, RTmon, and RTgms processes

Type: String List

Default Value: echo, quit

Valid Values: • Any valid command name or names, separated by commas
(,)

• _all

• UNKNOWN

If an item in the list is prefixed with '!', then the behavior is negated. For example,
the value "!setopt,_all" would allow all control messages except setopt.

The value UNKNOWN is a keyword. Do not enclose it in double quotations
characters (")
 TIBCO SmartSockets User’s Guide

534 | Chapter 8 Options Reference
Enable_Stop_Msgs

The Enable_Stop_Msgs option specifies whether or not RTserver can be stopped
with rtserver -stop. By default this option is enabled, allowing you and all
users to stop RTserver.

When disabled, no variation of the rtserver -stop command is permitted
(including rtserver -stop_all).

Security-conscious sites should set this option to FALSE to prevent accidental
shutdown of an entire SmartSockets system.

This option is required and cannot be unset.

Gmd_Publish_Timeout

The Gmd_Publish_Timeout option specifies the amount of time RTserver
continues to maintain GMD information for a subject that has not been recently
published to with GMD. There is some initial overhead for the first publish to a
subject using GMD and then a smaller amount of overhead to maintain the GMD
accounting information. If no direct RTclients publish to a subject with GMD in
Gmd_Publish_Timeout seconds, and if all direct publishing RTclients disconnect,
then RTserver stops maintaining this GMD accounting until the next GMD
publish occurs. Checking for GMD publishing timeouts is disabled if
Gmd_Publish_Timeout is set to 0.0.

This option is required and cannot be unset.

Used for: RTserver only

Type: Boolean

Default Value: TRUE

Valid Values: TRUE or FALSE

Used for: RTserver only

Type: Real Number

Default Value: 300.0

Valid Values: Any real number 0.0 or greater
TIBCO SmartSockets User’s Guide

Group_Burst_Interval | 535
Group_Burst_Interval

The Group_Burst_Interval option specifies the burst interval in seconds used for
an outbound group channel connection.

If you set this option for RTserver, when the RTserver has used up all its tokens on
a group channel connection (there are 0 tokens accumulated), the RTserver must
wait for this burst interval before checking for more tokens to determine if it can
send more data to RTgms.

If you set this option for RTgms, when the RTgms has used up all its tokens on a
group channel connection (there are 0 tokens accumulated), the RTserver must
wait for this burst interval before checking for more tokens to determine if it can
send more data to the RTserver.

To control bandwidth in both directions, you must set this option for both RTgms
and for RTserver.

For more information, see the related options Group_Max_Tokens and
Group_Token_Rate.

Used for: RTserver and RTgms processes only

Type: Real Number

Default Value: 0.5

Valid Values: Any real number from 0.0 to 600.0, inclusive
 TIBCO SmartSockets User’s Guide

536 | Chapter 8 Options Reference
Group_Max_Buffer

The Group_Max_Buffer option specifies the maximum number of bytes of data
that are allowed to be buffered to each group connection (such as the one used by
RTgms—the multicast publishing process). This maximum buffer size is used to
check for possible network failures. To prevent a large backlog from consuming
all available process memory, RTserver limits the buffer size of each group
connection to Group_Max_Buffer bytes of data; if a group connection (such as a
connection from RTgms) consumes too slowly, so that the buffer grows beyond
this limit, then RTserver destroys the connection.

This option is required and cannot be unset.

Group_Max_Tokens

The Group_Max_Tokens option specifies the maximum number of tokens that
can accumulate for group channel connections. The default value of 0 specifies
that an unlimited number of tokens can accumulate.

If you specify this option for RTserver, it sets the maximum tokens for RTserver to
use to send messages along group channels to RTgms processes. If you specify
this option for RTgms, it sets the maximum tokens for RTgms to use to send
multicast messages along group channels to the RTserver. To control bandwidth
in both directions, you must set this option for both RTgms and for RTserver.

For more information, see the related options Group_Burst_Interval and
Group_Token_Rate.

Used for: RTserver and RTgms only

Type: Integer

Default Value: 10000000

Valid Values: Any integer greater than 0

Used for: RTserver and RTgms processes only

Type: Integer

Default Value: 0

Valid Values: Any integer from 0 to 2147483647, inclusive
TIBCO SmartSockets User’s Guide

Group_Names | 537
Group_Names

The Group_Names option specifies a list of multicast groups or multicast
addresses. This is the list of groups to which this RTclient belongs, and indicates
to the RTgms for that RTclient how to route multicast messages for this RTclient.

If your RTclient belongs to several multicast groups, you can specify a mix of
multicast group names and addresses as needed:

setopt group_names fred,224.10.10.10,stockg

Specify the multicast group name as an address only if you do not want the value
to be hashed.

This option is optional, and is only used if you have a license for the SmartSockets
Multicast.

Used for: RTclient and RTgms processes only

Type: String List

Default Value: rtworks

Valid Values: Any valid multicast group names or multicast addresses,
separated by commas
 TIBCO SmartSockets User’s Guide

538 | Chapter 8 Options Reference
Group_Token_Rate

The Group_Token_Rate option specifies the rate, in bytes a second, at which
tokens accumulate for outbound group channel connections. Specifying a value of
0 disables group bandwidth control.

If you specify this option for RTserver, it controls the tokens accumulating for
RTserver to send messages along group channels to RTgms processes. If you
specify this option for RTgms, it controls the tokens accumulating for RTgms to
send multicast messages along group channels to the RTserver. To control
bandwidth in both directions, you must set this option for both RTgms and for
RTserver.

For more information, see the related options Group_Burst_Interval and
Group_Max_Tokens.

Ipc_Gmd_Auto_Ack

The Ipc_Gmd_Auto_Ack option enables and disables automatic acknowledgment
of GMD messages. If set to TRUE, all received GMD messages are automatically
acknowledged when the message is destroyed. If disabled set to FALSE, the user
must explicitly acknowledge receipt of the GMD message by calling TipcMsgAck.

Use the Ipc_Gmd_Auto_Ack_Policy option to specify when a message is
automatically acknowledged.

This option is required and cannot be unset.

Used for: RTserver and RTgms processes only

Type: Integer

Default Value: 0

Valid Values: Any integer from 0 to 2147483647, inclusive

Used for: RTclient

Type: Boolean

Default Value: TRUE

Valid Values: TRUE or FALSE
TIBCO SmartSockets User’s Guide

Ipc_Gmd_Auto_Ack_Policy | 539
Ipc_Gmd_Auto_Ack_Policy

The Ipc_Gmd_Auto_Ack_Policy option specifies when a GMD message is
automatically acknowledged. There are two possible values:

To enable or disable automatic acknowledgement of GMD messages, use the
Ipc_Gmd_Auto_Ack option.

This option is required and cannot be unset.

Ipc_Gmd_Directory

The Ipc_Gmd_Directory option specifies the directory used to store messages for
file-based GMD. These messages are saved on disk so they can be resent after a
delivery failure. File-based GMD is slower than memory-based GMD, because of
the time needed to write to disk. For best performance, specify a local file system
for your GMD directory. Read and write access to this directory is required.

This option is required and cannot be unset.

Used for: RTclient

Type: String

Default Value: first_destroy

Valid Values: first_destroy or last_destroy

first_destroy the received GMD message is acknowledged the first time the
message is destroyed regardless of its reference count.

last_destroy the received GMD message is acknowledged when its reference
count falls to zero.

Used for: RTclient, RTmon, and RTgms processes

Type: String

Default Value: • UNIX: /tmp/rtworks

• Windows: %TEMP%\rtworks

• OpenVMS: sys$scratch

Valid Values: Any valid directory name
 TIBCO SmartSockets User’s Guide

540 | Chapter 8 Options Reference
Ipc_Gmd_Type

The Ipc_Gmd_Type specifies whether file-based or memory-based GMD is to be
used. If left to its default value of default, file-based GMD is attempted, and if
that is unsuccessful, memory-based GMD is used.

If the value is set to memory, memory-based GMD is used. If unable to set
memory-based GMD, the connection fails. This option is only for use with GMD.

If the value is set to file, file-based GMD is used upon opening a connection. If
unable to set file-based GMD, the connection fails. This option is only for use with
GMD.

Log_In_Client

The Log_In_Client option specifies the name of the file that RTserver or RTgms
uses to log incoming messages of all types that are received from RTclient
processes. If this option is not set, incoming messages from RTclient processes are
not logged.

Used for: RTclient, RTmon, and RTgms processes

Type: String

Default Value: default

Valid Values: default, memory or file

Used for: RTserver and RTgms only

Type: String

Default Value: None

Valid Values: Any valid file name
TIBCO SmartSockets User’s Guide

Log_In_Data | 541
Log_In_Data

The Log_In_Data option specifies the name of the file that the RT process
(RTclient, RTmon, or RTgms) uses to log incoming data messages, such as TIME
or NUMERIC_DATA, that are received from RTserver. If this option is not set,
incoming data messages are not logged. Data messages are listed in Chapter 3,
Publish-Subscribe.

Log_In_Group

The Log_In_Group option specifies the name of the file that RTserver or RTgms
uses to log all incoming messages that are received through multicast groups. If
this option is not set, incoming messages from multicast groups are not logged.

Used for: RTclient, RTmon, and RTgms processes

Type: String

Default Value: None

Valid Values: Any valid file name

Used for: RTserver and RTgms only

Type: String

Default Value: None

Valid Values: Any valid file name
 TIBCO SmartSockets User’s Guide

542 | Chapter 8 Options Reference
Log_In_Internal

The Log_In_Internal option specifies the name of a file that the RT process uses to
log incoming internal messages, such as CONNECT_CALL or
MON_SUBJECT_SUBSCRIBE_SET_WATCH, that are received from RTserver. If
this option is not set, incoming internal messages are not logged. Internal
messages are listed in Chapter 3, Publish-Subscribe.

Log_In_Msgs

The Log_In_Msgs option specifies the name of a file that the RTclient uses to log
all incoming messages. If this option is not set, incoming messages are not logged.

Used for: RTclient, RTmon, and RTgms processes

Type: String

Default Value: None

Valid Values: Any valid file name

Used for: RTclient and RTmon processes

Type: String

Default Value: None

Valid Values: Any valid file name
TIBCO SmartSockets User’s Guide

Log_In_Server | 543
Log_In_Server

The Log_In_Server option specifies the name of the file that RTserver uses to log
incoming messages of all types that are received from other RTserver processes. If
this option is not set, incoming messages from other RTserver processes are not
logged.

Log_In_Status

The Log_In_Status option specifies the name of a file that the RT process uses to
log incoming status messages, such as ALERT or INFO, that are received from
RTserver. If this option is not set, incoming status messages are not logged. Status
messages are listed in Chapter 3, Publish-Subscribe.

Used for: RTserver only

Type: String

Default Value: None

Valid Values: Any valid file name

Used for: RTclient, RTmon, and RTgms processes

Type: String

Default Value: None

Valid Values: Any valid file name
 TIBCO SmartSockets User’s Guide

544 | Chapter 8 Options Reference
Log_Out_Client

The Log_Out_Client option specifies the name of the file that RTserver or RTgms
uses to log outgoing messages of all types that are sent to RTclient processes. If
this option is not set, outgoing messages to RTclient processes are not logged.

Log_Out_Data

The Log_Out_Data option specifies the name of a file that the RT process uses to
log outgoing data messages, such as TIME or NUMERIC_DATA, that are sent to
RTserver. If this option is not set, outgoing data messages are not logged. Data
messages are listed in Chapter 3, Publish-Subscribe.

Log_Out_Group

The Log_Out_Group option specifies the name of the file that RTserver or RTgms
uses to log outgoing messages of all types that are sent to multicast groups. If this
option is not set, outgoing messages to multicast groups are not logged.

Used for: RTserver and RTgms only

Type: String

Default Value: None

Valid Values: Any valid file name

Used for: RTclient, RTmon, and RTgms processes

Type: String

Default Value: None

Valid Values: Any valid file name

Used for: RTserver and RTgms only

Type: String

Default Value: None

Valid Values: Any valid file name
TIBCO SmartSockets User’s Guide

Log_Out_Internal | 545
Log_Out_Internal

The Log_Out_Internal option specifies the name of a file that the RT process uses
to log outgoing internal messages, such as CONNECT_CALL or
MON_SUBJECT_SUBSCRIBE_SET_WATCH, that are sent to RTserver. If this
option is not set, outgoing internal messages are not logged. Internal messages are
listed in Chapter 3, Publish-Subscribe.

Log_Out_Msgs

The Log_Out_Msgs option specifies the name of a file that the RTclient uses to log
all outgoing messages. If this option is not set, outgoing messages are not logged.

Log_Out_Server

The Log_Out_Server option specifies the name of the file that RTserver uses to log
outgoing messages of all types that are sent to other RTserver processes. If this
option is not set, outgoing messages to other RTserver processes are not logged.

Used for: RTclient, RTmon, and RTgms processes

Type: String

Default Value: None

Valid Values: Any valid file name

Used for: RTclient and RTmon processes

Type: String

Default Value: None

Valid Values: Any valid file name

Used for: RTserver only

Type: String

Default Value: None

Valid Values: Any valid file name
 TIBCO SmartSockets User’s Guide

546 | Chapter 8 Options Reference
Log_Out_Status

The Log_Out_Status option specifies the name of a file that the RT process uses to
log outgoing status messages, such as ALERT or INFO, that are sent to RTserver. If
this option is not set, outgoing status messages are not logged. Status messages
are listed in Chapter 3, Publish-Subscribe.

Max_Client_Conns

The Max_Client_Conns option specifies the maximum number of RTclient
processes that are allowed to connect to this RTserver process. If this limit is
exceeded, no more RTclients are allowed to connect. While the techniques
described in File Descriptor Upper Limit can be used to implement operating
system-level brute force limit checking, Max_Client_Conns provides a more
graceful way to enforce a maximum load on RTserver. Checking for the number of
RTclients is disabled if Max_Client_Conns is set to 0.

This option is required and cannot be unset.

Used for: RTclient, RTmon, and RTgms processes

Type: String

Default Value: None

Valid Values: Any valid file name

Used for: RTserver

Type: Integer

Default Value: 200

Valid Values: Any integer 0 or greater
TIBCO SmartSockets User’s Guide

Max_Server_Accept_Conns | 547
Max_Server_Accept_Conns

The Max_Server_Accept_Conns option specifies the maximum number of
RTserver processes that are allowed to connect to this RTserver process. If this
limit is exceeded, no more RTservers are allowed to connect.
Max_Server_Accept_Conns provides a way to limit connections made to an
RTserver. Specifying a negative value allows an unlimited number of connections
to be accepted by an RTserver. The default is an unlimited number of connections.

Related options are Max_Server_Connect_Conns and Max_Server_Conns. The
value specified for Max_Server_Conns takes precedence over the value you
specify for Max_Server_Accept_Conns. If you specify a larger value for
Max_Server_Accept_Conns than you specify for Max_Server_Conns, the
connections are limited by the value set for Max_Server_Conns.

This option is required and cannot be unset.

Max_Server_Connect_Conns

The Max_Server_Connect_Conns option specifies the maximum number of
connections this RTserver can make to other RTserver processes. If this limit is
exceeded, no more connections to other RTservers are allowed.
Max_Server_Connect_Conns provides a way to limit the number of
server-to-server connections an RTserver requests. Specifying a negative value
allows an unlimited number of connections to be initiated by an RTserver to other
RTservers. The default is an unlimited number of connections.

Used for: RTserver only

Type: Integer

Default Value: -1

Valid Values: Any integer

Used for: RTserver only

Type: Integer

Default Value: -1

Valid Values: Any integer
 TIBCO SmartSockets User’s Guide

548 | Chapter 8 Options Reference
Related options are Max_Server_Accept_Conns and Max_Server_Conns. The
value specified for Max_Server_Conns takes precedence over the value you
specify for Max_Server_Connect_Conns. If you specify a larger value for
Max_Server_Connect_Conns than you specify for Max_Server_Conns, the
connections are limited by the value set for Max_Server_Conns.

This option is required and cannot be unset.

Max_Server_Conns

The Max_Server_Conns option specifies the maximum number of
server-to-server connections allowed for this RTserver. This limit includes
connections initiated by other RTservers and connections to other RTservers
initiated by this RTserver. If this limit is exceeded, no more server connections are
allowed. Max_Server_Conns provides a way to enforce a maximum connection
load on an RTserver. Specifying a negative value allows an unlimited number of
server-to-server connections. The default is an unlimited number of connections.

Related options are Max_Server_Accept_Conns and
Max_Server_Connect_Conns. The value specified for Max_Server_Conns takes
precedence over the values specified for Max_Server_Accept_Conns and
Max_Server_Connect_Conns. For example, if you specify 20 for your
Max_Server_Conns, and 40 connections for Max_Server_Connect_Conns, the 21st
connection, regardless of whether it is inbound or outbound, is not allowed.

This option is required and cannot be unset.

Used for: RTserver only

Type: Integer

Default Value: -1

Valid Values: Any integer
TIBCO SmartSockets User’s Guide

Monitor_Ident | 549
Monitor_Ident

The Monitor_Ident option sets the monitoring identification string for this
process. The identification string is used as a descriptive name for the process
when it is being monitored. Identification strings can also be set with the
TipcMonSetIdentStr API call.

Monitoring is described in more detail in Chapter 5, Project Monitoring, on
page 359. For more information about TipcMonSetIdentStr, see the TIBCO
SmartSockets Application Programming Interface.

This string is stored in RTserver and is only sent to RTserver when RTclient
connects to RTserver. A process that sets this option after connecting to RTserver
will be identified incorrectly.

This option is required and cannot be unset.

Monitor_Level

The Monitor_Level option sets the level of monitoring information that is
maintained for this process. The monitoring level controls whether or not certain
types of monitoring information that may be CPU or memory intensive are
collected. This option must be set before a connection is created in order to have
an effect.

Used for: RTclient processes

Type: String

Default Value: RTclient

Valid Values: Any valid string

Used for: RTclient, RTmon, and RTgms processes

Type: String

Default Value: standard

Valid Values: • none -- not implemented in this release

• standard -- all monitoring except extended traffic
monitoring

• all -- all monitoring, including traffic monitoring
and memory or cpu intensive monitoring
 TIBCO SmartSockets User’s Guide

550 | Chapter 8 Options Reference
Monitoring is described in more detail in Chapter 5, Project Monitoring, on
page 359.

This option is required and cannot be unset.

Monitor_Scope

The Monitor_Scope option specifies the level of interest for SmartSockets
monitoring in those monitoring categories with no parameters, such as RTclient
names poll or a parameter of @, such as RTclient time watch.

Monitor_Scope acts as a filter that can be used to prevent a large project from
overloading a monitoring program. The default is /*, which matches all subject
names at the first level of the hierarchical subject namespace. When
Monitor_Scope is set to /..., which matches all names, all monitoring
information is enabled, so all filtering is disabled. Monitoring scope is described
in more detail in Chapter 5, Project Monitoring.

This option is required and cannot be unset.

Used for: RTclient, RTmon, and RTgms processes

Type: String

Default Value: /*

Valid Values: Any valid subject name character or characters
TIBCO SmartSockets User’s Guide

Multi_Threaded_Mode | 551
Multi_Threaded_Mode

Multi_Threaded_Mode enables (TRUE) or disables (FALSE) the multiple server
threads. Disabling this feature results in one thread for all client and server
connections.

If this option is FALSE, the server ignores the other three related options.

If Client_Threads or Server_Threads are set, but this option is not set, then the
server outputs a warning.

In release 6.7, the deprecated option Server_Num_Threads overrides this option
(in later releases, Server_Num_Threads will become obsolete, and will no longer
override Multi_Threaded_Mode). Nonetheless, if Client_Threads or
Server_Threads is set, they override Server_Num_Threads.

Used for: RTserver process only

Type: Boolean

Default Value: FALSE

For important background information, see Multi-Thread Mode on page 512.

This option is one of four that replace the deprecated option
Server_Num_Threads:

• Multi_Threaded_Mode

• Server_Threads

• Client_Threads

• Server_Connection_Names
 TIBCO SmartSockets User’s Guide

552 | Chapter 8 Options Reference
Project

The Project option specifies the name of the SmartSockets project to which the RT
process (RTclient or RTmon) is connected. The RT process (RTclient or RTmon) can
only communicate with other SmartSockets processes that have the same project
name.

This option is required and cannot be unset.

Prompt

The Prompt option specifies the string that the RTmon process uses to prompt
users for commands. It is best to keep the string short, under ten characters, so
that your prompt does not take up too much of your screen’s line length.

Used for: RTclient and RTmon processes

Type: String (Identifier)

Default Value: rtworks

Valid Values: Any valid project name

Used for: RTmon processes

Type: String

Default Value: RTmon: "MON> "

Valid Values: Any valid character string
TIBCO SmartSockets User’s Guide

Proxy_Password | 553
Proxy_Password

The Proxy_Password option is a string that specifies the user password that the
RT process (RTclient, RTserver, or RTmon) provides to a proxy server for
authentication. This option is only needed if your RT process is going to attempt
to connect to a proxy server.

When connecting to a proxy server that requires authentication, both
Proxy_Password and Proxy_Username must be set. If the proxy server does not
require authentication, then neither option is needed.

Proxy_Username

The Proxy_Username option is a string that specifies the username that the RT
process (RTclient, RTserver, or RTmon) provides to a proxy server for
authentication. This option is only needed if your RT process is going to attempt
to connect to a proxy server.

When connecting to a proxy server that requires authentication, both
Proxy_Password and Proxy_Username must be set. If the proxy server does not
require authentication, then neither option is needed.

Used for: RTserver, RTclient, and RTmon processes

Type: String

Default Value: UNKNOWN

Valid Values: Any valid user password

Used for: RTserver, RTclient, and RTmon processes

Type: String

Default Value: UNKNOWN

Valid Values: Any valid username
 TIBCO SmartSockets User’s Guide

554 | Chapter 8 Options Reference
Real_Number_Format

The Real_Number_Format option is a string that specifies the format that the RT
process uses to print real numbers. The format string should be a printf (a
standard C function) conversion string.

This option is required and cannot be unset.

Sd_Basic_Acl

The Sd_Basic_Acl option (in the file sdbasic.cm) specifies the directory
containing the ACL configuration files for Basic Security. This directory typically
contains:

• users.cfg — the user configuration file

• groups.cfg — the group configuration file

• acl.cfg — the permissions file

Used for: RTserver, RTclient, RTmon, and RTgms processes

Type: String

Default Value: %g

Valid Values: Any valid printf conversion string

Used for: sdbasic.cm

Type: String

Default Value: $RTHOME/acl

Valid Values: Any valid directory containing the basic ACL configuration files
TIBCO SmartSockets User’s Guide

Sd_Basic_Acl_Timeout | 555
Sd_Basic_Acl_Timeout

The Sd_Basic_Acl_Timeout option (in the file sdbasic.cm) specifies the number
of seconds Basic Security caches the configuration information, specified in
Sd_Basic_Acl, in memory. Once the cache has expired, the configuration
information is re-read. When set to 0, the cache never expires and is not re-read
until the RTserver is restarted.

Sd_Basic_Admin_Msg_Types

The Sd_Basic_Admin_Msg_Types option (in the file sdbasic.cm) specifies which
message types require administrative privileges to publish. To grant
administrative privileges to a user, place the user in the admin group. The admin
group is defined in the groups.cfg configuration file.

Whenever an RTclient publishes a message of a message type specified by this
option, the RTserver checks if the user has administrative privileges. If the user
does not, the message is not routed.

The default message types requiring administrative privileges are CONTROL
messages, SERVER_STOP_CALL messages, and GRP_STOP_RTGMS messages.

Used for: sdbasic.cm

Type: Real Number

Default Value: 3600

Valid Values: Any positive real number

Used for: sdbasic.cm

Type: String List

Default Value: -4, -30, -99

Valid Values: Integer values representing message type numbers,
separated by commas

Authorizing permission for administrative messages is disabled when the
Authorize_Publish option is set to FALSE.
 TIBCO SmartSockets User’s Guide

556 | Chapter 8 Options Reference
Sd_Basic_Trace_File

The Sd_Basic_Trace_File option (in the file sdbasic.cm) specifies the name of the
file to which Basic Security prints auditing information. Auditing information is
specified by the Sd_Basic_Trace_Level option.

Sd_Basic_Trace_Flags

The Sd_Basic_Trace_Flags option (in the file sdbasic.cm) specifies how to format
the security trace file (see Sd_Basic_Trace_File on page 556). If you specify
prefix, the output prefix is included in the trace information. The prefix indicates
the module from which the trace information originates. If you specify timestamp
the trace information is timestamped.

You can specify either prefix or timestamp or both separated by a comma:

setopt sd_basic_trace_flags prefix, timestamp

Unsetting the option using either unsetopt, or using setopt to change the value
to unknown, clears all the flags.

Used for: sdbasic.cm

Type: String

Default Value: $RTHOME/sdbasic.trc

Valid Values: Any valid filename, including stdout and stderr

Used for: sdbasic.cm

Type: String List (Identifiers)

Default Value: prefix

Valid Values: prefix, timestamp, unknown
TIBCO SmartSockets User’s Guide

Sd_Basic_Trace_Level | 557
Sd_Basic_Trace_Level

The Sd_Basic_Trace_Level option (in the file sdbasic.cm) specifies the amount of
information Basic Security sends to the file specified by the Sd_Basic_Trace_File
option. This information is useful for auditing purposes. At the Warning level, all
failed authentication requests and denied authorization requests are printed. At
the Info level, all authentication and authorization requests, both successful and
unsuccessful, are printed.

Sender_Get_Reply

The Sender_Get_Reply option specifies whether or not a TipcMsgGetSender
function call returns the sender field or the reply to message property. Setting this
option to TRUE causes TipcMsgGetSender to return the reply to message property
instead of returning the sender field.

Used for: sdbasic.cm

Type: String (Identifier) List

Default Value: Info

Valid Values: • Never

• Error

• Warning

• Info

• Info_1

• Info_2

• Verbose

• Verbose_1

• Verbose_2

• Debug

Used for: RTclient processes only

Type: Boolean

Default Value: FALSE

Valid Values: TRUE or FALSE
 TIBCO SmartSockets User’s Guide

558 | Chapter 8 Options Reference
Server_Async_Subscribe

The Server_Async_Subscribe option specifies whether or not an RTclient waits for
a response from RTserver after sending a new subscription request. Setting the
option to FALSE causes a subscribing RTclient to wait for a confirmation from
RTserver before processing messages. Setting Server_Async_Subscribe to TRUE
makes the RTclient asynchronous, so that it does not block while waiting for a
response from RTserver.

This option only affects subscription calls, such as TipcSrvSubjectSetSubscribe,
from clients that are also using username and password or other authorization
protocols to connect to RTserver. For example, clients using TipcSrvSetCredentials
or TipcSrvSetUsernamePassword are affected. For all other clients, subscription
requests are asynchronous by default.

This option is required and cannot be unset.

Used for: RTclient processes

Type: Boolean

Default Value: TRUE

Valid Values: TRUE or FALSE

When Server_Async_Subscribe is TRUE, an RTclient is not immediately notified
when a subscription request is authorized or denied. Unauthorized subscription
requests are silently ignored by the RTserver. However, the RTclient updates
internal subscription tables as the asynchronous subscription results come.
TIBCO SmartSockets User’s Guide

Server_Auto_Connect | 559
Server_Auto_Connect

The Server_Auto_Connect option specifies whether or not the RT process should
automatically create a connection to RTserver if one is needed (for example, if
RTclient tries to send a message to RTserver before it has created a connection to
RTserver). If the RT process has a warm connection to RTserver, it can partially
operate as if it still had a connection to RTserver (for example, outgoing messages
are buffered). If Server_Auto_Connect is set to FALSE when this warm connection
exists, the RT process does not automatically attempt to recreate a connection to
RTserver.

This option is required and cannot be unset.

Server_Auto_Flush_Size

The Server_Auto_Flush_Size option specifies how many bytes of data are allowed
to be buffered to be sent to RTserver before the data is automatically written,
flushed, to the connection. If Server_Auto_Flush_Size is set to 0, all outgoing
messages are automatically flushed immediately. If the RT process (RTclient or
RTmon) is sending many messages in a short period of time, setting
Server_Auto_Flush_Size to a larger value can lessen the amount of CPU time the
RT process uses. This option is required and cannot be unset.

Used for: RTclient, RTmon, and RTgms processes

Type: Boolean

Default Value: TRUE

Valid Values: TRUE or FALSE

Used for: RTclient and RTmon processes

Type: Integer

Default Value: 8192

Valid Values: Any integer 0 or greater
 TIBCO SmartSockets User’s Guide

560 | Chapter 8 Options Reference
Server_Burst_Interval

The Server_Burst_Interval option specifies the burst interval in seconds used for a
connection to an RTserver. When the RTserver has used up all its tokens on an
RTserver connection (there are 0 tokens accumulated), the RTserver must wait for
this burst interval before checking for more tokens to determine if it can send
more data on its RTserver connection.

For more information, see the related options Server_Max_Tokens and
Server_Token_Rate.

Server_Connect_Timeout

The Server_Connect_Timeout option specifies the maximum amount of time (in
seconds) RTserver waits when trying to read a SRV_CONNECT_RESULT
initialization message from a new RTserver process (when two RTserver processes
first rendezvous, they exchange SRV_CONNECT_CALL and
SRV_CONNECT_RESULT initialization messages). If RTserver does not receive
the message within the timeout period, RTserver destroys the connection to the
new RTserver process.

This option is required and cannot be unset.

Used for: RTserver only

Type: Real Number

Default Value: 0.5

Valid Values: Any real number from 0.0 to 600.0, inclusive

Used for: RTserver only

Type: Real Number

Default Value: 10.0

Valid Values: Any real number greater than 0.0
TIBCO SmartSockets User’s Guide

Server_Connection_Names | 561
Server_Connection_Names

Server_Connection_Names lets the server treat high-traffic client connections as if
they were server connections—assigning them to the server thread pool. Specify
these clients as a list of the connections’ unique subject names. Wildcards are
permitted.

For example, TIBCO SmartSockets Cache handles volume comparable to a server,
but is not technically an RTserver. To assign it to the server thread pool, specify its
name in this option.

Used for: RTserver process only

Type: StringList

Default Value: UNKNOWN

For important background information, see Multi-Thread Mode on page 512.

This option is one of four that replace the deprecated option
Server_Num_Threads:

• Multi_Threaded_Mode

• Server_Threads

• Client_Threads

• Server_Connection_Names
 TIBCO SmartSockets User’s Guide

562 | Chapter 8 Options Reference
Server_Delivery_Timeout

The Server_Delivery_Timeout option specifies the default maximum amount of
time (in seconds) to allow all receiving processes to acknowledge delivery of a
guaranteed message. This default can be overridden by explicitly setting the
delivery timeout of the message. The sending process does not synchronously
wait for delivery to complete, but instead checks periodically. Checking for
delivery timeouts is disabled if Server_Delivery_Timeout is set to 0.0. If a
guaranteed message sent to RTserver is not acknowledged within
Server_Delivery_Timeout seconds, this is an error, and a GMD_FAILURE
message is processed.

This option is required and cannot be unset.

Used for: RTclient, RTmon, and RTgms processes

Type: Real Number

Default Value: 30.0

Valid Values: Any real number 0.0 or greater
TIBCO SmartSockets User’s Guide

Server_Disconnect_Mode | 563
Server_Disconnect_Mode

The Server_Disconnect_Mode option specifies the action RTserver should take
when the RT process (RTclient, RTmon, or RTgms) disconnects from RTserver.
There are three possible values:

Setting the option to warm is useful when RTclient or RTmon must run
continuously and not lose any messages even if it crashes or accidentally
terminates. In this mode, RTserver remembers the subjects subscribed to by the
disconnecting RT process and buffers GMD messages. When an RTclient or
RTmon process with the same value for the Unique_Subject option reconnects to
RTserver, RTserver resends the guaranteed messages to that RT process. The
maximum amount of time (in seconds) RT process has to reconnect is controlled
by the option Client_Reconnect_Timeout. If the RT process does not reconnect to
RTserver within Client_Reconnect_Timeout seconds, RTserver clears the GMD
messages that have not been acknowledged by this RT process and sends a
GMD_NACK message back to the sender of these messages.

Setting the option to gmd_failure is useful for short-lived operations. In this
mode, RTserver clears the guaranteed messages that have not been acknowledged
by this RT process and sends a GMD_NACK message back to the sender of these
messages. This is also the correct setting if your RT process is RTgms, which does
not support GMD and cannot receive GMD messages.

Setting the option to gmd_success is useful for short-lived operations or when
RTclient or RTmon must exit cleanly without causing GMD failure in the sending
process. In this mode, RTserver clears the unacknowledged GMD messages and
sends a GMD_ACK message back to the sender of these messages.

This option is required and cannot be unset.

Used for: RTclient, RTmon, and RTgms processes

Type: String

Default Value: gmd_failure

Valid Values: • warm

• gmd_failure

• gmd_success

warm RTserver saves subject information about RTclient or RTmon for
GMD so that no messages are lost.

gmd_failure RTserver destroys all information about RTclient or RTmon and
causes pending guaranteed message delivery to fail.

gmd_success RTserver destroys all information about RTclient or RTmon and
causes pending guaranteed message delivery to succeed.
 TIBCO SmartSockets User’s Guide

564 | Chapter 8 Options Reference
Server_Gmd_Dir_Name

The Server_Gmd_Dir_Name option is a named option that specifies the name of
the sub-directory used to store messages for file-based GMD. This sub-directory is
created within the directory specified by the Ipc_Gmd_Directory option.
Messages sent with GMD are saved on disk, in this sub-directory, to be resent in
the event of a delivery failure. File-based GMD is slower than memory-based
GMD because of the time needed to write the messages to disk, but it is more
reliable in situations like a power outage. The default for this option is UNKNOWN
and results in the sub-directory being named after the RTclient’s unique subject.
Read and write access to the directory you specify is required. For more
information, see Ipc_Gmd_Directory.

This option is required if you are using multiple RTserver connections (multiple
RTserver connections instead of a single global connection) that share the same
unique subject. By default, the GMD sub-directory is named after the RTclient’s
unique subject. If an RTclient is using multiple connections with file-based GMD,
and each connection is using the same unique subject, file conflicts in the GMD
sub-directory occur. To avoid this, you must set the Server_Gmd_Dir_Name
named option, using setnopt, to a different value for each connection.

Used for: RTclient processes

Type: String

Default Value: UNKNOWN

Valid Values: Any valid sub-directory name. It cannot be a pathname or
contain slashes.

Multiple RTserver connections can share the same unique subject only if each
connection is connecting to a different RTserver cloud or if they have different
projects.
TIBCO SmartSockets User’s Guide

Server_Keep_Alive_Timeout | 565
Server_Keep_Alive_Timeout

The Server_Keep_Alive_Timeout option specifies how long (in seconds) to wait
when checking if a connection to an RTserver is still alive. This check is called a
keep alive and occurs if more than Server_Read_Timeout seconds have elapsed
since the RT process (RTclient, RTserver, RTgms, or RTmon) last read any data
from that RTserver. Keep alives are disabled if Server_Keep_Alive_Timeout is set
to 0.0.

If the keep alive fails, then the connection to that RTserver is destroyed and:

• if the connection had been between an RTclient, RTmon, or RTgms process
and that RTserver, the RTclient, RTmon, or RTgms process attempts to create a
new connection to that RTserver

• if the connection had been between an RTserver process and that RTserver, the
RTserver process might attempt to create a new connection to that RTserver,
depending on the RTserver process’ setting for Server_Reconnect_Interval
(see Server_Reconnect_Interval on page 572

The larger the value you set for Server_Keep_Alive_Timeout for your RT process,
the longer your RTprocess must wait to detect a possible RTserver failure.
However, if you set too low a value for Server_Keep_Alive_Timeout, your RT
process might think that it has lost its connection to an RTserver when that
RTserver is merely very busy.

This option is required and cannot be unset.

Used for: RTclient, RTserver, RTmon, and RTgms processes

Type: Real Number

Default Value: 15.0

Valid Values: Any real number 0.0 or greater
 TIBCO SmartSockets User’s Guide

566 | Chapter 8 Options Reference
Server_Max_Reconnect_Delay

The Server_Max_Reconnect_Delay option specifies the upper bound on a random
delay introduced when an the RT process (RTclient or RTmon) has to reconnect to
RTserver.

This option is useful when an RTserver with many clients fails and all of those RT
processes are attempting to reconnect. The delay enhances total reconnect time by
slightly staggering reconnect requests. Setting the option to zero disables the
delay.

This option is required and cannot be unset.

Server_Max_Tokens

The Server_Max_Tokens option specifies the maximum number of tokens that can
accumulate for connections to RTservers. The default value of 0 specifies that an
unlimited number of tokens can accumulate.

For more information, see the related options Server_Burst_Interval and
Server_Token_Rate.

Used for: RTclient and RTmon processes

Type: Real Number

Default Value: 30.0

Valid Values: Any real number 0.0 or greater

Used for: RTserver only

Type: Integer

Default Value: 0

Valid Values: Any integer from 0 to 2147483647, inclusive
TIBCO SmartSockets User’s Guide

Server_Msg_Send | 567
Server_Msg_Send

The Server_Msg_Send option specifies whether or not the RT process (RTclient or
RTmon) can send messages to RTserver. Some messages sent internally by the
SmartSockets IPC library such as SUBJECT_SET_SUBSCRIBE messages are
always sent regardless of the setting of Server_Msg_Send. This option is useful for
backup processes that should receive messages from RTserver but not send any
out. For those processes, set the value to FALSE.

This option is required and cannot be unset.

Server_Names

The Server_Names option specifies a list of logical connection names used to find
and start an RTserver. Each logical connection name has either of these forms:

• protocol:node:address, which can be shortened to protocol:node, protocol, or node

• pgm:node:unicast_protocol.address, used when the logical connection is for
multicast, used by RTclients to connect to an RTgms process

• proxy:node:address@protocol:dest_node:dest_address, which is used when the logical
connection to RTserver is through a proxy server (for example, a web proxy
server with HTTP CONNECT enabled).

Used for: RTclient and RTmon processes

Type: Boolean

Default Value: TRUE

Valid Values: TRUE or FALSE

Used for: RTclient, RTserver, RTmon, and RTgms processes

Type: String List

Default Value: _node for RTclient, RTmon, RTgms processes

UNKNOWN for RTserver

Valid Values: Any valid logical connection name or names, separated by
commas (,), or for RTserver, also UNKNOWN
 TIBCO SmartSockets User’s Guide

568 | Chapter 8 Options Reference
For more information about valid protocols, nodes, and addresses, see Logical
Connection Names for RT Processes on page 192. Note that the start prefix can
only be used by an RTclient to start an RTserver. No other RT process can use it to
start an RTserver, and an RTclient cannot use it to start any process other than an
RTserver.

For an RTclient, RTmon, or RTgms process, this option is required and cannot be
unset. An RTclient must establish a connection to either an RTserver or an RTgms.
RTmon or RTgms processes must establish a connection to an RTserver. These
connections are required to communicate with other SmartSockets processes.

RTgms creates multiple connections to the RTserver specified in Server_Names: a
single control channel connection and one connection for each group that RTgms
manages.

A logical connection name of pgm:localhost does not connect to an RTgms
process. If you want to use localhost, you must also specify TCP in the logical
connection name:

pgm:localhost:tcp

For an RTserver process, the logical connection names specified in Server_Names
are used to find other RTserver processes. For an RTserver process, you can set
Server_Names to UNKNOWN, the default setting, and your RTserver process does
not attempt to find any other RTservers.
TIBCO SmartSockets User’s Guide

Server_Num_Threads | 569
Server_Num_Threads

The Server_Num_Threads option specifies how many threads should be used in a
multi-thread session with RTserver. The default value is 1, which is a
single-thread model and is the default mode for RTserver. Although the server
does not enforce a maximum value, we advise caution when using large values;
larger values do not necessarily result in better performance.

The optimal number of threads depends on the operational parameters of your
deployment, such as the number of processors, the subject namespace, message
fan-out characteristics, message rate, disk I/O rate, compression, the number of
RTserver-to-RTclient connections, and the number of RTserver-to-RTserver
connections (cloud configuration).

This option is deprecated in release 6.7. We have retained its old behavior for
backward compatibility, however, setting it triggers a warning. This option will be
removed in a future release.

Release 6.7 introduces four new options that supersede this option:

• Multi_Threaded_Mode

• Server_Threads

• Client_Threads

• Server_Connection_Names

If any of these are set, they override the value of Server_Num_Threads.

For important background information, see Multi-Thread Mode on page 512.

Used for: RTserver process only

Type: Integer

Default Value: 1

Valid Values: Any integer greater than 0
 TIBCO SmartSockets User’s Guide

570 | Chapter 8 Options Reference
We recommend that you empirically determine the optimal value of this option
for your deployment. We suggest that you begin tuning with the values in
Table 19, and adjust them based on the results of your testing. We caution that the
optimal value of this option can change significantly when the operational
parameters of your deployment vary; when they do change, we strongly
recommend that you re-test to determine the best value for this option.

To run in multi-thread mode, your RTserver must be licensed for the
SmartSockets MP option for the RTserver and specify a number of threads greater
than 1 for the Server_Num_Threads option. If you specify a number greater than
1 and you do not have a SmartSockets MP license for that RTserver, you receive a
warning message when the RTserver is started and it is started in single-thread
mode. The Server_Num_Threads option is not available on all platforms. If you
specify a number greater than 1 on a platform where Server_Num_Threads is not
available, you receive an warning message when the RTserver is started; RTserver
then starts in single-thread mode.

Table 19 Server_num_threads

Number of CPUs Initial Number of Threads

2–3 1

Our testing has not shown any benefit to adjusting
this parameter on computers with fewer than 4
processors.

4 or more number of CPUs plus 1
TIBCO SmartSockets User’s Guide

Server_Read_Timeout | 571
Server_Read_Timeout

The Server_Read_Timeout option specifies how often (in seconds) data is
expected to be available for reading on a connection to an RTserver. This timeout
is used to check for possible network failures. If a read timeout occurs, a message
is sent to RTserver to check if the connection is still alive. This check is called a
keep alive. Checking for read timeouts is disabled if Server_Read_Timeout is set
to 0.0. The larger the value for Server_Read_Timeout, the longer the RT process
(RTclient, RTserver, or RTmon) must wait to detect a possible RTserver failure. If
Server_Read_Timeout is set too low, however, the RT process may mistakenly
think that it has lost its connection to the RTserver when the RTserver is merely
very busy. See Helpful Read Timeout Tips on page 521 for more information.

If the message delivery timeout property is set to a value smaller than the value
for Server_Read_Timeout, under certain circumstances the actual delivery
timeout is the value you set for Server_Read_Timeout. For more information, see
Delivery Timeout on page 321.

This option is required and cannot be unset.

Used for: RTclient, RTserver, RTmon, and RTgms processes

Type: Real Number

Default Value: 30.0

Valid Values: Any real number 0.0 or greater
 TIBCO SmartSockets User’s Guide

572 | Chapter 8 Options Reference
Server_Reconnect_Interval

The Server_Reconnect_Interval option specifies the interval (in seconds) at which
RTserver attempts to reconnect to other RTserver processes listed in its
Server_Names option. Reconnects also are attempted regularly for those
RTservers that cannot be initially connected to (for example, because the other
RTserver is not currently running). To prevent temporary deadlock, if two
RTservers lose their connection to each other, only the RTserver that initially
connected to the other attempts the reconnect. The RTserver attempts to reconnect
immediately and then once again every Server_Reconnect_Interval seconds. If
Server_Reconnect_Interval is set to 0.0, automatic reconnect is disabled.

This option is required and cannot be unset.

Server_Start_Delay

The Server_Start_Delay option specifies how long (in seconds) the RT process
sleeps between traversals of the list of connection names in the Server_Names
option. This option, if used by multiple RTclients in conjunction with
Server_Start_Timeout and Server_Start_Max_Tries, can also control the number of
processes that attempt to start RTserver and the rate that these attempts occur.

If the RT process is using the start_never start prefix, the process still sleeps
between traversals, but no automatic starts are preformed. For more information
on start prefixes, see Start Prefix on page 195. The number of times the RT process
traverses the connection names in the Server_Names option is dictated by the
Server_Start_Max_Tries option.

This option is required and cannot be unset.

Used for: RTserver only

Type: Real Number

Default Value: 30.0

Valid Values: Any real number greater than 0.0

Used for: RTclient, RTmon, and RTgms processes

Type: Real Number

Default Value: 1.0

Valid Values: Any real number greater than 0.0
TIBCO SmartSockets User’s Guide

Server_Start_Max_Tries | 573
Server_Start_Max_Tries

The Server_Start_Max_Tries option specifies how many times the RT process
should traverse the connection names in the Server_Names option when
attempting to find and/or start an RTserver. The RT process can not communicate
with other SmartSockets processes if it cannot create a connection to RTserver.

This option is required and cannot be unset.

Server_Start_Timeout

The Server_Start_Timeout option specifies the maximum amount of time (in
seconds) the RT process (RTclient or RTmon) waits for RTserver to finish
initializing once that RT process has started RTserver. If RTserver does not finish
initializing within the timeout period, the RT process (RTclient or RTmon) tries
the next connection name in the Server_Names option.

This option is required and cannot be unset.

Used for: RTclient and RTmon processes

Type: Integer

Default Value: 1

Valid Values: Any integer greater than 0

Used for: RTclient and RTmon processes

Type: Real Number

Default Value: 30.0

Valid Values: Any real number greater than 0.0
 TIBCO SmartSockets User’s Guide

574 | Chapter 8 Options Reference
Server_Threads

Server_Threads determines the number of threads in the pool for connections
from servers and high-traffic clients (see Server_Connection_Names on page 561).

For optimal load-balancing results, set this option to either the number of servers,
or to an integer divisor of that number.

Server_Token_Rate

The Server_Token_Rate option specifies the rate, in bytes a second, at which
tokens accumulate for RTserver connections. Specifying a value of 0 disables
server bandwidth control.

For more information, see the related options Server_Burst_Interval and
Server_Max_Tokens.

Used for: RTserver process only

Type: Integer

Default Value: 0

Valid Values: Any non-negative integer

For important background information and the semantics of special values, see
Multi-Thread Mode on page 512.

This option is one of four that replace the deprecated option
Server_Num_Threads:

• Multi_Threaded_Mode

• Server_Threads

• Client_Threads

• Server_Connection_Names

Used for: RTserver only

Type: Integer

Default Value: 0

Valid Values: Any integer from 0 to 2147483647, inclusive
TIBCO SmartSockets User’s Guide

Server_Write_Timeout | 575
Server_Write_Timeout

The Server_Write_Timeout option specifies how often (in seconds) data is
expected to be able to be written to the connection to RTserver. This timeout is
used to check for possible network failures. If a write timeout occurs, then the
connection to RTserver is destroyed, and RTclient, RTmon, or RTgms attempts to
create a new connection to RTserver. Checking for write timeouts is disabled if
Server_Write_Timeout is set to 0.0. The larger the value for
Server_Write_Timeout, the longer the RT process must wait to detect a possible
RTserver failure. If Server_Write_Timeout is set too low, however, the RT process
may think that it has lost its connection to RTserver when the RTserver is merely
very busy.

This option is required and cannot be unset.

Sm_Security_Driver

The Sm_Security_Driver option specifies which security driver to load. If the
specified security driver cannot be loaded, no connections are allowed. Currently,
the only available security driver is basic.

Used for: RTclient, RTmon, and RTgms processes

Type: Real Number

Default Value: 30.0

Valid Values: Any real number 0.0 or greater

Used for: RTserver

Type: String

Default Value: None

Valid Values: Any valid SmartSockets security driver. The only driver
supported is the basic security driver.
 TIBCO SmartSockets User’s Guide

576 | Chapter 8 Options Reference
Socket_Connect_Timeout

The Socket_Connect_Timeout option specifies the maximum amount of time (in
seconds) the RT process waits when trying to create a client socket connected to a
server process. This timeout is used to check for possible network failures.
Checking for connect timeouts is disabled if Socket_Connect_Timeout is set to
0.0. All SmartSockets standard processes use sockets for interprocess
communication.

This option is required and cannot be unset.

Srv_Client_Names_Min_Msgs

The Srv_Client_Names_Min_Msgs option specifies the level of detail returned by
RTserver in subsequent MON_CLIENT_NAMES_STATUS messages. With this option
set to TRUE, RTserver constructs a MON_CLIENT_NAMES_STATUS message
containing only the client name that was created or destroyed and the reason for
the client’s disconnection.

Used for: RTserver, RTclient, RTmon, RTgms processes

Type: Real Number

Default Value: 5.0

Valid Values: Any real number 0.0 or greater

Used for: RTserver

Type: Boolean

Default Value: FALSE

Valid Values: TRUE or FALSE
TIBCO SmartSockets User’s Guide

Srv_Subj_Names_Min_Msgs | 577
Srv_Subj_Names_Min_Msgs

The Srv_Subj_Names_Min_Msgs option specifies the level of detail returned by
RTserver in subsequent MON_SUBJECT_NAMES_STATUS messages. With this option
set to TRUE, RTserver constructs a MON_SUBJECT_NAMES_STATUS message
containing only the created or destroyed subject.

Subjects

The Subjects option lists the subjects to which the RTclient initially subscribes.
One or more subjects can be listed, separated by commas. For example:

setopt subjects /system/eps, /system/pcs, /control/...

When using the Subjects option, you must call the function
TipcSrvStdSubjectSetSubscribe to parse the Subjects option and automatically
subscribe to all listed subjects.

TipcSrvStdSubjectSetSubscribe is used to start or stop subscribing to subjects
listed in the Subjects option, including standard subjects such as _all, _process,
and _node. When called, TipcSrvStdSubjectSetSubscribe parses the Subjects option
so that all subjects listed in Subjects are automatically subscribed to or
unsubscribed from. For more information on TipcSrvStdSubjectSetSubscribe, see
the TIBCO SmartSockets Application Programming Interface. For more information
on standard subjects, see Standard Subjects on page 162.

The RTclient can also start or stop subscribing to a subject at any time using the
subscribe and unsubscribe commands.

Used for: RTserver

Type: Boolean

Default Value: FALSE

Valid Values: TRUE or FALSE

Used for: RTclient and RTmon processes

Type: String List

Default Value: None

Valid Values: Any valid subject name or names, separated by commas (,)
 TIBCO SmartSockets User’s Guide

578 | Chapter 8 Options Reference
Time_Format

The Time_Format option controls how the RT process displays the value of time.
Four standard formats and one user-defined format are available:

This option is required and cannot be unset.

Trace_File

The Trace_File option specifies the name of a file to which the RT process should
write trace information. This allows you to specify a file other than stdout. If the
option is not set, and uses the default value of unknown, that causes the output to
be written to stdout.

Used for: RTserver, RTclient, RTmon, and RTgms processes

Type: String (Identifier)

Default Value: • hms for RTserver and RTmon processes

• unknown for all other RT processes

Valid Values: • full

• fullzone

• hms

• numeric

• The name of any time converter defined by the user

full displays a combination of the date and the time.
fullzone displays a combination of the date and the time with a time zone

designation
hms displays the time in hours, minutes, and seconds.
numeric displays the floating point representation of time.

user_defined uses a user-defined time converter. For a complete description of a
user-defined time converter, see the function TutTimeCvtCreate in the
TIBCO SmartSockets Utilities reference.

Used for: RTserver, RTclient, and RTmon processes

Type: String (Identifier)

Default Value: unknown

Valid Values: Any valid filename, including stdout and stderr
TIBCO SmartSockets User’s Guide

Trace_File_Size | 579
Trace_File_Size

The Trace_File_Size option specifies the maximum size, in bytes, of a trace file.
Once a trace file reaches this maximum size it is backed up according to the rules
specified by the Backup_Name option, and reopened at the beginning. When the
trace file reaches its maximum size again, the backup file is overwritten and the
trace file reopens at the beginning. Setting Trace_File_Size to 0 disables the option,
allowing a trace file to grow indefinitely.

This option is used to prevent a long-lived process from filling up the physical
disk of the machine on which it is running with its trace output.

This option is required and cannot be unset.

Trace_Flags

The Trace_Flags option specifies how to format the trace file. If you specify
prefix, the output prefix is included in the trace information. The prefix indicates
from which module the trace information originated. If you specify timestamp
the trace information is timestamped.

You can specify either prefix or timestamp or both separated by a comma:

setopt trace_flags prefix, timestamp

Unsetting the option using either unsetopt, or using setopt to change the value
to unknown, clears all the flags.

Used for: RTserver, RTclient, and RTmon processes

Type: Integer

Default Value: 0

Valid Values: Any integer 0 or greater

Used for: RTserver, RTclient, and RTmon processes

Type: String List (Identifiers)

Default Value: prefix

Valid Values: prefix, timestamp, unknown
 TIBCO SmartSockets User’s Guide

580 | Chapter 8 Options Reference
Trace_Level

The Trace_Level option determines the amount of trace information output by an
RT process to the trace file. You can specify how much information, if any, is
output. If the option is not set, and uses the default value unknown, the level of
information output is Warning.

If you are running the MP option with multiple threads, the Info_1 trace level is
the first level to provide detailed thread information.

Udp_Broadcast_Timeout

The Udp_Broadcast_Timeout option specifies the maximum amount of time in
seconds the RT process waits for an RTserver to respond to its broadcast attempt
to find a running RTserver. If no RTserver responds within the timeout period, the
RT process tries the next connection name in the Server_Names option.

This option is required and cannot be unset.

Used for: RTserver, RTclient, and RTmon processes

Type: String (Identifier)

Default Value: unknown

Valid Values: • Never

• Error

• Warning

• Info

• Info_1

• Info_2

• Verbose

• Verbose_1

• Verbose_2

• Debug

Used for: RTserver, RTclient, and RTmon processes

Type: Real Number

Default Value: 5.0

Valid Values: Any real number greater than 0.0
TIBCO SmartSockets User’s Guide

Unique_Subject | 581
Unique_Subject

For RTclient, RTmon, and RTgms processes, the Unique_Subject option specifies a
unique subject that RTclient, RTmon, or RTgms automatically subscribes to when
it creates a connection to an RTserver. For RTserver processes, the Unique_Subject
option specifies a unique name that RTserver uses to identify itself when it
connects to other RTservers. For an RTserver, unlike for the other RT processes,
the value for Unique_Subject is used as a destination only for CONTROL
messages, not for other types of messages.

RTserver does not allow multiple RT processes (RTservers, RTclients, RTmons, or
RTgms) in the same project to have the same value for the option Unique_Subject.

The default value for Unique_Subject for any RT process is _Node_Pid, where:

This option is required and cannot be unset.

Verbose

The Verbose option takes a boolean value (TRUE or FALSE) and specifies the level
of detail to output to the terminal in response to commands. If Verbose is set to
TRUE, RTserver outputs more detailed or verbose information to the screen. This
option is useful when debugging RTserver.

This option is required and cannot be unset.

Used for: RTserver, RTclient, RTmon, RTgms processes

Type: String

Default Value: _Node_Pid

Valid Values: Any valid string unique for all the RT processes to which a
particular RTserver is connected

Node is the network node name of the computer on which the RT process is
running.

Pid is the operating system process identifier of the RT process.

Used for: RTserver, RTclient, RTmon, RTgms processes

Type: Boolean

Default Value: FALSE

Valid Values: TRUE or FALSE
 TIBCO SmartSockets User’s Guide

582 | Chapter 8 Options Reference
Zero_Recv_Gmd_Failure

The Zero_Recv_Gmd_Failure option specifies how guaranteed message delivery
should complete when there are no RTclient processes subscribing to the
destination subject of the message. If Zero_Recv_Gmd_Failure is FALSE, delivery
is considered to be successful and a GMD_ACK message is sent back to the
sender of the message. If Zero_Recv_Gmd_Failure is TRUE, delivery is considered
to have failed and a GMD_NACK message is sent back to the sender of the
message.

This option is required and cannot be unset.

Used for: RTserver only

Type: Boolean

Default Value: FALSE

Valid Values: TRUE or FALSE
TIBCO SmartSockets User’s Guide

| 583
Chapter 9 Command Reference

This chapter describes the SmartSockets command language that can be used
with the various SmartSockets processes: RTserver, RTclient, and RTmon. In
general, SmartSockets commands are not case-sensitive. However, using all
lower-case for the commands makes your applications more portable across
different operating systems and hardware platforms.

Topics

• RTserver Commands, page 584

• RTclient Commands, page 585

• RTmon Commands, page 587

• RTacl Commands, page 589

• Command Reference, page 590
 TIBCO SmartSockets User’s Guide

584 | Chapter 9 Command Reference
RTserver Commands

In the RTserver environment, run-time commands can be executed in these ways:

• you can add them to the startup command file, rtserver.cm, where they are
read and executed during process initialization

• you can send a CONTROL message to the _server subject or to the unique
subject of the destination RTserver

Supported RTserver Commands
The commands supported for an RTserver are:

• alias — create an alias for a command

• cd — change the current working directory

• connect — connect to other RTserver processes

• disconnect — disconnect from other RTserver processes

• echo — display text in the output window of the process

• help — display usage information about commands

• helpopt — display information about options

• quit — quit RTserver

• setopt — view or set the value of an option

• sh — execute a shell command

• source — read commands from a file

• stats — output CPU and memory usage statistics for RTserver

• subscribe — start subscribing to a subject or list the subjects being
subscribed to

• unalias — delete an alias

• unsetopt — unset an RTserver option

• unsubscribe — stop subscribing to a subject
TIBCO SmartSockets User’s Guide

RTclient Commands | 585
RTclient Commands

In the RTclient environment, run-time commands can be executed in several
ways:

• you can add them to the startup command file for an RTclient, where they are
read and executed during process initialization

• you can call the function TutCommandParseStr or
TutCommandParseTypedStr

• you can send a CONTROL message to a subject to which RTclient is
subscribed

Most supported RTclient commands are initialized by default. However, an
RTclient process must call the API function TipcInitCommands to enable access to
the connect, disconnect, subscribe, and unsubscribe commands. The
commands created with TipcInitCommands cannot be used with the
SmartSockets multiple connections API.

Supported RTclient Commands
The commands supported for an RTclient are:

• alias — create an alias for a command

• cd — change the current working directory

• connect — connect to RTserver

• disconnect — disconnect from RTserver

• echo — display text in the output window of the process

• edit — invoke a text editor to edit a file

• help — display usage information about commands

• helpopt — display usage information about options

• setopt — view or set the value of an option

• setnopt — view or set the value of a named option

• sh — execute a shell command

• source — read commands from a file

• stats — output CPU and memory usage statistics for RTclient

• subscribe — list active subjects or start subscribing to one or more subjects
 TIBCO SmartSockets User’s Guide

586 | Chapter 9 Command Reference
• unalias — delete an alias

• unsetopt — unset an RTclient option

• unsubscribe — stop subscribing to one or more subjects
TIBCO SmartSockets User’s Guide

RTmon Commands | 587
RTmon Commands

In the RTmon GDI, you can enter commands using any of these methods:

• the GDI pulldown menus

• the command interface

• through CONTROL messages

The use of the RTmon GDI is discussed in Chapter 6, Using RTmon.

Commands are entered into the RTmon command interface by typing commands
from the keyboard. The command interface is similar to a shell like the UNIX C
shell, OpenVMS DCL, MVS TSO, or the Windows command prompt. You can:

• set options

• step through messages

• request monitoring information

• and many other tasks

Supported RTmon Commands
RTmon is an RTclient, so many of the supported commands are the same as for
other RTclients. The commands supported for RTmon are:

• alias — create an alias for a command

• cd — change the current working directory

• connect — connect to RTserver

• create — create a message type

• disconnect — disconnect from RTserver

• echo — display text in the output window of the process

• edit — invoke a text editor to edit a file

• help — display usage information about commands

• helpopt— display information about options

• history — list the commands previously entered into RTmon

The RTmon GDI has been deprecated and may be removed in a future release.
 TIBCO SmartSockets User’s Guide

588 | Chapter 9 Command Reference
• poll — make a one-time request for monitoring information

• quit — quit RTmon

• run — process one or more messages

• send — send a message to RTserver for distribution

• setopt — view or set the value of an option

• sh — execute a shell command

• source — read commands from a file

• stats — output CPU and memory usage statistics for RTmon

• subscribe — list active subjects or start subscribing to one or more subjects

• unalias — delete an alias

• unsetopt — unset an RTmon option

• unsubscribe — stop subscribing to one or more subjects

• unwatch — stop watching monitoring information

• watch — display monitoring information whenever it changes
TIBCO SmartSockets User’s Guide

RTacl Commands | 589
RTacl Commands

In the RTacl environment, run-time commands can be excecuted in these ways:

• you can add them to the startup command file for RTacl, where they are read
and executed during process initialization

• you can enter them in the command interface

Supported RTacl Commands
The commands supported for RTacl are:

• alias — create an alias for a command

• cd — change the current working directory

• credentials — create file-based credentials

• echo — display text in the output window of the process

• edit — invoke a text editor to edit a file

• evaluate — evaluate a user’s permissions

• groups — list the groups in the ACL

• help — display usage information about commands

• helpopt — display information about options

• history — list the commands previously entered into RTacl

• load — load ACL configuration

• permissions — list the permissions in the ACL

• quit — quit RTacl

• setopt — view or set the value of an option

• sh — execute a shell command

• source — read commands from a file

• unalias — delete an alias

• unsetopt — unset an RTacl option

• users — list the users in the ACL
 TIBCO SmartSockets User’s Guide

590 | Chapter 9 Command Reference
Command Reference

A reference page is supplied for each command:

• Name — the name of the command

• Synopsis — shows command, keywords, order and type of arguments;
optional arguments are enclosed in []

• Description — describes what the command does

• Caution — describes possible side effects

• See Also — reference to related commands

• Examples — shows at least one example of using the command
TIBCO SmartSockets User’s Guide

alias | 591
alias

Name alias — create an alias for a command

Synopsis Supported for RTserver, RTclient, RTmon, RTgms, and RTacl:

alias
alias name
alias name definition

Description The alias command creates a synonym for a command. When an alias is used as
the first word of a command, its definition is used in place of name. An alias is
similar to a UNIX C shell alias or an OpenVMS DCL symbol. Aliases are useful as
shortcuts for frequently used commands.

If alias is called without any arguments, it lists all aliases. If it is called with only
name, it lists the definition of that alias. If alias is called with both name and
definition (which can be any number of words), then the alias definition is assigned to
name.

Three aliases, ls, sh, and exit, come predefined in all the SmartSockets processes
on UNIX, Windows, and OpenVMS.

ls is defined as:

UNIX:
sh ls

OpenVMS:
sh directory

Windows:
sh dir

pwd is defined as:

UNIX:
sh pwd

OpenVMS:
sh show default
 TIBCO SmartSockets User’s Guide

592 | Chapter 9 Command Reference
Windows:
sh cd

exit is defined as:

quit force

Caution Alias substitution is only accomplished on the first word of a command.

Because commands are separated by semicolons, it can be tricky to create an alias
consisting of several commands. The solution is to put double quotes around the
entire alias definition.

Do not create recursive aliases. The command interface cannot detect such aliases.
In particular, aliases of the form alias foo foo or alias foo bar; alias bar
foo cause an infinite loop.

To prevent irreversible damage to your SmartSockets system, this command
should not be specified with the Enable_Control_Msgs option without careful
supervision.

See Also unalias, sh

Examples PROMPT> alias a alias
Alias a installed
PROMPT> alias q quit force
Alias q installed
PROMPT> alias
a alias
exit quit force
ls sh ls
pwd sh pwd
q quit force
PROMPT> alias exit
quit force
PROMPT> alias reconnect "disconnect; connect" /*quotes around definition
*/
PROMPT> reconnect
Disconnecting (warm) from RTserver.
Attempting to reconnect to RTserver.
Connecting to project <rtworks> on <_node> RTserver.
Using local protocol.
Message from RTserver: Connection established.
Start subscribing to subject </_workstation_26483> again.
TIBCO SmartSockets User’s Guide

cd | 593
cd

Name cd — change the current working directory

Synopsis Supported for RTserver, RTclient, RTmon, RTgms, and RTacl:

cd
cd pathname

Description The cd command changes the current working directory. If cd is called with an
argument, it changes to the directory pathname. If cd is called without an argument,
it changes to the user’s home directory.

Caution On OpenVMS, Windows, and UNIX, the cd command calls getenv("HOME") to
determine the user’s home directory. On OpenVMS, this fails if the DEC C
run-time library has not been fully initialized (for example, when embedding
SmartSockets into an OpenVMS FORTRAN program). On Windows systems, this
fails where the HOME environment variable does not exist.

See Also sh

Examples UNIX Examples:

PROMPT> pwd
sh command executing with string: pwd
/home/ssuser/src/ipc
PROMPT> cd ..
Current directory changed to ..
PROMPT> pwd
sh command executing with string: pwd
/home/ssuser/src

OpenVMS Examples:

PROMPT> sh show def
sh command executing with string: show default
WKST1$DKA300:[DEMO.SS55.STANDARD]
PROMPT> cd [-]
Current directory changed to [-]
PROMPT> pwd
sh command executing with string: show default
WKST1$DKA300:[DEMO.SS55]

Windows Examples:

PROMPT> cd ..
Current directory changed to ..
PROMPT> ls
sh command executing with string: dir
 Volume in drive is WORKSTATION1
 Volume Serial Number is 000D-0000
 TIBCO SmartSockets User’s Guide

594 | Chapter 9 Command Reference
 Directory of D:\users\ss55

11/18/99 09:24a <DIR> .
11/18/99 09:24a <DIR> ..
11/18/99 09:24a <DIR> ss55
 3 Files(s) 0 bytes
 836,960,256 bytes free
TIBCO SmartSockets User’s Guide

connect | 595
connect

Name connect — connect to RTserver

Synopsis Supported for RTserver:

connect
connect server_conn_name

Supported for RTclient and RTmon:

connect
connect warm

Description The connect command connects the process to an RTserver (if it is not already
connected).

For RTclient and RTmon processes, if connect is called without any arguments,
then a full global connection to RTserver is created. A full global connection is the
normal mode for them to connect to RTserver. The connect warm command
creates a warm connection to RTserver. A warm connection is a subset of a full
connection, and should normally be used only when an RTserver is temporarily
unavailable. The connect command uses the function TipcSrvCreate to create the
connection to RTserver. For more information on creating a connection to
RTserver, see Creating a Connection to RTserver on page 189.

For RTserver processes using connect, it connects RTserver to other RTserver
processes (if it is not already connected). A set of interconnected RTserver
processes is called a group. When RTserver first starts up, it executes an implicit
connect command as part of initialization. If connect is called without any
arguments, RTserver traverses the list of logical connection names in the
Server_Names option and tries to connect to all RTservers listed there. See
Finding Other RTserver Processes on page 293. If connect is called with a logical
connection name, RTserver connects to another RTserver using that specific
logical connection name.

An RTclient process must call the API function TipcInitCommands to enable
access to the connect command.

It is possible for the connect command to be received and processed via a
CONTROL message, such as:
disconnect; setopt server_names tcp:bar; connect

If this occurs, the command will be applied to the connection on which it was
received.
 TIBCO SmartSockets User’s Guide

596 | Chapter 9 Command Reference
Caution To prevent irreversible damage to your SmartSockets system, this command
should not be specified with the Enable_Control_Msgs option without careful
supervision.

For RTserver processes, the connect command does nothing if RTserver is already
connected to other RTserver processes.

The connect command cannot be used in any of the rtserver.cm startup
command files, as RTserver creates its specific commands (such as connect) after
the startup command files have been executed. For RTserver processes, the
connect command can be executed using CONTROL messages with a
destination of _server.

The connect command acts on the global connection unless received via a
CONTROL message, in which case the command is applied to the connection on
which it was received.

See Also disconnect, subscribe, unsubscribe

Examples Here is an example of connecting to an RTserver:

PROMPT> connect
Connecting to project <tutorial> on <artimus> RTserver.
Using local protocol.
Message from RTserver: Connection established.
Start subscribing to subject </_workstation_10770>.
TIBCO SmartSockets User’s Guide

create | 597
create

Name create — create a message type

Synopsis Supported for RTmon only:

create msg_type name number grammar [delivery_mode default_delivery_mode]
 [delivery_timeout default_delivery_timeout]
 [lb_mode default_lb_mode]
 [priority default_priority]
 [user_prop default_user_prop]

Description The create command creates a message type in RTmon. Once a new message
type is created, the send command can be used to construct and send messages of
that type. The create command is useful for prototyping new user-defined
message types.

The message type name (an identifier) and number (an integer) must not already be
in use by an existing message type. Message type names that start with an
underscore are reserved for internal use by SmartSockets. Message type numbers
less than zero are reserved for standard SmartSockets message types. The
message type grammar, which describes the layout of the data fields in messages
of this type, must be a double-quoted string. For more information on message
types, see Message Types. All standard message types (such as CONTROL) are
available by default to all SmartSockets processes, including RTmon.

By default, the new message type has a delivery mode of BEST_EFFORT unless it is
a JMS message type. JMS message types have a delivery mode of ORDERED by
default. The default delivery mode of a message type can be overridden by
specifying a delivery mode (options are BEST_EFFORT, ORDERED, SOME, and ALL)
for the create command.

By default, the new message type has a delivery timeout of UNKNOWN, which
causes the value of the option Server_Delivery_Timeout to be used for the
delivery timeout of messages of this type. This can be overridden by specifying a
delivery timeout.

By default, the new message type has a load balancing mode of NONE. This can be
overridden by specifying a load balancing mode (options are NONE, ROUND_ROBIN,
WEIGHTED, and SORTED) for the create command.

By default, the new message type has a priority of UNKNOWN, which causes the
value of the option Default_Msg_Priority to be used for the priority of messages
of this type. This can be overridden by specifying a priority (which must be an
integer between -32768 and 32767, inclusive) for the create command.

By default, the new message type has a user-defined property of zero (0). This can
be overridden by specifying a user-defined property.
 TIBCO SmartSockets User’s Guide

598 | Chapter 9 Command Reference
Caution Message type names are not case sensitive.

There is no way to destroy a message type from the command interface.

Message types that are generated with create are transient and are lost when
RTmon is terminated. Create commands can be stored in startup command files
to generate more permanent message types for RTmon.

See Also send

Examples This example creates a user-defined XYZ_COORD_DATA message type with a
delivery mode of ALL (delivery is guaranteed to all receivers), starts subscribing to
the /system/test subject, and publishes an XYZ_COORD_DATA message to the
/system/test subject (that is, sends a message to itself and any other processes
subscribing to the /system/test subject):

MON> create msg_type xyz_coord_data 1 "int4 /*x*/ int4 /*y*/ int4
/*z*/" delivery_mode all
Created message type <xyz_coord_data> successfully.
MON> subscribe /system/test
Start subscribing to subject /system/test.
MON> send xyz_coord_data /system/test 1 4 9
Sent xyz_coord_data message to /system/test subject.
MON> run 1 1 /* read and process one message, but wait at most one second for it */
/* Default action for unexpected messages is to print out the message. */
Received an unexpected message.
type = xyz_coord_data
sender = </workstation1.talarian.com_4971>
sending server = </workstation1.talarian.com_4982>
dest = </system/test>
max = 2048
size = 48
current = 0
read_only = false
priority = 0
delivery_mode = all
ref_count = 1
seq_num = 1
server_seq_num = 8
resend_mode = false
user_prop = 0
ack to = <client:local:workstation1.talarian.com:RTSERVER>
data (num_fields = 3):
 int4 1
 int4 4
 int4 9
Processed a xyz_coord_data message.
TIBCO SmartSockets User’s Guide

credentials | 599
credentials

Name credentials — create file-based credentials

Synopsis Supported for RTacl:

credentials file_name
credentials file_name –basic username password

Description The credentials command creates file-based credentials for the Basic Security.
The credentials, which are a username and password, are written to the file_name
file. The password is encrypted before being written to the file.

To use file-based credentials, you must also make the file available to your process
by setting the Auth_Data_File option.

Specifying just the filename, without the username and password, prints the
contents of the credentials file.

See Also None

Examples This example writes basic credentials to a file named my_credentials:

ACL> credentials my_credentials –basic jdoe dk30djf
Successfully created credentials

This prints the contents of the credentials created in the first example:

ACL> credentials my_credentials

Credential (my_credentials):
 Identifier: 2 (Basic)
 Data: username=jdoe
 password=672800004f598eeafafd5b14ef8ffb742ab349cb
 Data Length: 84
 TIBCO SmartSockets User’s Guide

600 | Chapter 9 Command Reference
disconnect

Name disconnect — disconnect from RTserver

Synopsis Supported for RTserver:

disconnect
disconnect server_name
disconnect server_conn_name

Supported for RTclient and RTmon:

disconnect
disconnect full

Description The disconnect command disconnects the process from an RTserver (if it is
connected). The process no longer receives any messages from that RTserver until
the connect command is issued again. For an RTserver process, it is part of a
group of interconnected RTserver processes as long as it is connected to other
RTservers. When it disconnects, it is still considered part of a group of one.

For RTclient and RTmon processes, if disconnect is called without an argument,
the process keeps a warm connection to RTserver so that the process can later
reconnect to that RTserver and still receive and watch the same subjects. The
disconnect full command fully disconnects the process from that RTserver.
The process can then continue as if it had never been connected to that RTserver.
The disconnect command uses the function TipcSrvDestroy to destroy the
connection to that RTserver. For more information on disconnecting from
RTserver, see Destroying the Connection to RTserver on page 202.

For RTserver processes calling disconnect, if it is called without any arguments,
the RTserver process disconnects from all RTservers to which it is connected. If
disconnect is called with the name of an RTserver, the RTserver process
disconnects from that specific RTserver. If disconnect is called with a logical
connection name, the RTserver process disconnects from the RTserver that it
connected to using that specific logical connection name.

An RTclient process must call the API function TipcInitCommands to enable
access to the disconnect command.
TIBCO SmartSockets User’s Guide

disconnect | 601
Caution To prevent irreversible damage to your SmartSockets system, this command
should not be specified with the Enable_Control_Msgs option without careful
supervision.

When using the disconnect command with an RTserver process, note that it does
nothing if that RTserver process is not connected to other RTservers.

The disconnect command cannot be used in any of the rtserver.cm startup
command files, as RTserver creates its specific commands (such as connect) after
the startup command files have been executed. For RTserver processes, the
connect command can be executed using CONTROL messages with a
destination of _server.

The disconnect command acts on the global connection unless received via a
CONTROL message, in which case the command is applied to the connection on
which it was received.

See Also connect

Examples Here is an example of disconnecting from an RTserver:

PROMPT> disconnect
Disconnecting (warm) from RTserver.
/* Reconnect and continue. */
PROMPT> connect
Attempting to reconnect to RTserver.
Connecting to project <rtworks> on <_node> RTserver.
Using local protocol.
Message from RTserver: Connection established.
Start subscribing to subject </_workstation_13060> again.
/* Fully disconnect from RTserver. */
PROMPT> disconnect full
Disconnecting (full) from RTserver.
 TIBCO SmartSockets User’s Guide

602 | Chapter 9 Command Reference
echo

Name echo — display text in the output window of the process

Synopsis Supported for RTserver, RTclient, RTmon, RTgms, and RTacl:

echo argument ...

Description The echo command writes the specified arguments (any type) in the command to
the normal output window of the process. The output window is standard output
(stdout).

The echo command is useful for producing diagnostics in command files.

Caution None

See Also None

Examples PROMPT> echo "Hello world! This is a test!"
Hello world! This is a test!
PROMPT>
TIBCO SmartSockets User’s Guide

edit | 603
edit

Name edit — edit a file

Synopsis Supported for RTclient, RTmon, RTgms, and RTacl:

edit filename

Description The edit command invokes the text editor specified by the Editor option and
loads filename. The default editor for UNIX is vi. The default editor for OpenVMS
is edt. The default editor for Windows is Notepad. You may choose any editor or
command that is available on the system by entering its name as the Editor
option.

Caution You must have write privilege for the file being edited before you can save any
changes made to that file.

See Also setopt

Examples UNIX Examples:

PROMPT> setopt editor emacs
Option editor set to "emacs".
PROMPT> edit /home/ssuser/text.file
Editing file /home/ssuser/text.file
/* displays an emacs editor window containing the file text.file */
PROMPT> setopt editor cat
Option editor set to "cat".
PROMPT> edit sensor.msg
Editing file sensor.msg
/* sensor.msg outputs to the output window since the editor option
was set to cat */

OpenVMS Example:

PROMPT> EDIT [SSUSER]TEXT.FILE

/* starts an edt editor session containing the file text.file */

Windows Example:

PROMPT> edit C:\autoexec.bat

/* starts a Notepad editor session containing the file autoexec.bat */
 TIBCO SmartSockets User’s Guide

604 | Chapter 9 Command Reference
evaluate

Name evaluate — evaluate a user’s permissions

Synopsis Supported for RTacl:

evaluate permission user host resource

Description The evaluate command is provided as a development aid to determine a user’s
permissions in the currently loaded ACL. Provide a user, host and resource, and
the ACL is evaluated and reports whether the permission is allowed or denied. If
a host name rather than an IP address is provided, a DNS lookup is performed on
the host name to determine the actual IP address.

The values permitted for permission and resource are:

If the permissions are not evaluated as you expect them to be, set the Trace_Level
option to debug. This results in verbose output and can help determine which
permissions are being invoked.

See Also None

Examples This example evaluates whether the user jdoe has permissions to subscribe to the
subject /stock/tibx from the hostname neptune:

ACL> evaluate subscribe jdoe neptune /stock/tibx
ALLOW subscribe - user=<jdoe> host=<10.105.200.204>
resource=</stock/tibx>

This example evaluates whether the user jdoe has permissions to publish to the
subject /stock/tibx from the hostname neptune:

ACL> evaluate publish jdoe neptune /stock/tibx
DENY publish - user=<jdoe> host=<10.105.200.204>
resource=</stock/tibx>

Permission Resource

server

client project

membership group

publish subject

subscribe subject
TIBCO SmartSockets User’s Guide

groups | 605
groups

Name groups — list the groups in the ACL

Synopsis Supported for RTacl:

groups

Description The groups command lists the groups and their users in the currently loaded
ACL.

See Also None

Examples This example lists the groups and their users in the ACL:

ACL> groups

Group: dev
 jdoe

Group: admin (administrative privileges)
 admin
 jdoe
 TIBCO SmartSockets User’s Guide

606 | Chapter 9 Command Reference
help

Name help — display usage information about commands

Synopsis Supported for RTserver, RTclient, RTmon, RTgms, and RTacl:

help
help command

Description The help command displays usage information about the SmartSockets
commands. If help is called without any arguments, it displays a summary of all
commands. If the argument is the name of a valid command, more detailed
information about command is displayed.

The information displayed is similar to the Synopsis and Description information
in this reference.

Caution None

See Also helpopt

Examples PROMPT> help setopt
setopt
setopt <option>
setopt <option> <value>
The setopt command is used to view or set the value of an option.
If called with <option>, setopt displays the name of <option> and
its current value. If called with <option> and <value>, setopt sets
<option> to the new value. If called without arguments, setopt
displays all process options and their current values.
TIBCO SmartSockets User’s Guide

helpopt | 607
helpopt

Name helpopt — display usage information about options

Synopsis Supported for RTserver, RTclient, RTmon, RTgms, and RTacl:

helpopt
helpopt option

Description The helpopt command displays usage information about SmartSockets options.
If called with the name of a valid option, helpopt displays detailed information
about option. If called without an option, helpopt displays a one line description
for all the options supported for the RT process from which you called helpopt.

Caution None

See Also help, setopt

Examples PROMPT> helpopt backup_name

Backup_Name specifies the extension given to a backup file created
when a file is opened in write mode. This includes all files
created in "book". The backup file has the same name as the
existing file with the addition of the extension specified in this
option.

Type: String
Default: "~" on UNIX and Windows
 Unknown on OpenVMS
 TIBCO SmartSockets User’s Guide

608 | Chapter 9 Command Reference
history

Name history — view the command interface history

Synopsis Supported for RTmon, and RTacl:

history
history n

Description The history command is used to display a list of all the previously entered
commands. When the history command is followed by a number, n, it lists only
the last n commands.

Caution None

See Also help

Examples PROMPT> history
 1: help connect
 2: help alias
 3: subscribe foo
 4: history
TIBCO SmartSockets User’s Guide

load | 609
load

Name load — load the ACL configuration

Synopsis Supported for RTacl:

load directory

Description The load command reads the ACL configuration files located in the specified
directory and validates the syntax. An ACL must be loaded before any other
commands which require an ACL can be run. Calling the load command when
an ACL has already been loaded overwrites the previous ACL.

Setting the Trace_Level option to debug results in verbose output and can help
debug syntax errors.

See Also None

Examples This example loads the ACL configuration files located in the default directory:

ACL> load $RTHOME/acl
Successfully loaded ACL <c:/Program
Files/SmartSockets/mainline/acl>
 TIBCO SmartSockets User’s Guide

610 | Chapter 9 Command Reference
permissions

Name permissions — list the permissions in the ACL

Synopsis Supported for RTacl:

permissions

Description The permissions command lists the permissions in the currently loaded ACL.

See Also None

Examples This example lists the permissions in the ACL:

ACL> permissions

Permissions:
 server allow group admin 10.105. *
 client allow user * * trade_project
 membership deny user * * *
 subscribe deny user * * /...
 subscribe allow group admin 10.105. /admin/...
 subscribe allow user * * /trade/...
 publish deny user * * /...
 publish allow group admin 10.105. /admin/...
 publish allow user * * /trade/...
TIBCO SmartSockets User’s Guide

poll | 611
poll

Name poll — make a one-time request for monitoring information

Synopsis Supported for RTmon only:

poll client_buffer client
poll client_cb client
poll client_cpu client
poll client_ext client
poll client_general client
poll client_info client
poll client_msg_type_ex client msg_type
poll client_msg_type client msg_type
poll client_names
poll client_names_num
poll client_option client option
poll client_subject_ex client subject
poll client_subject client subject
poll client_subscribe client
poll client_subscribe_num client
poll client_time client
poll client_version client
poll project_names
poll server_buffer server process
poll server_cpu server
poll server_conn
poll server_general server
poll server_msg_traffic_ex server process
poll server_msg_traffic server process
poll server_names
poll server_option server option
poll server_route server dest_server
poll server_start_time server
poll server_time server
poll server_version server
poll subject_names
poll subject_subscribe subject

Description The poll command sends a message to request a snapshot of some current
monitoring information. Depending on the type of poll performed, the request
may go to one or all RTserver and RTclient processes. After a poll, the run
command can be used to receive and display the poll responses. The poll
command uses the TipcMonTypePoll API functions (such as
TipcMonProjectNamesPoll for poll project_names) to send the request.
 TIBCO SmartSockets User’s Guide

612 | Chapter 9 Command Reference
For all of the user-specifiable parameters (client, server, subject, and so on), either a
single item can be specified by name, or @ (an at sign) can be used to specify all
items that match Monitor_Scope or all items of that type (such as all RTclients or
all subjects). For client (RTclient processes), server (RTserver processes), and process
(RTclient or RTserver processes), the process is identified by its unique subject. See
Specifying Items to be Monitored on page 363 for complete information on
monitoring parameters.

Polls ending in _ex supersede corresponding older forms because the older forms
can truncate the traffic data. (The older forms are retained for backward
compatibility with clients older than release 6.7.)

The poll client_buffer command polls client for buffer information.

The poll client_cb command polls client for callback information.

The poll client_cpu command polls client for client CPU usage.

The poll client_ext command polls client for information set by the user (with
TipcMonExtSet*).

The poll client_info command polls client for general information.

The poll client_general command polls client for general information.

The poll client_msg_traffic command polls client for message traffic
information. (Clients older than release 6.7 might return truncated values. If this
occurs, RTmon will print an INFO level trace message.)

The poll client_msg_type_ex command polls client for message traffic
information. (The older form client_msg_traffic is retained only for backward
compatibility.)

The poll client_names command polls RTserver for client (RTclient processes)
names.

The poll client_names_num command polls RTserver for the number of clients
that are currently connected.

The poll client_option command polls client for option information.

The poll client_subject_ex command polls client for subject information. (The
older form client_subject is retained only for backward compatibility.)

The poll client_subscribe command polls RTserver for the subjects to which
client is subscribing.

The poll client_subscribe_num command polls RTserver for the number of
subjects to which client subscribes.

The poll client_time command polls client for time information.

The poll client_version command polls client for version information.
TIBCO SmartSockets User’s Guide

poll | 613
The poll project_names command polls RTserver for project names.

The poll server_buffer command polls server for information on its buffer to
process.

The poll server_conn command polls RTserver for connection information
about all RTservers.

The poll server_cpu command polls RTserver for server CPU utilization.

The poll server_general command polls server for general information.

The poll server_msg_traffic_ex command polls server for message traffic
information. (The older form server_msg_traffic is retained only for backward
compatibility.)

The poll server_names command polls RTserver for server (RTserver processes)
names.

The poll server_option command polls server for option information.

The poll server_route command polls server for route information.

The poll server_start_time command polls RTserver for start time and
elapsed time information.

The poll server_time command polls server for time information.

The poll server_version command polls RTserver for version information.

The poll subject_names command polls RTserver for subject names in the
current project.

The poll subject_subscribe command polls RTserver for the RTclient processes
that are subscribing to the subject subject.

Caution The RTmon GDI uses the poll, watch, and unwatch commands to control
RTmon. Because the GDI needs complete control over these commands, these
three commands are unavailable for interactive use when using the GDI (for
example, the user cannot enter a poll command at the GDI MON> prompt). These
three commands are always available when using the runtime RTmon.

Only one project at a time can be monitored by each RTmon process. Information
in other projects is not visible. To monitor a different project, the option Project
must be changed, and then RTmon must disconnect and reconnect to RTserver.

The poll command causes RTmon to connect to RTserver if it has not already
done so.

See Also run, watch, unwatch
 TIBCO SmartSockets User’s Guide

614 | Chapter 9 Command Reference
Examples MON> poll client_names
Polled for client_names.
MON> run 1
POLL> Current Clients:
 /_workstation1_13806 [Runtime_RTmon: ssuser@workstation1]
 connected to RTserver /_workstation1_13746
Processed a mon_client_names_poll_result message.
MON> poll client_general /... /* poll all clients */
Polled for client_general.
MON> run 1
/* Notice that we have polled ourself. */
Processed a mon_client_general_poll_call message.
MON> run 1
/* Here’s the response from ourself. There would be additional responses if any other clients were
running. */
POLL> General Info From Client /_workstation1_13806
 ident = Runtime_RTmon, node = workstation1, user = ssuser, pid =
1376
 arch = sun4_solaris, project = rtworks,
 RTserver name = /_workstation1_1376
 logical conn name to RTserver: local:workstation1:RTSERVER
 subject subscribe: /_all /_mon /_workstation1 /_workstation1_1376
 int format = BIG_ENDIAN, real format = IEEE
 current sbrk = 274456, delta sbrk = 159744
Processed a mon_client_general_poll_result message.
TIBCO SmartSockets User’s Guide

quit | 615
quit

Name quit — quit the RT process

Synopsis Supported for RTserver, RTmon, and RTacl:

quit
quit force

Supported for RTgms:

quit force

Description The quit command causes the RT process to exit.

If quit force is used, no confirmation is requested.

Caution None

See Also disconnect

Examples PROMPT> quit
Really quit? no
PROMPT> quit force
This process is now exiting.
 TIBCO SmartSockets User’s Guide

616 | Chapter 9 Command Reference
run

Name run — process one or more messages

Synopsis Supported for RTmon:

run
run num_msgs [timeout]

Description The run command causes the RT process to process one or more messages.

If run is called without any arguments, it processes messages indefinitely.

For RTserver, the command run numloops (where numloops is an integer) causes
RTserver to run through its processing loop the specified number of times. This
loop waits for data to arrive from another process or for a process to connect, and
then processes all available data and new connections.

For RTmon, the command run num_msgs (where num_msgs is a positive integer)
causes RTmon to run through num_msgs messages. By default, RTmon waits
indefinitely for each message to arrive. This can be overridden by specifying a
timeout (in seconds). If timeout is reached, the run command stops and returns
control to the command interface. To process all messages that are available
within timeout seconds, use a command such as run 1000000 timeout.

Caution The run command cannot be used in rtserver.cm startup command files, it is
only available to RTserver once RTserver is fully initialized and ready to run.

The run command causes RTmon to connect to RTserver if it has not already done
so.

See Also poll, watch, unwatch

Examples MON> watch client_names
Start watching client_names.
MON> run 2 5 /* wait up to 5 seconds for each message */
WATCH> Current Clients:
 /_workstation1_27497 [Runtime_RTmon: ssuser@workstation1]
 connected to RTserver /_workstation1_8055
Processed a mon_client_names_status message.
Timeout of 5 was reached.
MON> watch subject_names
Start watching subject_names.
MON> run 1
WATCH> Current Subjects: /_all /_workstation1 /_workstation127497
/_mon
Processed a mon_subject_names_status message.
TIBCO SmartSockets User’s Guide

send | 617
send

Name send — send a message to RTserver for distribution

Synopsis Supported for RTmon only:

send msg_type dest field1 ...

Description The send command constructs a message and sends it to RTserver for distribution
to all RTclient processes subscribing to the destination subject. The message is
specified in RTworks message file format. The outgoing message is not buffered,
but is flushed immediately to RTserver for distribution. For information on
message format, see Message Files on page 64.

Caution The send command causes RTmon to connect to RTserver if it has not already
done so. To prevent irreversible damage to your SmartSockets system, this
command should not be specified with the Enable_Control_Msgs option without
careful supervision.

See Also create

Examples /* Send a message we won’t get. */
MON> send numeric_data eps x 1
Sent numeric_data message to /eps subject.
MON> subscribe eps
Start subscribing to subject /eps.
/* Send a message we will get. */
MON> send numeric_data eps { y 2 z 3 }
Sent numeric_data message to /eps subject.
MON> run 1
/* Default action for unexpected messages is to print out the message. */
Received an unexpected message.
type = numeric_data
sender = </workstation1.talarian.com_5031>
sending server = </workstation1.talarian.com_4982>
dest = </eps>
max = 2048
size = 64
current = 0
read_only = false
priority = 0
delivery_mode = best_effort
ref_count = 1
seq_num = 0
resend_mode = false
user_prop = 0
 TIBCO SmartSockets User’s Guide

618 | Chapter 9 Command Reference
data (num_fields = 4):
 str "y"
 real8 2
 str "z"
 real8 3
Processed a numeric_data message.
TIBCO SmartSockets User’s Guide

setopt | 619
setopt

Name setopt — view or set the value of an option

Synopsis Supported for RTserver, RTclient, RTmon, RTgms, and RTacl:

setopt
setopt option
setopt option value

Description The setopt command is used to view or set the value of an option. If called with
option and value, setopt sets option to the new value. If called with option only,
setopt displays the option name and its current value. If called without
arguments, setopt displays all RT process options and their current values.

Caution If an option’s value is a list of items, the items must be separated with commas
(value1, value2, ...).

To prevent irreversible damage to your SmartSockets system, this command
should not be specified with the Enable_Control_Msgs option without careful
supervision.

See Also helpopt, unsetopt

Examples Within a command file, you can change the Time_Format option to change how
your RTclient displays time, from the default of showing time in hours, minutes,
and seconds to showing both the date and time:

setopt time_format full
 TIBCO SmartSockets User’s Guide

620 | Chapter 9 Command Reference
setnopt

Name setnopt — view or set the value of a named option

Synopsis Supported for RTclient:

setnopt name
setnopt name option
setnopt name option value

Description The setnopt command is used to view or set the value of a named option.
Named options allow a group of options and their values to be associated with an
arbitrary name. You must specify that arbitrary name when using the setnopt
command. If the name has not been associated with that option before, the
setnopt command creates the association in addition to displaying or setting the
option’s value. The setnopt command can be called in these ways:

• setnopt name option value

When called with option and value, setnopt sets option to the new value and
associates option with name if option has not been associated with name
previously.

• setnopt name option

When called with option but no value, setnopt displays the option name and its
current value and associates option with name if option has not been associated
with name previously.

• setnopt name

When called without option or value, setnopt displays all RTclient options of
the specified name and their current values.

Caution If an option’s value is a list of items, the items must be separated with commas
(value1, value2, ...).

To prevent irreversible damage to your SmartSockets system, this command
should not be specified with the Enable_Control_Msgs option without careful
supervision.

See Also helpopt
TIBCO SmartSockets User’s Guide

setnopt | 621
Examples Within a command file, two sets of named options are created:

/* Option values for name client_1 */
setnopt client_1 unique_subject /trader_1
setnopt client_1 server_names tcp:moe, tcp:larry, tcp:curly

/* Option values for name client_2 */
setnopt client_2 unique_subject /trader_2
setnopt client_2 server_names tcp:moe, tcp:larry, tcp:curly
 TIBCO SmartSockets User’s Guide

622 | Chapter 9 Command Reference
sh

Name sh — execute a shell command

Synopsis Supported for RTserver, RTclient, RTmon, RTgms, and RTacl:

sh arguments

Description The sh command executes a shell command. On UNIX this shell is the Bourne
shell. On OpenVMS this is DCL. On Windows this is the shell that you run in the
command prompt (DOS box). The arguments are passed to the C runtime function
system, which in turn passes them to the shell.

Caution There is no way on UNIX to specify which shell to use.

To prevent irreversible damage to your SmartSockets system, this command
should not be specified with the Enable_Control_Msgs option without careful
supervision.

See Also cd

Examples UNIX Examples:

PROMPT> sh pwd
sh command executing with string: pwd
/home/ssuser/demos/eps
PROMPT> sh date
sh command executing with string: date
Wed Jul 28 13:13:26 PST 1999

OpenVMS Examples:

PROMPT> sh show default
sh command executing with string: show default
WKST1$DKA300:[SSUSER.DEMOS.EPS]
PROMPT> sh show time
sh command executing with string: show time
28-JUL-1999 13:16:25

Windows Example:

PROMPT> sh date
sh command executing with string: date
The current date is: Wed 07/28/1999
Enter the new date: (mm-dd-yy)
TIBCO SmartSockets User’s Guide

source | 623
source

Name source — read and process commands from a file

Synopsis Supported for RTserver, RTclient, RTmon, RTgms, and RTacl:

source filename

Description The source command reads the RTprocess commands from a file.

Caution To prevent irreversible damage to your SmartSockets system, this command
should not be specified with the Enable_Control_Msgs option without careful
supervision.

See Also sh

Examples UNIX Examples:

PROMPT> sh cat aliases
sh command executing with string: cat aliases
alias q quit force
alias reconnect "disconnect; connect"
alias date sh date
PROMPT> source aliases
Executing source command with file aliases
Alias q installed
Alias reconnect installed
Alias date installed
PROMPT> alias
exit quit force
ls sh ls
pwd sh pwd
q quit force
reconnect disconnect; connect
PROMPT> date
sh command executing with string: date
Wed Jul 28 14:01:24 PST 1999
 TIBCO SmartSockets User’s Guide

624 | Chapter 9 Command Reference
OpenVMS Examples:

PROMPT> sh type aliases
sh command executing with string: type aliases
alias q quit force
alias reconnect "disconnect; connect"
alias date sh show time
PROMPT> source aliases
Executing source command with file aliases
Alias q installed
Alias reconnect installed
Alias date installed
PROMPT> alias
exit quit force
ls sh directory
pwd sh show default
q quit force
reconnect disconnect; connect
PROMPT> date
sh command executing with string: date
28-JUL-1999 13:16:25

Windows Examples:

PROMPT> sh type aliases
sh command executing with string: type aliases
alias q quit force
alias reconnect "disconnect; connect"
alias date sh date
PROMPT> source aliases
Executing source command with file aliases
Alias q installed
Alias reconnect installed
Alias date installed
PROMPT> alias
exit quit force
ls sh dir
pwd sh cd
q quit force
reconnect disconnect; connect
PROMPT> date
sh command executing with string: date
The current date is: Wed 07/28/1999
Enter the new date: (mm-dd-yy)
TIBCO SmartSockets User’s Guide

stats | 625
stats

Name stats — output CPU and memory usage for the RT process

Synopsis Supported for RTserver, RTclient, and RTmon:

stats

Description The stats command causes the RT process to output CPU and memory usage
about itself. It returns the accumulated CPU time in milliseconds since the last call
to stats was made. It uses the standard C function times to calculate the CPU
usage.

To get a realistic accounting, enter stats as the first command upon entering the
RT process and then as needed to do the analysis.

Caution The stats command reports the accumulated CPU time since the last time the
command was issued.

See Also None

Examples PROMPT> stats
Total accumulated CPU time: 0.583 seconds
Total frames processed: 1
Current sbrk address: 198592

/* Execute some other commands here */

PROMPT> stats
Total accumulated CPU time: 0.750 seconds
Total frames processed: 13
Current sbrk address: 198592
Differences since last stats command:
 CPU time, 0.167 seconds, wall time, 35.603 seconds
 Frame count: 0, Frame rate: 0 frames per second
 Sbrk address changed by 0 bytes.
 TIBCO SmartSockets User’s Guide

626 | Chapter 9 Command Reference
subscribe

Name subscribe — start subscribing to one or more subjects or list the current
subscriptions

Synopsis Supported for RTserver:

subscribe
subscribe project subject

Supported for RTclient and RTmon:

subscribe
subscribe [-load_balancing_off] subject1 subject2 ...

Description The subscribe command adds the specified subjects to the list of subjects to
which the RT process is already subscribing. If no subjects are specified, the RT
process displays the names of the subjects it is currently subscribed to. The
subscribe command is additive. Each time you subscribe to a subject, it is added
to the list of subjects to which the RT process is currently subscribed.

An RTserver subscribe is normally used with a wildcard subject name that
matches a large number of RTclient subscribes. This reduces the amount of
inter-RTserver dynamic message routing information exchanged. For RTserver,
the subscribe command can be used interactively, but is most commonly used
from a rtserver.cm startup command file.

For RTclient and RTmon, the subscribe command takes a variable number of
subjects. By default, subscribing to a subject allows RTclient or RTmon to be a
load-balanced receiver if a message is published to the subject with load
balancing. This can be overridden if the -load_balancing_off modifier is
specified, which allows RTclient or RTmon to always receive the subject in
addition to one of the load-balanced subscribers. For more information on load
balancing, see Chapter 3, Publish-Subscribe.

An RTclient process must call the API function TipcInitCommands to enable
access to the subscribe command.
TIBCO SmartSockets User’s Guide

subscribe | 627
Caution To prevent irreversible damage to your SmartSockets system, this command
should not be specified with the Enable_Control_Msgs option without careful
supervision.

For RTserver, the subscribe command should only be used for projects where
you have limited bandwidth (for example, over a 56.6K modem) or on large-scale
projects where there are many matching subjects that can be covered by a
wildcard subject subscribe in RTserver.

If RTclient or RTmon is not connected to RTserver, it does so before subscribing.

The subscribe command acts on the global connection unless received via a
CONTROL message, in which case the command is applied to the connection on
which it was received.

See Also unsubscribe

Examples Here is an example of subscribing to subjects for RTclients:

PROMPT> subscribe _time
Start subscribing to subject /_time.
 TIBCO SmartSockets User’s Guide

628 | Chapter 9 Command Reference
unalias

Name unalias — delete a command alias

Synopsis Supported for RTserver, RTclient, RTmon, RTgms, and RTacl:

unalias name

Description The unalias command deletes a command alias.

Caution To prevent irreversible damage to your SmartSockets system, this command
should not be specified with the Enable_Control_Msgs option without careful
supervision.

See Also alias

Examples PROMPT> alias r "disconnect; connect"
Alias r installed
PROMPT> alias
ls sh ls
pwd sh pwd
r disconnect; connect
PROMPT> unalias r
Unalias command executed for alias r
PROMPT> alias
ls sh ls
pwd sh pwd
TIBCO SmartSockets User’s Guide

unsetopt | 629
unsetopt

Name unsetopt — unset an option

Synopsis Supported for RTserver, RTclient, RTmon, RTgms, and RTacl:

unsetopt option

Description The unsetopt command unsets an option (sets its value UNKNOWN).

Caution Not all options can be unset.

To prevent irreversible damage to your SmartSockets system, this command
should not be specified with the Enable_Control_Msgs option without careful
supervision.

See Also setopt

Examples PROMPT> unsetopt default_protocols
Option default_protocols unset
PROMPT> setopt default_protocols
default_protocols UNKNOWN
 TIBCO SmartSockets User’s Guide

630 | Chapter 9 Command Reference
unsubscribe

Name unsubscribe — stop subscribing to one or more subjects

Synopsis Supported for RTserver:

unsubscribe project subject

Supported for RTclient and RTmon:

unsubscribe subject1 subject2 ...

Description The unsubscribe command deletes the specified subjects from the list of subjects
to which the RT process is subscribing.

For RTclient and RTmon, the command takes a variable number of subjects.

An RTclient process must call the API function TipcInitCommands to enable
access to the unsubscribe command.

Caution If a subject is specified that the RT process is not subscribing to, no action is taken
for that subject.

To prevent irreversible damage to your SmartSockets system, this command
should not be specified with the Enable_Control_Msgs option without careful
supervision.

The unsubscribe command acts on the global connection unless received via a
CONTROL message, in which case the command is applied to the connection on
which it was received.

See Also subscribe

Examples PROMPT> unsubscribe eps
Stop subscribing to subject /eps.
PROMPT> unsubscribe thermal pcs
Stop subscribing to subject /thermal.
Stop subscribing to subject /pcs.
TIBCO SmartSockets User’s Guide

unwatch | 631
unwatch

Name unwatch — stop watching monitoring information

Synopsis Supported for RTmon only:

unwatch client_buffer client
unwatch client_msg_recv client msg_type
unwatch client_msg_send client msg_type
unwatch client_names
unwatch client_subscribe client
unwatch client_time client
unwatch project_names
unwatch server_conn
unwatch server_names
unwatch subject_names
unwatch subject_subscribe subject

Description The unwatch command is used to stop watching monitoring information. The
unwatch command uses the TipcMonTypeSetWatch API functions to stop the
watching. See watch on page 634 for more information on the RTmon watch
categories.

For all of the user-specifiable parameters (such as client, server, or subject), a single
item can be specified by name or @ (an at sign) can be used to specify all items that
match Monitor_Scope or all items of that type (such as all RTclients or all
subjects). For client (RTclient processes), server (RTserver processes), and process
(RTclient or RTserver processes), the process is identified by its unique subject. See
Specifying Items to be Monitored on page 363 for complete information on
monitoring parameters.

Caution The RTmon GDI uses the poll, watch, and unwatch commands to control
RTmon. Because the GDI needs complete control over these commands, these
three commands are unavailable for interactive use (entering at the GDI MON>
prompt) when using the GDI. These three commands are always available when
using the runtime RTmon.

Only one project at a time can be monitored by each RTmon process. Information
in other projects is not visible. To monitor a different project, the option Project
must be changed, and then RTmon must disconnect and reconnect to RTserver.

The unwatch command causes RTmon to connect to RTserver if it is not already
connected. A warning message is printed if an unwatch is requested for a
category not being watched.

See Also watch
 TIBCO SmartSockets User’s Guide

632 | Chapter 9 Command Reference
Examples This example shows how watching is started and stopped for certain subjects:

MON> watch subject_names
Start watching subject_names.
MON> run
WATCH> Current Subjects: /_all /_workstation1
/_workstation1_27709/_mon
^C*** Received interrupt from user. ***
MON> unwatch subject_names
Stop watching subject_names.
TIBCO SmartSockets User’s Guide

users | 633
users

Name users — list the users in the ACL

Synopsis Supported for RTacl:

users

Description The users command lists the users in the currently loaded ACL.

See Also None

Examples This example lists the users in the ACL:

ACL> users

Users:
 admin (administrative privileges)
 jdoe
 anonymous
 TIBCO SmartSockets User’s Guide

634 | Chapter 9 Command Reference
watch

Name watch — display monitoring information whenever it changes

Synopsis Supported for RTmon only:

watch
watch client_buffer client
watch client_msg_recv client msg_type
watch client_msg_send client msg_type
watch client_names
watch client_subscribe client
watch client_time client
watch project_names
watch server_conn
watch server_names
watch subject_names
watch subject_subscribe subject

Description The watch command turns on watching for monitoring information. Depending
on the type of watch performed, the request may go to one or all RTserver and
RTclient processes. Every time the watched information changes, RTmon receives
updated information. The run command can be used to receive and display the
watch responses. For most watch categories, when watching is turned on, RTmon
also receives an initial status message so that RTmon can immediately display the
current status. The watch command uses the TipcMonTypeSetWatch API functions
to start the watching.

For all of the user-specifiable parameters (client, server, subject), a single item can be
specified by name or @ (at sign) can be used to specify all items that match
Monitor_Scope or all items of that type (such as all RTclients or all subjects). For
client (RTclient processes), server (RTserver processes), and process (RTclient or
RTserver processes), the process is identified by its unique subject. See Specifying
Items to be Monitored on page 363.

When @ (at sign) or a wildcarded value is used for a user-specifiable parameter,
both current and future items of that type are watched. For example, the
command watch client_subscribe /... not only turns on watching in all
current RTclient processes but also all future RTclient processes!

If watch is called without any arguments, all the categories currently being
watched are printed, one on each line.

The watch client_buffer command watches buffer information in client.

The watch client_msg_recv command watches messages of type msg_type being
received in client.

The watch client_msg_send command watches message of type msg_type being
sent from client.
TIBCO SmartSockets User’s Guide

watch | 635
The watch client_names command watches client (RTclient processes) names.

The watch client_subscribe command watches the subjects to which client is
subscribing.

The watch client_time command watches time in client.

The watch project_names command watches project names.

The watch server_conn command watches connection information about all
RTservers.

The watch server_names command watches server (RTserver processes) names.

The watch subject_names command watches subject names.

The watch subject_subscribe command watches the RTclient processes that are
subscribing to the subject subject.

Caution The RTmon GDI uses the poll, watch, and unwatch commands to control
RTmon. Because the GDI needs complete control over these commands, these
three commands are unavailable for interactive use (entering at the GDI MON>
prompt) when using the GDI. These three commands are always available,
though, when using the runtime RTmon.

Only one project at a time can be monitored by each RTmon process. Information
in other projects is not visible. To monitor a different project, the option Project
must be changed, and then RTmon must disconnect and reconnect to RTserver.

The watch command causes RTmon to connect to RTserver if it has not already
done so.

The watch command prints a warning message if a watch is requested for a
category that is already being watched.

See Also run, unwatch

Examples MON> watch client_subscribe /...
Start watching client_subscribe </...>.
MON> run 100000 5
WATCH> Current Subjects Being Subscribed to by Client
/_workstatoin1_27709:
 /_all /_workstation1 /_workstation1_27709 /_mon
Timeout of 5 was reached.
 TIBCO SmartSockets User’s Guide

636 | Chapter 9 Command Reference
TIBCO SmartSockets User’s Guide

| 637
Chapter 10 Using Multicast

SmartSockets provides a multicast feature to further enhance the features and
performance of SmartSockets. SmartSockets Multicast implements reliable
multicast to take full advantage of its bandwidth optimization properties.
SmartSockets Multicast is an efficient way of routing a message to multiple
recipients. The SmartSockets Multicast enables messages to be multicast to
RTclients. SmartSockets Multicast uses a protocol called PGM to route messages
and an RT process called RTgms to handle the message routing. This chapter
describes how to configure and use the RTgms process.

In addition to RTgms, there is a new Group_Names option for RTclients using
multicast, described in Chapter 8, Options Reference. There are new PGM options
for RTclients, described in Setting PGM Options on page 657.

There is also an extended logical connection name that allows the RTclient to
connect to the RTgms process. To enable an RTclient to receive or send multicast
messages, the RTclient simply connects to the RTgms process, instead of
connecting to an RTserver. The extended logical connection name is described in
Address for Multicast on page 194.

Topics

• Multicast Requirements, page 639

• One-to-Many Communications Solution, page 640

• Features, page 641

• Architecture, page 642

• Multicast Deployment Guidelines, page 643

• RTgms Overview, page 644

• Bandwidth Management, page 647

• RTgms Options, page 650

• RTgms Options Summary, page 653

• Option Reference, page 656
 TIBCO SmartSockets User’s Guide

638 | Chapter 10 Using Multicast
• Setting PGM Options, page 657

• Starting and Stopping RTgms, page 668

• Interrupting RTgms, page 671

• Sending a Message using Multicast, page 671

• RTgms Commands, page 672

• Tailoring Your Multicast Deployment, page 673
TIBCO SmartSockets User’s Guide

Multicast Requirements | 639
Multicast Requirements

To use multicast with SmartSockets, you must have a license for the SmartSockets
Multicast feature, separate from your standard SmartSockets license. Contact
your TIBCO sales representative for more information on purchasing the feature.
See the TIBCO SmartSockets Installation Guide for information on adding the
license to your license file.

Any RTservers that RTgms connects to must be at the same SmartSockets version
level as the RTgms process. Any RTclients receiving multicast must be running
with the SmartSockets Version 6.0 runtime libraries or higher. To use the multicast
protocol, PGM, your network hardware, such as routers and switches, must be
configured for multicast. See your network administrator about your network
supporting multicast.

For a discussion of when to use multicast, instead of unicast publish-subscribe,
see When Should I Use Multicast? on page 170. SmartSockets Multicast is
inherently threaded and must be run on a platform that supports the
SmartSockets thread model.

SmartSockets Multicast is a negative acknowledgement (NAK)-based, reliable IP
multicast transport protocol for applications that require ordered or unordered,
duplicate-free, multicast data delivery from multiple sources to multiple
receivers.

SmartSockets Multicast provides a scalable and efficient way to simultaneously
transmit large amounts of data to a group of receivers, from a single sender if
need be, over existing LAN, WAN, and satellite networks. SmartSockets Multicast
enables the development of new multicast applications, provides a high degree of
scalability, and is geared towards network efficiency.
 TIBCO SmartSockets User’s Guide

640 | Chapter 10 Using Multicast
One-to-Many Communications Solution

The majority of network communications employ a one-to-one, or unicast
transmission model, where data is sent point-to-point from one sender to one
receiver. Using this method, sending a message to 1,000 different people requires
the transmission of 1,000 separate copies of the same message over the network,
causing scalability and congestion problems. As the number of network users
continues to grow, and as content becomes increasingly media-rich, enterprises
are faced with rapidly escalating data distribution costs and bandwidth
requirements just to maintain existing service levels.

IP multicast, an efficient way of delivering one-to-many communications,
addresses these issues by enabling a single sender to simultaneously stream large
amounts of data to many receivers and do so effectively in real time. Instead of
sending 1,000 messages to reach 1,000 people, only one message need be sent. The
efficiencies and cost-savings are enormous. Multicast also facilitates one-to-many
applications that are impractical with unicast applications such as video and
audio conferencing, employee communications, live Web transmissions of
multimedia training, and multi-user games.

Raw IP multicast, although efficient, lacks a reliability layer. SmartSockets
Multicast provides that reliability. SmartSockets Multicast enables simplified,
highly reliable and scalable one-to-many data multicasting over terrestrial and
satellite networks using the industry standard Pragmatic General Multicast
(PGM) protocol.
TIBCO SmartSockets User’s Guide

Features | 641
Features

SmartSockets Multicast provides a timely, flexible solution for all multicast
applications with high reliability and scalability requirements. TIBCO
SmartSockets Multicast includes these features:

• automatically adjusts and optimizes NAK production.

• allows customers to configure the allocation of bandwidth to ODATA and
RDATA.

• facilitates distributed applications that are not feasible with unicast
technology

• enables highly scalable and reliable one-to-many data multicasting over most
existing networks

• scales applications to a large number of users without increasing network
bandwidth or server requirements

• reduces data distribution costs and bandwidth requirements by eliminating
redundant transmissions

• distributes rich data content including XML, video, audio and graphics files to
multiple sites in a highly efficient manner

• TIBCO SmartSockets Multicast is equally well-suited to terrestrial or satellite
environments and to any data type

• ensures reliable IP multicasting over satellite—uniquely adapted to provide
simple, reliable and efficient content deployment over satellite, one of the
most cost-effective and practical network environments for multicast
applications

• provides alternative, flexible recovery tools to match any need

• improves network efficiency

• optimizes real-time data delivery through data stream recovery

• routers are utilized in a manner that helps to reduce NAK traffic

• no control traffic generated if no loss occurs

• support for Forward Error Correction (FEC)

• proactive FEC when loss is uniform

• reactive FEC for efficient random loss recovery

• delayed FEC to recover from heavy amounts of loss, that is, greater than 1
minute
 TIBCO SmartSockets User’s Guide

642 | Chapter 10 Using Multicast
• a buffering model that allows late join support

• support for aggregated NAKs

• bandwidth rate control which can be set for all group channels between an
RTgms process and RTservers or dynamically for specified group channels

Architecture

SmartSockets Multicast is designed to be connection-less and efficient. The
routers in a network assist the end-host nodes by selectively forwarding protocol
information along the most efficient path. However, a PGM-capable router is not
mandatory for a small number of receivers, less than 100.

In addition, TIBCO has developed a product to act as a PGM-capable Network
Element (NE) for networks without PGM-capable routers in them. PGM is a
negative acknowledgment (NAK)-based protocol where the receivers notify the
sender only in the case of message loss, the beneficial side-effect being the
preservation of bandwidth.

A PGM sender does not explicitly know the receivers of any particular piece of
data—yet this is not a liability. In fact, with its loose group membership model,
PGM is extremely well-suited for applications that need to leave and join
multicast groups quickly and with a minimum of control messages (or none at
all). This makes PGM an ideal choice for applications that have transient or
mobile properties.
TIBCO SmartSockets User’s Guide

Multicast Deployment Guidelines | 643
Multicast Deployment Guidelines

TIBCO multicast applications depend on the network layer to provide multicast
connectivity between them. To assist you in the successful deployment of our
applications, it is beneficial to be aware of any issues that might adversely affect
your implementation of SmartSockets Multicast.

To begin with, it is important to highlight the context into which multicast
connectivity finds itself in, in contrast to unicast connectivity. The nearly seamless
flow of unicast packets within our local area networks and across the Internet
backbone is often taken for granted. Unicast connectivity through the Internet is
now nearly ubiquitous. Unfortunately, multicast connectivity through the
Internet and through most corporate intranets is typically far more constrained at
this point.

Four of the seven layers in the ISO model of networking are referenced here, for
the purpose of discussing multicast deployment guidelines. For each layer, the
functions performed by the layer and the equipment or software that can perform
them are discussed. The following table summarizes this information by layer.

It is important to note that each layer relies on the layers below it to provide a
foundation upon which it can build new functions.

Layer Functions Performed Software Providing Function

Application/
Middleware

File transfer, messaging SmartSockets

Transport Reliable stream delivery SmartSockets Multicast, TCP

Network Unreliable datagram
routing between LANs,
NAK Suppression,
Designated Local Repairer

Routers, "Layer 3" switches,
"smart" switches, PGM Network
Element

Physical Define LAN boundaries Hubs, NICs, OS drivers, "dumb"
switches, modems, CSU/DSUs
 TIBCO SmartSockets User’s Guide

644 | Chapter 10 Using Multicast
RTgms Overview

The role of the RTgms process is to manage multicast groups and route multicast
messages accordingly. The RTgms process works together with the RTserver to
route messages. The RTgms process is similar to an RTserver and is configured in
similar ways. You can start and stop the RTgms with the rtgms command, similar
to the rtserver command, and RTgms can be installed as a service on Windows
just as an RTserver can. The RTgms process connects to an RTserver in the same
way that any RTserver connects to another RTserver, using the logical connection
names specified in its Server_Names option.

When an RTgms process connects to an RTserver, two types of channel
connections are established:

• group channel

• control channel

The group channel is the connection for sending messages to RTgms that are to be
multicast to RTclients. There is a group channel for each multicast group that the
RTgms manages.

The control channel is used for sending control messages from the RTserver to the
RTgms. This enables the RTserver to treat the RTgms as an RTclient, and control
messages can be used to monitor, stop, and dynamically reconfigure the RTgms
process as if it were any other RTclient.

Figure 47 illustrates the message flow and connections in multicast messaging.
Note that the connections on the left, between the publishing RTclients and the
RTserver, are normal RTclient to RTserver connections. These are established
using the logical connection name format protocol:node:address, such as tcp:nodea.
The connections between the RTserver and RTgms, the control and group
channels, are also normal RTserver to RTserver connections, using
protocol:node:address, such as tcp:nodea. The connections between the subscribing
RTclients and the RTgms use logical connection names that specify the PGM
protocol. For example, they might use a logical connection name of pgm:nodeb.
TIBCO SmartSockets User’s Guide

RTgms Overview | 645
Figure 47 Multicast Messaging

RTclients connect to an RTserver or an RTgms process. If an RTclient is connected
to an RTserver and publishes a message for multicast, this is the message flow:

1. RTclient sends the message to the RTserver.

2. RTserver passes the message to the RTgms process.

3. RTgms checks the number of subscribing RTclients in each group connected to
the RTgms.

4. If the number of subscribing RTclients in a group exceeds the
Group_Threshold option, the RTgms process multicasts the message to those
subscribing RTclients.

If the number of subscribing RTclients in a group is less than or equal to the
Group_Threshold option, the RTgms process unicasts the message to those
subscribing RTclients, using TCP/IP or local.

If the original publishing RTclient is connected to an RTgms process instead of an
RTserver, the message passes through the RTgms process to the RTserver for
routing. The RTserver always handles all routing. The RTserver then routes the
message back to the RTgms process for multicasting.

Publishing RTclient B

Publishing RTclient A

Publishing RTclient C

Publishing RTclient X

. .
 .

Subscribing RTclient 2

Subscribing RTclient 1

Subscribing RTclient 3

Subscribing RTclient n
. .

 .

RTgms

Subscribing RTclient b

Subscribing RTclient a

Subscribing RTclient c

Subscribing RTclient x

. .
 .

Multicast Group Y Multicast Group Z

RTserver

Control Channel

Group Channel Y

Group Channel Z
 TIBCO SmartSockets User’s Guide

646 | Chapter 10 Using Multicast
The primary function of an RTclient, publish or subscribe, determines whether it
should connect to an RTserver or an RTgms process. In general, RTclients that
frequently publish messages for multicast should connect to an RTserver that is
connected to the RTgms process. RTclients that frequently receive, or are
subscribed to, multicast messages should connect to the RTgms process. This
results in the most efficient message routing.
TIBCO SmartSockets User’s Guide

Bandwidth Management | 647
Bandwidth Management

When deploying an RTgms (SmartSockets with SmartPGM), there are two general
approaches to rate control. The first approach, and the one recommended for
SmartSockets customers, is to establish minimum and maximum rates, and
assume RTclients will either keep up, or voluntarily drop out of the group. The
second approach uses a technology within SmartPGM known as congestion
control to automatically reduce the transmission rate to a level that can be
handled by the slowest RTclient. Using congestion control is not generally
recommended for SmartSockets customers who prioritize throughput over
delivery.

Tuning Rate Control
By specifying the pgm_source_max_trans_rate and
pgm_source_min_trans_rate, you can allocate the bandwidth necessary to send
messages to subscribers promptly.

If you are unable to achieve the desired maximum rate, perform these steps:

1. Verify that congestion control is turned off.

2. Verify that the desired rate of the RTgms alone, or in combination with other
applications on the network, does not exceed the bandwidth limitations of the
network itself.

3. Verify that the RTgms is located on a machine with a sufficient amount of
RAM to maintain the recovery window
(pgm_source_transmit_size_buffer * pgm_source_max_trans_rate)
without needing to use virtual memory. When the RTgms is forced to access
the hard-disk to facilitate loss repair, performance degrades significantly.
 TIBCO SmartSockets User’s Guide

648 | Chapter 10 Using Multicast
Rate Control and Loss
It is common for a RTclient to experience small amounts of non-uniform (random)
loss during its lifetime. When a RTclient experiences loss it will send a negative
acknowledgement (NAK), unless configured otherwise. It is the responsibility of
the RTgms to process NAKs. If the RTgms is unable to service a NAK, for
whatever reason, the RTclient will suffer un-recoverable loss and the link between
it and the RTgms will be gracefully terminated.

Because SmartPGM is a reliable transport protocol, a RTgms makes recovering
from loss the priority by default. When faced with loss, a RTgms will prioritize
the transmission of repair data (RDATA) over the transmission of original data
(ODATA). A consequence of loss in a single RTclient is the increased probability
that latency will be introduced to all RTclients connected to same RTgms. As the
amount of loss increases, the likelihood of latency also increases.

A RTgms can be configured to reduce the likelihood that latency will be
introduced in the presence of loss.
pgm_source_transmit_rdata_max_percentage limits the bandwidth that an
RTgms allocates for RDATA as a percent of pgm_source_max_trans_rate.
pgm_source_transmit_rdata_max_percentage allows the user to shift the
priority of SmartPGM from recovery to delivery.

Using pgm_source_max_trans_rate to shift the priority of SmartPGM from
recovery to delivery increases the likelihood that a RTclient experiencing high loss
will suffer un-recoverable loss and drop its connection to the RTgms. The decision
to use pgm_source_max_trans_rate represents a trade-off between reliability
and timely delivery.

The most common cause of loss is setting the maximum send rate too high for the
RTclients to sustain. If faced with persistent, unacceptable loss, first try reducing
the value of the pgm_source_max_trans_rate.

A misconfigured RTclient can suffer catastrophic loss (at or near 100% loss). In
most cases a RTclient suffering catastrophic loss will ultimately suffer
un-recoverable loss and disconnect. However, in the time prior to disconnect the
effects of catastrophic loss on latency can be significant. Its recommended that a
policy be established by the user to prevent misconfigured, or rogue RTclients,
from arbitrarily connecting to a RTgms.
TIBCO SmartSockets User’s Guide

Bandwidth Management | 649
Congestion Control
Using SmartPGM congestion control, RTgms regulates the transmission rate to
accommodate the poorest performing RTclient in the multicast group. When an
RTclient sends a negative acknowledgement (NAK), the RTgms reduces the
transmission rate until the RTclient catches up and sends an acknowledgement
(ACK). After receiving the ACK, the RTgms increases the rate to the specified
maximum rate until the RTgms receives another NAK from an RTclient.
 TIBCO SmartSockets User’s Guide

650 | Chapter 10 Using Multicast
RTgms Options

RTgms options can be set to specific values by defining them in the rtgms.cm
command file. Option values that have been specified in the command file are set
each time RTgms is started, or they can be modified using the setopt command
in a CONTROL message. For general information on setting options, see Setting
Option Values on page 494. For information on conventions used in specifying
options, see Specifying Options on page 497. For information on the RTgms
command file, see RTgms Startup Command Files on page 652.

Certain options can be modified dynamically for a particular RTgms connection
using an ADMIN_SET message. When you send the message to a particular
RTgms process, the options apply only to outbound data sent on the specified
group channel connection.

The ADMIN_SET message used for setting bandwidth rate control options is:

T_MT_GRP_ADMIN_SET_OUTBOUND_RATE_PARAMS
T_STR group_name
T_INT4 token_rate
T_INT4 max_tokens
T_REAL8 burst_interval

where:
group_name must be the multicast group name of the group channel, matching

an existing group name specified by the Group_Names option.

token_rate is the rate in bytes/second at which tokens accumulate. A value of
-1 indicates no change. token_rate is equivalent to the
Group_Token_Rate option.

max_tokens is the maximum number of tokens that can accumulate. A value of
-1 indicates no change. max_tokens is equivalent to the
Group_Max_Tokens option.

burst_interval is the burst interval in number of seconds. A value of -1.0 indicates
no change. burst_interval is equivalent to the Group_Burst_Interval
option.
TIBCO SmartSockets User’s Guide

RTgms Options | 651
The ADMIN_SET message used for setting PGM options is:

T_MT_GRP_ADMIN_SET_PGM_OPTIONS
T_STR group_name
T_STR option_name
T_INT4 option_value

where:
group_name is the name of the multicast group for which you want these

parameters set. It needs to match an existing group name specified by
the Group_Names option. The options apply to the group channel
used by Group_Names.

option_name is the name of the PGM option you want to set. Currently, the only
PGM option you can set in this way is Pgm_Source_Max_Trans_Rate.
For option_name, the valid values are currently
source_max_trans_rate and pgm_source_max_trans_rate.

option_value is the value you are specifying for option_name. For
Pgm_Source_Max_Trans_Rate, the valid values are any integers
greater than 0 and the default value is 4000000.
 TIBCO SmartSockets User’s Guide

652 | Chapter 10 Using Multicast
RTgms Startup Command Files
The RTgms process has standard startup command files, called rtgms.cm. The
RTgms startup command file contains generic information that RTgms needs to
know, such as what values to use for IPC-related timeouts, connection names,
maximum number of clients, and so on.

This example illustrates a typical RTgms startup command file:

setopt project ss_test
setopt conn_names pgm:_node
setopt server_names tcp:_node
setopt group_threshold 10
setopt group_names rtworks, group1, group2

RTgms recognizes three levels of startup command files. When first invoked, it
searches for and executes the commands in each file, in this order:

1. the system-level rtgms.cm file in the SmartSockets standard directory

RTgms searches for a system-level process command file rtgms.cm in the
SmartSockets directory standard, in RTHOME:

— UNIX: $RTHOME/standard

— Windows: %RTHOME%\standard

To add or change RTgms options, change to this directory and use an editor to
add or change the system-wide option settings.

2. the user-level rtgms.cm file in the user’s home directory

RTgms searches for an rtgms.cm file in the user’s home directory (specified
by the HOME environment variable) and, if found, executes the commands in
that file. This file is the ideal place to set options that you want set for all your
projects. To create this file, use an editor to open a new file named rtgms.cm in
your home directory:

— UNIX: $HOME

— Windows: %HOME%

and use the editor to add the options you choose.

3. the file specified by the -command argument, or the local-level rtgms.cm file in
the current directory (if the -command argument is not specified)

RTgms reads and executes the rtgms.cm file found in the current directory,
that is, the directory from which RTgms is being run. In this file, place any
project-specific option declarations, such as the name of the project and where
to find RTserver. The local command file is read last to allow you to override
any initial values that might have been set for the RTgms options.
TIBCO SmartSockets User’s Guide

RTgms Options Summary | 653
RTgms Options Summary

The table summarizes the relevant options available in all RTgms processes.
These options can be modified using the setopt command in the RTgms startup
command file.

Table 20 RTgms Options

Option Name Type Default

Backup_Name String ~

Client_Connect_Timeout Numeric 10.0

Client_Keep_Alive_Timeout Numeric 0.0

Client_Max_Buffer Numeric 10000000

Client_Read_Timeout Numeric 0.0

Conn_Names String List UNIX:

pgm:_node:local.5104,
pgm:_node:tcp.5104

Windows:

pgm:_node:tcp.5104

Default_Msg_Priority Numeric 0

Default_Protocols Identifier
List

UNIX: local, tcp

Windows: tcp

Default_Subject_Prefix String None

Editor String UNIX: vi

Windows: notepad

Enable_Control_Msgs String List echo, quit

Group_Burst_Interval Numeric 0.5

Group_Max_Buffer Numeric 10000000

Group_Max_Tokens Numeric 0
 TIBCO SmartSockets User’s Guide

654 | Chapter 10 Using Multicast
Group_Names String List rtworks

Group_Threshold Numeric 1

Group_Token_Rate Numeric 0

Ipc_Gmd_Directory String UNIX: /tmp/rtworks

Windows: %TEMP%\rtworks

Ipc_Gmd_Type String default

Log_In_Client String None

Log_In_Data String None

Log_In_Group String None

Log_In_Internal String None

Log_In_Status String None

Log_Out_Client String None

Log_Out_Data String None

Log_Out_Group String None

Log_Out_Internal String None

Log_Out_Status String None

Monitor_Scope String /*

Project Identifier rtworks

Real_Number_Format String %g

Server_Auto_Connect Boolean TRUE

Server_Delivery_Timeout Numeric 30.0

Server_Disconnect_Mode Identifier gmd_failure

Table 20 RTgms Options

Option Name Type Default
TIBCO SmartSockets User’s Guide

RTgms Options Summary | 655
Note that for the Conn_Names option, the default value is different for RTgms
than it is for an RTserver. The pgm prefix results in RTgms using the PGM link
driver. For example, in UNIX, the PGM link driver creates a server-side
connection on TCP/IP, port 5104 on _node and also on local, port 5104 on _node.
RTgms sends data out either on a multicast address (if the number of receivers
meets the value set in the Group_Threshold option) or on the TCP/IP or local
connection of the client.

Server_Keep_Alive_Timeout Numeric 15.0

Server_Names String List _node

Server_Read_Timeout Numeric 30.0

Server_Start_Delay Numeric 1.0

Server_Write_Timeout Numeric 30.0

Socket_Connect_Timeout Numeric 5.0

Subjects String List None

Time_Format Identifier unknown

Unique_Subject String _Node_Pid

Verbose Boolean FALSE

Table 20 RTgms Options

Option Name Type Default
 TIBCO SmartSockets User’s Guide

656 | Chapter 10 Using Multicast
Option Reference

Group_Threshold

The Group_Threshold option specifies the minimum number of clients required
to send a message using multicast. The number of clients is per message per
group. If the number of clients to receive a message is less than or equal to the
value specified for Group_Threshold, the message is sent unicast using TCP/IP or
local to that group. If the number of clients is greater than the value for
Group_Threshold, the message is sent multicast to that group. If an RTgms is
managing several groups, a message might be unicast to one group that didn’t
meet the group threshold, and multicast to other groups that do meet the
threshold.

Used for: RTgms processes only

Type: Integer

Default Value: 1

Valid Values: Any integer greater than 0
TIBCO SmartSockets User’s Guide

Setting PGM Options | 657
Setting PGM Options

The PGM options used for RTclients and RTgms processes are different from the
other SmartSockets options. You can use the defaults for these options if the
default PGM configuration works for you. If you use the defaults, you do not
need to change or set any values because there are no required options.

However, if you need to change a value for either your RTclient or RTgms process,
you must create a multicast command file, mcast.cm, for the RT process. The
multicast command file is treated just like any startup command file, with the
exception that there is only a system-level mcast.cm file. There are no user-level
or local-level mcast.cm files. This system-level mcast.cm file is located in the
SmartSockets standard directory or partitioned dataset:

• UNIX: $RTHOME/standard

• Windows: %RTHOME%\standard

In your mcast.cm file, set the PGM options you want to change using setopt.
Here is a sample mcast.cm file:

setopt pgm_source_max_trans_rate 5000000 /* change max trans rate to 5 meg
*/
setopt pgm_udp_encapsulation 1 /* enable UDP encapsulation */

If you want to share an mcast.cm file among several RTgms or RTclient processes,
you can specify which mcast.cm file they should use in the mcastopts.cm file,
also located in the standard directory. The mcastopts.cm file contains one
option, mcast_cm_file.

For certain PGM options, you can set them dynamically for a particular group
channel using the T_MT_GRP_ADMIN_SET_PGM_OPTIONS message.
Currently, only the Pgm_Source_Max_Trans_Rate option can be set using this
message. For more information, see RTgms Options.
 TIBCO SmartSockets User’s Guide

658 | Chapter 10 Using Multicast
mcast_cm_file

The mcast_cm_file option specifies the fully qualified pathname to the mcast.cm
file the RT process should use. You can use setopt to set the option, just as you do
in your mcast.cm file.

Under Windows, if you specify an environment variable in the path, use a $ and
not % characters in the name. For example, use $RTHOME. Do not use %RTHOME%.

PGM Option Summary
The table summarizes the relevant PGM options available in all RTclient and
RTgms processes:

Used for: RTclient and RTgms processes

Type: String

Default Value: None

Valid Values: Any valid pathname, specified without % characters

Table 21 RTclient and RTgms PGM Options

Option Name Type Default

Pgm_Port Numeric 5202

Pgm_Receive_Nak_Ttl Numeric 1

Pgm_Receive_Pgmcc Boolean TRUE

Pgm_Receive_Pgmcc_Acker_Interval Numeric 500

Pgm_Receive_Pgmcc_Loss_Constant Numeric 60000

Pgm_Source_Admit_High Numeric 10

Pgm_Source_Admit_Low Numeric 5

Pgm_Source_Group_Ttl Numeric 1

Pgm_Source_Max_Trans_Rate Numeric 4000000

Pgm_Source_Min_Trans_Rate Numeric 56000

Pgm_Source_Pgmcc Boolean TRUE
TIBCO SmartSockets User’s Guide

Pgm_Port | 659
Pgm_Port

The Pgm_Port option specifies the IP port on which the multicast packets are sent.
This is the outgoing port, and is different from the port used for RTclients
connecting to RTgms. This port is used for sending the multicast messages and
other information. The port number you specify must be unique to the system. If
an RTserver is running on the same machine, the value for Pgm_Port must be
different than the port number used by the RTserver for the values specified in its
Conn_Names option, which has a default of 5101.

Pgm_Source_Pgmcc_Acker_Selection
_Constant

Numeric 75

Pgm_Source_Pgmcc_Init_Acker String 0.0.0.0

Pgm_Udp_Encapsulation Numeric TRUE

Table 21 RTclient and RTgms PGM Options

Option Name Type Default

Used for: RTgms processes only

Type: Integer

Default Value: 5202

Valid Values: Any valid and unique port number
 TIBCO SmartSockets User’s Guide

660 | Chapter 10 Using Multicast
Pgm_Receive_Nak_Ttl

The Pgm_Receive_Nak_Ttl option specifies the initial time to live (TTL) for a
NAK sent by an RTclient to an RTgms. This is one less than the maximum number
of routers that a NAK can travel through before reaching the RTgms process.

NAKs are generated by an RTclient when data from the RTgms fails to reach the
RTclient or arrives corrupted. When the RTgms receives a NAK, it generates
repair data.

The time to live (TTL) for a NAK is automatically decremented every time the
NAK passes through a router. The NAK is discarded by the router if, after it
decrements the TTL, the TTL is 0. This allows a NAK stuck in a loop between
routers to eventually be eliminated. Too small a value for Pgm_Receive_Nak_Ttl
can cause the NAK to be discarded too soon, before it ever reaches an RTgms. The
RTgms never gets a chance to generate repair data and the RTclient that generated
the NAK can have unrecoverable losses. Too large a value for
Pgm_Receive_Nak_Ttl can increase the amount of congestion caused by routing
loops.

The default value of 1 only works if a NAK does not pass through any routers to
reach an RTgms. Consider the number of routers a NAK must pass through to
reach an RTgms, especially if the RTgms is on another network, when setting the
value for Pgm_Receive_Nak_Ttl.

Used for: RTclient processes only

Type: Integer

Default Value: 1

Valid Values: Any integer between 1 and 255, inclusive
TIBCO SmartSockets User’s Guide

Pgm_Receive_Pgmcc | 661
Pgm_Receive_Pgmcc

The Pgm_Receive_Pgmcc option specifies whether this RTclient can be a potential
ACKer. The default, TRUE, specifies that this RTclient can be an ACKer. Setting this
option to FALSE prevents this RTclient from ever being an ACKer, even if it is the
first to NAK.

Pgm_Receive_Pgmcc_Acker_Interval

The Pgm_Receive_Pgmcc_Acker_Interval option specifies the timeout in
milliseconds for the initial ACKer. This timeout applies regardless of how the
initial ACKer was chosen, either specified as initial ACKer using the
Pgm_Source_Pgmcc_Init_Acker option or chosen as initial ACKer because it was
the first to NAK.

Used for: RTclient processes only

Type: Boolean

Default Value: TRUE

Valid Values: TRUE or FALSE

Used for: RTclient processes only

Type: Integer

Default Value: 500

Valid Values: Any positive integer
 TIBCO SmartSockets User’s Guide

662 | Chapter 10 Using Multicast
Pgm_Receive_Pgmcc_Loss_Constant

The Pgm_Receive_Pgmcc_Loss_Constant option specifies how the loss rate is
measured. The value you specify for this option is divided by 65536 to determine
the percentage of gain used in the low pass filter for loss measurement.

Pgm_Source_Admit_High

The Pgm_Source_Admit_High option specifies the maximum number of
multicast messages held on the admit queue before RTgms stops queuing
additional messages. The admit queue is a queue of multicast messages waiting to
be transmitted by RTgms using PGM. The messages in the queue might have been
generated by RTgms or in response to a NAK.

If RTgms is stopped from sending data over PGM, SmartSockets buffering is used
until RTgms can send messages over PGM again. When the number of messages
waiting to be sent is greater than the value you specified for
Pgm_Source_Admit_High, RTgms is flow controlled until the number of waiting
messages drops below the value you specified for Pgm_Source_Admit_Low.

If you set a value too high for Pgm_Source_Admit_High, it can waste memory in
RTgms. Too small a value can waste CPU time by causing RTgms to be stopped
too often.

Used for: RTclient processes only

Type: Integer

Default Value: 60000

Valid Values: Any integer between 0 and 65536, inclusive

Used for: RTgms processes only

Type: Integer

Default Value: 10

Valid Values: Any integer greater than 0
TIBCO SmartSockets User’s Guide

Pgm_Source_Admit_Low | 663
Pgm_Source_Admit_Low

The Pgm_Source_Admit_Low option specifies the number of multicast messages
left on the admit queue that triggers RTgms to be restarted. The RTgms had been
stopped because the admit queue reached the value you set in
Pgm_Source_Admit_High.

If you set a value too low for Pgm_Source_Admit_Low, the RTgms might not
have enough time to prepare more data before the messages in the current admit
queue are completely sent. This can cause uneven message delivery rates. Too
high a value for Pgm_Source_Admit_Low can waste CPU time by causing RTgms
to be started too often.

Pgm_Source_Group_Ttl

The Pgm_Source_Group_Ttl option specifies the initial time to live (TTL) for data
sent by RTgms. This is one less than the maximum number of multicast routers
that data sent by RTgms can travel through before reaching an RTclient.

The time to live (TTL) is automatically decremented every time the data passes
through a router. The data is discarded by the router if, after it decrements the
TTL, the TTL is 0. This allows data stuck in a loop between routers to eventually
be eliminated. Too small a value for Pgm_Source_Group_Ttl can cause the data to
be discarded too soon, before it ever reaches an RTclient. Too large a value for
Pgm_Source_Group_Ttl can increase the amount of congestion caused by routing
loops.

Used for: RTgms processes only

Type: Integer

Default Value: 5

Valid Values: Any integer greater than 0

Used for: RTgms processes only

Type: Integer

Default Value: 1

Valid Values: Any integer between 1 and 255, inclusive
 TIBCO SmartSockets User’s Guide

664 | Chapter 10 Using Multicast
The default value of 1 only works if data does not pass through any routers to
reach all RTclients. Consider the number of routers data must pass through to
reach RTclients, including the number of routers to reach other networks
containing RTclients, when setting the value for Pgm_Source_Group_Ttl.

Pgm_Source_Max_Trans_Rate

The Pgm_Source_Max_Trans_Rate option specifies the maximum rate, in bits a
second (bps), at which RTgms attempts to send multicast messages. This value
includes repair data sent in response to NAKs, in addition to data being sent for
the first time. If RTgms attempts to send faster than this rate, data is queued on
the admit queue up to the value you set for Pgm_Source_Admit_High.

Setting the value for Pgm_Source_Max_Trans_Rate improperly causes inefficient
network use. If the value is smaller than the rate messages can be delivered by the
network between RTgms and the RTclients, you are setting an artificial limit on
the rate at which RTgms sends messages. This means the multicast messages are
sent more slowly than they need to be. However, if you set the value higher than
the rate messages can be delivered by the network between RTgms and the
RTclients, this can cause excessive data loss in the network. More NAKs are
generated, and more of the available network bandwidth is used for repair data,
reducing the amount available to the original messages.

You can dynamically set the value for Pgm_Source_Max_Trans_Rate on a
connection basis, using an ADMIN_SET message. For more information, see the
information on the T_MT_GRP_ADMIN_SET_PGM_OPTIONS message.

Used for: RTgms processes only

Type: Integer

Default Value: 4000000

Valid Values: Any integer greater than 0
TIBCO SmartSockets User’s Guide

Pgm_Source_Min_Trans_Rate | 665
Pgm_Source_Min_Trans_Rate

The Pgm_Source_Min_Trans_Rate option specifies the minimum rate, in bits a
second, at which RTgms can attempt to send multicast messages. This option is
only useful when there is more than one RTgms running on the network.

Pgm_Source_Pgmcc

The Pgm_Source_Pgmcc option specifies whether congestion control is on or off.
The default, TRUE, turns congestion control on for RTgms processes sending
multicast messages. This option must be set to FALSE if the RTgms process or any
of the receiving RTclients are below SmartSockets Version 6.2. For more
information about congestion control, see Bandwidth Management on page 647.

Used for: RTgms processes only

Type: Integer

Default Value: 56000

Valid Values: Any integer greater than 0

Used for: RTgms processes only

Type: Boolean

Default Value: TRUE

Valid Values: TRUE or FALSE
 TIBCO SmartSockets User’s Guide

666 | Chapter 10 Using Multicast
Pgm_Source_Pgmcc_Acker_Selection_Constant

The Pgm_Source_Pgmcc_Acker_Selection_Constant option specifies the selection
criteria for designating a new ACKer, based on throughput. If a receiving client’s
throughput is too low, its throughput is compared to the throughput of the
existing ACKer, creating a percentage. That percentage is compared to the value
you specified for Pgm_Source_Pgmcc_Acker_Selection_Constant. If the
percentage is lower than the value you specified, that receiving client becomes the
new ACKer. For example, the default value is 75. If a receiving client has
throughput that is 73 percent of the current ACKer’s throughput, that client
becomes the new ACKer.

Pgm_Source_Pgmcc_Init_Acker

The Pgm_Source_Pgmcc_Init_Acker option specifies the IP address of the
receiving RTclient that initially plays the role of the ACKer, until a new ACKer is
chosen. Using the default value of 0.0.0.0 allows any receiving RTclient to be the
initial ACKer, depending on which RTclient is the first to NAK and assuming it is
allowed to be an ACKer. RTclients with the Pgm_Receive_Pgmcc option set to
FALSE are not allowed to be ACKers.

Used for: RTgms processes only

Type: Integer

Default Value: 75

Valid Values: Any integer from 1 to 100, inclusive

Used for: RTgms processes only

Type: String

Default Value: 0.0.0.0

Valid Values: Any valid IP address
TIBCO SmartSockets User’s Guide

Pgm_Udp_Encapsulation | 667
Pgm_Udp_Encapsulation

The Pgm_Udp_Encapsulation option specifies whether multicast messages are
encapsulated directly in IP or if they are encapsulated in UDP before IP
encapsulation. TRUE specifies that the messages are to be encapsulated in UDP.
FALSE specifies IP encapsulation.

UDP encapsulation makes each multicast message 12 bytes longer, but the RTgms
and RTclients do not need to run as root on UNIX systems. RTgms and RTclients
in a multicast group must have the same value for the Pgm_Udp_Encapsulation
option. Messages that are UDP encapsulated do not benefit from the Cisco
Systems PGM Router Assist feature.

If Pgm_Udp_Encapsulation is set to 1 to use UDP encapsulation, no PGM
subscribers can be run on the machine where RTgms is running. This is because
NAKs from PGM might not be correctly processed by the UDP protocol when
RTgms and a PGM subscriber are running on the same machine. This problem
does not occur when PGM is using raw IP sockets (Pgm_Udp_Encapsulation set
to 0).

Used for: RTclient and RTgms processes

Type: Integer

Default Value: TRUE

Valid Values: TRUE or FALSE
 TIBCO SmartSockets User’s Guide

668 | Chapter 10 Using Multicast
Starting and Stopping RTgms

RTgms is normally started and stopped using the rtgms command, which works
very much like the rtserver command you use to start an RTserver, which is
covered in Starting and Stopping RTserver on page 284. Unlike the RTserver,
RTgms cannot be automatically started by an RTclient through the use of the start
prefix.

The syntax for the rtgms command is:

rtgms arg_list

where arg_list is optional and consists of one or more arguments, separated by a
space:
-check starts the non-optimized version of RTgms.

-command filename specifies that RTgms uses the local startup
command file named filename. This overrides the
name of the default local startup command file,
rtgms.cm, but does not change the search order
described in RTgms Startup Command Files on
page 652.

-help displays a description of the rtgms command
arguments.

-install -demandstart

 -autostart

installs the RTgms process as a Windows service.
You can specify either demandstart or autostart
as the startup mode of the service. If you install
RTgms as an autostart Windows service, RTgms
starts automatically only when the machine is
rebooted.

This option is supported only on Windows systems.
-no_console does not display a Windows console associated

with the detached process.

This option is supported only on Windows systems.
-no_daemon runs RTgms as a foreground process.
-password pword provides the password used by RTgms, along with

a password, to connect to RTserver when RTserver
has Basic Security enabled. Use with the -username
argument.

pword size is unlimited. To specify no password, use
empty quotation marks ("")
TIBCO SmartSockets User’s Guide

Starting and Stopping RTgms | 669
-server_names server_list provides a list of RTservers to connect to. This
overrides the list provided in the Server_Names
option. The list is also used when you specify
-stop_all or -stop_rtgms.

server_list is a list of logical connection names for
RTservers.

-stop_all stops all RTgms processes. If specified together
with -server_names, the list of servers provided is
used to connect to those RTservers and stop all
RTgms processes connected to those RTservers.

-stop_rtgms unique_subject stops the RTgms process identified by that unique
subject. The location of the RTservers to use when
looking for the RTgms to stop is specified in
-server_names.

-uninstall removes the RTgms as a Windows service. This
option is only supported on Windows systems.

-username name provides the username used by RTgms, along with
a password, to connect to RTserver when RTserver
has Basic Security enabled. Use with the -password
argument.

name size is restricted to 64 characters.
-verbose informs RTgms to output additional information

messages such as, group up, group down, new
member join, and member leave.

-version prints a string that displays the latest build
information.
 TIBCO SmartSockets User’s Guide

670 | Chapter 10 Using Multicast
Starting RTgms on UNIX
To run an RTgms process on UNIX:

1. Change to the directory in which RTgms will run.

The first thing you must do to begin running RTgms is to change from the
current working directory to the one that contains the RTgms command file,
rtgms.cm. If no rtgms.cm file is needed, then RTgms can be started from any
directory.

To change directories, use:

$ cd directory

2. Create or edit the RTgms startup command files, if needed. See RTgms Startup
Command Files on page 652.

3. Invoke the RTgms executable by typing the rtgms command at the operating
system prompt. For example:

$ rtgms -command rtgms1.cm -verbose

When the startup processing is complete, the operating system prompt displays
again.

Starting RTgms as a Service on Windows
If you installed RTgms on a Windows system, the RTgms process can be
configured as a Windows service by adding the -install option to the start
command.

This example configures the RTgms process to use the autostart mode of a
Windows service:

$ rtgms -install -autostart

Once configured as a service, the RTgms process is managed through the
standard service control manager of Windows.

To remove the RTgms process as a Windows service, you can use:

$ rtgms -uninstall

If you use the -install or -uninstall options when starting an RTgms process
on a non-Windows system, such as Sun Solaris, you receive an error message
indicating an invalid command line argument, and the process does not start.
TIBCO SmartSockets User’s Guide

Interrupting RTgms | 671
Stopping RTgms
To stop a single RTgms, specify the unique subject of that RTgms in your -stop
command and specify location of the RTserver to which it is connected in the
-server_names argument. For example:

$ rtgms -stop_rtgms /rtgms_1 -server_names tcp:_node:5102

To stop all RTgms processes, use:

$ rtgms -stop_all

Interrupting RTgms

An RTgms process running in the foreground can be interrupted at any time
while it is processing messages. Enter a Ctrl-c in the active RTgms window. This
message is displayed:

rtgms interrupted by SIGINT signal (CONTROL-C).

Sending a Message using Multicast

To send a message using multicast, simply modify the Server_Names option
setting for the RTclients to connect to an RTgms. No other code changes are
required. The connection is now enabled for multicast.

For information on creating a connection from an RTclient to RTgms, see Creating
a Connection to RTgms on page 190.
 TIBCO SmartSockets User’s Guide

672 | Chapter 10 Using Multicast
RTgms Commands

There are no new commands for RTgms. These commands are supported with
RTgms:
• alias

• cd

• echo

• edit

• help

• helpopt

• quit

• setopt

• sh

• source

• unalias

• unsetopt

Use these commands as you would for any RTclient. Because RTgms is a type of
RTclient, the commands work the same way as they do for any RTclient. For
information on using these commands, see Chapter 9, Command Reference.
TIBCO SmartSockets User’s Guide

Tailoring Your Multicast Deployment | 673
Tailoring Your Multicast Deployment

Multicast deployment is often more difficult than unicast deployment, and there
are many issues that you need to consider when deploying multicast. The
following sections provide information regarding the key issues that you need to
address when deploying multicast. They include tips and information on
bandwidth sharing, how network devices forward multicast traffic, and how
different network environments affect your multicast deployment.

How Multicast Deployment Compares with Unicast Deployment
Even though connectivity for multicast and unicast applications is very similar,
multicast deployment is often more difficult than unicast deployment.

Both multicast and unicast rely on the network layer for connectivity:

• multicast connectivity—multicast applications such as SmartSockets
Multicast require the network layer to provide a path for multicast data to
flow from senders to receivers

• unicast connectivity—web browsers require the network layer to provide
unicast connectivity to web servers

However, this is why it is often more difficult to deploy multicast than unicast:

• older networking equipment may not be designed to accommodate multicast
deployment. Examples of this are switches that can only flood multicast and
routers that lack modern multicast routing protocols.

• different equipment solves the same problems in different ways. For example,
some switches use IGMP snooping while others use CGMP.

• multicast diagnostic tools are not readily available

• network administrators may have less experience with multicast deployment
than with unicast deployment

• administrators may need to configure bandwidth sharing for multicast
deployment. In contrast, unicast streams automatically share bandwidth
equitably, so administrators play no role in configuring bandwidth sharing.
 TIBCO SmartSockets User’s Guide

674 | Chapter 10 Using Multicast
Bandwidth Sharing
The bandwidth sharing mechanism that you use for multicasting depends on
which version of SmartSockets you use. SmartSockets Versions 6.2 and higher
support congestion control. Earlier versions of SmartSockets require
administrators to configure the amount of bandwidth that they expect the
network to deliver.

Bandwidth sharing for multicast is not automatic as it is for unicast. In unicast,
reliable unicast transports (for example, TCP) automatically share available
network bandwidth among all sessions contending for it. Administrators play no
role in this process—protocol stacks measure the round-trip time and packet loss
rates and dynamically determine available bandwidth. Unicast assumes that all
streams have equal priority and automatically divides bandwidth accordingly.

TIBCO SmartSockets Version 6.2 and Higher

TIBCO SmartSockets,Versions 6.2 and higher, provide support for congestion
control, which dynamically determines bandwidth limits and maximizes
throughput. For information on setting congestion control options, see
Bandwidth Management on page 647.

TIBCO SmartSockets Versions Prior to Version 6.2

SmartSockets versions prior to Version 6.2 do not provide support for congestion
control. Instead, SmartSockets relies on administrators to configure the amount of
bandwidth that they expect the network to deliver. If administrators fail to
configure the amount of bandwidth, congestion can cause packet loss and either
erratic behavior or application failure.

To optimize throughput, administrators need to limit how fast SmartSockets
Multicast sends data. If you exceed your network’s bandwidth capacity, the
congestion causes the network to perform below its maximum capacity. For
example, if you ask SmartSockets Multicast to deliver 11 Mbps over a 10 Mbps
network layer, you may only receive 5 or 7 Mbps. In addition, you will probably
experience chaotic behavior based on the loss rates and other factors. However, if
you ask SmartSockets Multicast to deliver 9 Mbps over a 10 Mbps network layer,
it will.
TIBCO SmartSockets User’s Guide

Tailoring Your Multicast Deployment | 675
Here are some tips for bandwidth sharing in an environment that uses a
SmartSockets version prior to Version 6.2:

• If you experience throughput that is below your network’s bandwidth
capacity, it is worthwhile to try reducing the SmartSockets Multicast
transmission rate. If the sub-optimal throughput is due to congestion, a slower
transmission rate may actually increase throughput.

• Remember that SmartSockets Multicast measures bandwidth for a stream.
Use caution in environments where multiple SmartSockets Multicast streams
share a network. The administrator must limit the total number of streams so
that the network can keep up with the aggregate bandwidth.

• Use caution in environments where SmartSockets Multicast streams share a
network with bursty unicast traffic. Because unicast generally attempts to take
all available bandwidth on the link, bursty unicast traffic can cause higher
SmartSockets Multicast loss rates. If your application requires SmartSockets
Multicast traffic to have priority, you should place a limit on unicast traffic to
guarantee SmartSockets Multicast its allocated piece of the total available
bandwidth.

Client Failovers in Multicast
Client failovers using the multicast protocol, PGM, as the alternate protocol do
not work. Because multicast uses threads on the client side, threading must be
initialized before PGM connects to RTgms. To initialize threading, set the
Server_Names option to pgm:_node:your_value to cause PGM to initialize threads
when it loads.

For example, if the Server_Names option is set to tcp,pgm:_node:your_value, after
the first successful TCP connection, RTclient stops traversing the Server_Names
list until the existing TCP connection is closed. When RTclient loses the
connection to RTserver, RTclient attempts to reconnect using TCP. If it cannot
reconnect, RTclient connects using PGM. The PGM link driver loads, and threads
are initialized.

RTclient cannot initialize threads in the middle of an application. Initializing
threads in the middle of an application can cause core dumps. Threads must be
initialized at program startup.

There is one workaround to this problem: call TipcInitThreads at program startup.
 TIBCO SmartSockets User’s Guide

676 | Chapter 10 Using Multicast
How Network Devices Forward Multicast
How multicast packets are forwarded depends on the types of network devices
you use:

• simple physical-layer devices

Physical-layer devices like hubs that do not inspect packets to determine if
they are unicast, broadcast, or multicast forward multicast packets to all
stations on the network exactly as forward all other packets.

• intermediate physical-layer devices

Physical-layer devices that inspect packets far enough to know if the
physical-layer address is unicast, broadcast, or multicast forward or "flood"
multicast and broadcast packets to all ports. In contrast, they forward unicast
packets only to the port containing the destination physical-layer address. A
"dumb" switch is an example of such a device.

• advanced physical-layer devices

Advanced physical-layer devices use knowledge of which physical layer
addresses are members of which network-layer multicast groups to selectively
forward multicast packets. These devices monitor network-layer IGMP
packets to obtain group membership information. This is often called "IGMP
snooping."

Cisco Systems switches prefer to use a Cisco Systems proprietary protocol
called "CGMP" instead. This protocol is used between routers and switches.
Like IGMP snooping, it gives the switches the information needed to
selectively forward multicast on a per-port basis instead of flooding it. It is
easier for switches to run CGMP because it requires no network-layer work on
their part.

• network-layer devices

Network-layer devices such as routers can generally be configured to forward
multicast between attached networks even though this is not generally the
default configuration. Once enabled, routers monitor IGMP group
membership requests from hosts and forward traffic to ports as necessary. See
Example Cisco Systems Router Configuration on page 679 for instructions on
how to enable multicast forwarding for Cisco Systems routers.

Routers are also responsible for forwarding multicast traffic to interested
devices that are not directly connected to their ports. A router can be
configured to forward multicast traffic between its own ports even if it does
not forward traffic to other routers. You must configure a multicast routing
protocol such as PIM, DVMRP, or MOSPF before routers will distribute
multicast traffic to all interested devices within an intranet.
TIBCO SmartSockets User’s Guide

Tailoring Your Multicast Deployment | 677
Multicast deployment often also involves ensuring that multicast streams go only
where they are wanted. This is especially important when high-bandwidth
streams are present on a network with some low-bandwidth links or where access
must be controlled at the network layer for security reasons. Within a LAN, all
Ethernet switches can direct unicast traffic only to ports where it is wanted.
However, many Ethernet switches simply flood multicast packets to all ports.
Therefore, it may be necessary to configure your network to block the flow of
multicast data for bandwidth-sharing or security reasons.

Testing for Multicast Traffic Before Configuring Your Network

Even before you configure your network specifically for multicast, your network
may already pass multicast traffic in some areas. Before configuring your
network, you may want to test your existing network to determine where
multicast data is already flowing, if it is flowing at all. See Multicast
Troubleshooting on page 487 for advice on testing multicast connectivity.

Multicast connectivity that happens without explicit network configuration
generally sends all multicast traffic to all users on a LAN. See Bandwidth Sharing
on page 674 for the implications of this.

If multicast traffic can already flow in your network, it is generally most likely to
flow between users in close proximity to one another. For example, within a
multi-story office building, offices on the same floor are very likely to find
multicast connectivity. Likelihood of multicast connectivity diminishes as you
move farther away: the minority of adjacent floors might have multicast
connectivity, it is unlikely for floors farther away to have multicast connectivity, it
is very unlikely to find multicast connectivity between buildings in a campus or
across a wide-area network, and it is rare to find multicast connectivity between
sites connected via the Internet unless both sites are educational or research sites.
 TIBCO SmartSockets User’s Guide

678 | Chapter 10 Using Multicast
Multicast and GMD
There are some known issues with the way multicasting works with GMD
messages. If GMD messages are being multicast, and a subscribing client does a
warm disconnect, some of those GMD messages might be missed. The problem
occurs because the client notifies the RTgms process that it is disconnecting, and
then the RTgms process notifies the RTserver sending the multicast GMD
messages. Potentially, the RTserver might have sent several GMD messages after
the client warm disconnect, but before the RTserver received notice from the
RTgms process to start buffering the GMD messages.

There are two workarounds to this problem:

• if you are using multicast for GMD messages, ensure that each RTclient has
the Server_Disconnect_Mode option set to either gmd_failure or
gmd_success. This prevents any warm disconnects.

• ensure that the number of subscribing clients for GMD messages is always
lower than the value you set for the Group_Threshold option. This ensures
that the GMD messages are unicast, not multicast, avoiding the issue.

Also note, because of the overhead required to guarantee message delivery,
multicasting with GMD is slower than multicasting without GMD.

UDP Encapsulation of PGM
SmartSockets Multicast allows PGM packets to be UDP encapsulated instead of
being encapsulated directly in IP. UDP encapsulation of PGM packets means that:

• packets are larger by the size of a UDP header

• root privilege is not required (on UNIX)

• PGM packets are invisible to routers
TIBCO SmartSockets User’s Guide

Tailoring Your Multicast Deployment | 679
Multicast Deployment with Frame Relay Networks
Frame relay networks are usually a partial or full mesh of point-to-point
connections between end points. Switches in frame relay networks are committed
to delivering a given bandwidth or Committed Information Rate (CIR) of frame
relay circuits between endpoints. This means that they are unable to generate
more than one packet out for each packet in, even though this is required to
implement broadcast or multicast.

Because frame relay switches cannot broadcast or multicast, Cisco Systems
routers can simulate it by duplicating all broadcast and multicast packets when
sending to an interface for each remote end point. By default, a single serial
interface transmits up to 3 point-to-point copies of a broadcast or multicast packet
if it has 3 virtual circuits running over it. Be sure to allocate bandwidth for each
multicast stream required by your application.

Some satellite applications use frame relay encapsulation but do not use frame
relay switches. In satellite broadcast applications, all end points can hear traffic
for all virtual circuits. For these applications, a Cisco Systems IOS frame-relay
multicast dlci command can send a single copy of multicast packets to a DLCI
shared by all end points. Be sure to use it on all serial ports that share the DLCI.

On terrestrial networks where packets must be copied for DLCI, Cisco Systems
limits the broadcast bandwidth. The default limit of 36 broadcast packets a second
equates to about 400 Kbps. Use the IOS frame-relay broadcast-queue command to
increase the limit if needed. See the Cisco Systems tip page on the Frame Relay
Broadcast Queue for more information.

Example Cisco Systems Router Configuration
Here is a sample configuration fragment for a Cisco Systems router that forwards
multicast traffic between Ethernet interfaces with the PGM Router Assist function
enabled on both interfaces.

ip multicast-routing
!
interface Ethernet 0
 ip pim sparse-dense-mode
 ip pgm router
!
interface Ethernet 1
 ip pim sparse-dense-mode
 ip pgm router

This also configures automatic discovery of all other PIM routers on Ethernet 0
and 1. Multicast traffic is exchanged among all PIM routers.

See the Cisco Systems Multicast Quick-Start Configuration Guide for additional
Cisco Systems multicast configuration examples.
 TIBCO SmartSockets User’s Guide

http://www.cisco.com/warp/public/125/20.html
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120t/120t5/pgmscale.htm
http://www.cisco.com/warp/public/105/48.html

680 | Chapter 10 Using Multicast
TIBCO SmartSockets User’s Guide

| 681
Index

Symbols

* wildcard in subjects 160
_next logical connection name 196
_random logical connection name 196
_time subject 204

A

absolute subject names 159
accepting connections 103, 105
access control list

See also ACL files
accessing

arrays in message fields 59
messages 44

acknowledging messages with GMD 338
acknowledgment of delivery 312
ACL files 275

acl.cfg file 279
address part of logical connection name 102, 194
addresses 194

sbrk 483
admin group 279
ADMIN_SET message

RTgms 650
RTserver 495

ADMIN_SET message type 495
alias command 591
appending fields to message data 50
architecture connection property 82
array fields 59
arrays as message fields

accessing 59
arrival timestamp message property 4
ASCII character format 124
Auth_Data_File option 514

authentication
Proxy_Password option 553
Proxy_Username option 553

Authorize_Publish option 514
auto flush size

getting existing settings 76
setting the value 76

auto flush size connection property 73, 76, 120, 122,
209

Auto Scroll, monitoring 452
automatically connecting to RTserver 200

B

background processes 288
backup files

name extensions 515
backup processes 429, 430
Backup_Name option 515
bandwith management 647
basic security 276
big-endian integer layout 123
binary buffers

serializing messages into 66
block mode

and timeout properties 75
blocking 152
non-blocking 152

block mode connection property 74, 77
BOOLEAN_DATA message type 40
buffer sizes

Client_Max_Buffer option 519
Group_Max_Buffer option 536
 TIBCO SmartSockets User’s Guide

682 | Index
buffering
infinite 76
messages

incoming 119
outgoing 122

specifying buffer size 559
buffers

socket 87
write 120

C

callback functions
TipcCbConnProcessGmdFailure 342, 357
TipcCbConnProcessKeepAlive 152
TipcCbConnProcessKeepAliveCall 151
TipcCbSrvError 201, 238
TipcCbSrvProcessControl 207
TipcCbSrvProcessGmdFailure 357
TipcConnDefaultCbCreate 108
TipcConnDefaultCbLookup 108
TipcConnErrorCbCreate 110
TipcConnErrorCbLookup 110
TipcConnProcessCbCreate 107
TipcConnProcessCbLookup 107
TipcConnQueueCbCreate 109
TipcConnQueueCbLookup 110
TipcConnReadCbCreate 108
TipcConnReadCbLookup 109
TipcConnWriteCbCreate 109
TipcConnWriteCbLookup 109
TipcSrv*CbCreate 205
TipcSrv*CbLookup 205
TipcSrvCreateCbCreate 200
TipcSrvCreateCbLookup 200
TipcSrvDestroyCbCreate 200, 238
TipcSrvDestroyCbLookup 200
TipcSrvSubjectCbCreate 205
TipcSrvSubjectCbDestroyAll 243
TipcSrvSubjectDefaultCbCreate 205, 242
TipcSrvTraverseCbCreate 188
TipcSrvTraverseCbLookup 188

callbacks
connection 166, 205
default 111, 116
discussion 84
error 112, 238

write timeout 77
improper use of 479
internal 202
process 111, 341

GMD_FAILURE 342
queue 112

discussion 116
read 111

discussion 116
RTclient-specific 237
server create 198, 238
server destroy 202, 238
server names traverse 239
subject 205, 241
types 114
used to process polling results 388
used to process watch results 411
with warm connection 235
write 112, 120

capturing messages 64
case sensitivity xxv

on UNIX and Windows xxv
catalog

resource
specifying name 515

Catalog_File option 515
Catalog_Flags option 516
cd command 593
changing

logging categories for message types 214
changing directories 593
character formats

ASCII 124
EBCDIC 124

check mode
connection event 256
socket event 260

checking
type of current field 58

circular trace files 579
TIBCO SmartSockets User’s Guide

Index | 683
Cisco routers
troubleshooting 490

clear output command 452
client connection 103
Client failovers

in multicast 675
Client_Burst_Interval option 516
Client_Connect_Timeout option 517
Client_Drain_Subjects option 517
Client_Drain_Timeout option 518
Client_Keep_Alive_Timeout option 519
Client_Max_Buffer option 519
Client_Max_Tokens option 520
Client_Read_Timeout option 520
Client_Reconnect_Timeout option 521

warm RTclients 346
Client_Threads

options 522, 561
Client_Token_Rate option 523
client-server model 103
cloning a message 59
cloud of RTservers 300
command files

mcast.cm 657
mcastopts.cm 657
RTclient startup 189

command line, monitoring 452
Command_Feedback option 523
command-line arguments

debugging RTserver 486
commands

alias 591
allowing in CONTROL messages 533
cd 593
clear output 452
connect 189, 595
create 597
credentials 599
disconnect 600
echo 602
edit 603
evaluate 604
exit 592
for debugging RTclient 483
for RTacl 589

for RTclients 585
for RTgms 672
for RTmon 587
for RTserver 584
groups 605
help 606
helpopt 607
history 608
load 609
ls 591
permissions 610
poll 611
processing from a file 623
pwd 591
quit 615
run 616
send 617
setnopt 620
setopt 619
sh 622
source 623
stats 625
subscribe 626
unalias 628
unsetopt 629
unsubscribe 630
unwatch 631
users 633
watch 634
with multiple connections 248

comments in text message files 64
communication between processes 72
communication functions 174
compression

by message type 272
Compression_Stats option 525
connection level 273
setting with LCNs 273
single message 272

compression library
Compression_Name option 525
ZLIB 271

compression message property 5
Compression option 524
compression property 28
 TIBCO SmartSockets User’s Guide

684 | Index
Compression_Args option 524
Compression_Name option 525
Compression_Stats option 525
configuration files

acl.cfg file 279
groups.cfg file 278
users.cfg file 277

configuring RTserver 290
congestion control 647

enabling 665
Conn_Max_Restarts option 526
Conn_Names option 527

creating connections 290
multi-homed machines 527

connect command 189, 595
connect modifier 291
connect prefix

connect_all 291
connect_all_stop 291
connect_one 291

connect_all connect prefix 291
connect_all_stop connect prefix 291
CONNECT_CALL message type 351
connect_one connect prefix 291
connection callbacks 166, 205
connection event

API summary 257
check mode 256
description 256

connection level compression 273
Compression option 524
Compression_Args option 524
Compression_Name option 525

connections
accepting 103, 105
advanced uses 141
advantages over sockets 88
assigning a cost

RTserver 292
callbacks 107, 205

error 201, 238
process 348, 357
write 336

checking for failures 151
client 103

compared to RTserver 169
compressing messages 273
controlling bandwidth 305
created by RTserver 290
creating 103, 150
creating a client 104
creating a server 104
debugging 479
defined 69
destroying 106
errors 110
example 89
failures 150
fault tolerance 149
handling network failures 149
infinite buffering 76
keep alive 151
limiting in RTserver 290
limiting server-to-server 547
logical names 101, 290, 307

address part 102, 194
connect prefix 291
extended 273
node part 101, 194
protocol part 101, 192
start prefix 195

losing due to busy process 575
maintain keep alive traffic 519
maximum limit 548
message queue 118
mixing with select function 143
mixing with sockets 143
mixing with Xt Intrinsics 141
multiple RTservers 248

file-based GMD 353
names used by clients 527
number of attempts to find a process 573
peer information

architecture property 82
node property 82
process ID property 82
unique subject property 83
user property 83

peer-to-peer 158, 315
peer-to-peer link 105
TIBCO SmartSockets User’s Guide

Index | 685
priority queue 115
properties 71

auto flush size 73, 76, 120, 122, 209
block mode 74, 77
callbacks 84
default callbacks 108
delivery timeout 11, 31, 79, 321, 335
error callbacks 110
GMD area 80, 316, 352
keep alive timeout 78
message queue 74
process callback 107
process mutex 81
queue callbacks 109
read buffer 73
read callbacks 108
read mutex 81
read timeout 77
socket 72
timeout 74
write buffer 73, 76
write callbacks 109
write mutex 81
write timeout 77

reading data from 115
reconnect delay 566
restarting

number of times to try 526
RTclient to RTserver 166, 189
server 103, 290
specifying automatic 559
status 236
threads 139
to hosts with multiple IP addresses 102
to RTservers with multiple IP addresses 197
wait time for checking 565
waiting for operations to complete 74
warm 201, 202, 307, 346
Xt Intrinsics 72

constructing a message 44, 49
CONTROL message type 40

security 279
controlling network bandwidth 305

convenience functions
TipcConnMainLoop 117
TipcConnMsgSearchType 56, 118
TipcConnMsgWrite 121
TipcMsgRead 54
TipcMsgWrite 51

conventions used in this manual xxiii
conversion of formats 123
correlation ID message property 6
CPU usage

stats command 625
create command 597
creating

client connection 104
connections 103
GMD area 334
message files 65
named options 620
RTserver connection 189
server connection 104

creating a connection 595
creating an alias 591
creating message types 597
credentials

See also security
credentials command 599
current field 52

accessing 52
changing 52
checking type of 58
setting 113

current projects, monitoring 453
customer support xxvi

D

data
reading from connection 115

data message property 7
data parameter 113
data standard message types 40
DCE 297
 TIBCO SmartSockets User’s Guide

686 | Index
debug file
automatic removal 484

debugging 282
connections 479
improper use of callbacks 479
limiting trace file size 579
messages 478
overview 477
permissions 282
RTclient commands for 483
RTclient not receiving data 481
RTclients 481
RTserver 484

VMS files created 485
RTserver options 486
specifying a security trace file format 556
specifying a trace file 578
specifying a trace file format 579
specifying amount of trace information 580
specifying Verbose option 581
unwanted messages 479

default callback 116
default callback connection property 108
default IP address

udp_broadcast 197
Default_Connect_Prefix option 528
Default_Msg_Priority option 529, 597
Default_Protocols option 529

TipcSrvCreate 190
Default_Subject_Prefix option 159, 530
defaults

for new message types 597
definitions

acknowledgment 313
connection 69
current field 52
defunct subject 164
fault tolerance 149
GDI 446
keep alive 150
message 1
message type 2
project 156
remote procedure call 246
socket 86

subject 158
unwanted message 479
warm connection 235

deleting
files from a GMD area 333
messages 343

deleting aliases 628
deleting subjects 630
delivery mode property 30, 318, 336, 345
delivery modes

best effort 9
GMD

all 9
some 9

ordered 9
delivery timeout 597

getting existing settings 79
setting the value 79

delivery timeout connection property 11, 31, 79, 321,
335

delivery timeout failures 342
delivery timeout message property 321, 335
delivery timeouts

disabling 31, 79
deriving new information 426
designated ACKer

disabling 661
initial timeout 661
specifying initially 666
throughput criteria 666

destination message property 12
destroying

connection to RTserver 202
connections 106
message files 66
messages 44, 56

destroying a connection 600
detached processes 288
diagnosing problems 477
direct RTclients 298
directories

changing 593
directory services 428
disconnect command 600
TIBCO SmartSockets User’s Guide

Index | 687
DISCONNECT message
on destroy 202

DISCONNECT message type 351
dispatcher

API summary 250
description 249
example 264
in detached thread 249
listening on multiple connections 249, 251, 252
overview 248

displaying
changes in monitoring information 634
command feedback 523
command information 606
current subject subscriptions 626
monitoring information 611
option information 607
previous commands 608
text 602
value of a named option 620
value of an option 619
verbose 581

distributing messages 617
domain naming service (DNS) 297
duplicate messages 340
dynamic message routing 296, 297

E

EBCDIC character format 124
echo command 602
edit command 603
Editor option

details 532
with edit command 603

Enable_Control_Msgs option 533
processing control messages 207

Enable_Stop_Msgs option 534
ENUM_DATA message type 41
error callback connection property 110
errors

nonrecoverable 351
Ethernet protocol 85

evaluate command 604
event

check mode 256, 260
connection event

APIs 257
description 256

description 254
message event

APIs 259
description 258
example 264

socket event
APIs 261
description 260

timer event
APIs 262
description 262
example 264

user event
APIs 263
description 263

event flags 141
events

multiple connections 248
examples

compiling, linking, and running 47, 98, 136, 183,
233, 405, 423

compiling, linking, and running GMD 329
connecting to an RTserver 596
connections 89
disconnecting from RTserver 601
hot backup (Guardian program) 431

discussion 442
load balancing 220
message construction 44
polling 400
RTclient advanced features 227
RTserver and RTclient message sending 175
subscribing to subjects 627
watching 418
working with GMD 322

executing shell commands 622
exit command 592
exiting

an RT process 615
 TIBCO SmartSockets User’s Guide

688 | Index
expiration message property 13
extended LCNs

configuring compression 273
extension 168
extension data, RTclient 360, 362, 366, 382, 390
exterior messages 301

F

Failovers
client failovers in multicast 675

failures
delivery timeout 342
GMD related 341

fault tolerance 149, 307, 429
definition 149
hardware-based 149
software-based 149

field types 7
binary 7
bool 8
bool_array 8
byte 8
char 7
for message values 8
int2 7
int2_array 7
int4 7, 8
int4_array 7
int8 7
int8_array 7
mismatches 478
msg 8
msg_array 8
pointer 61
real16 8
real16_array 8
real4 7
real4_array 7
real8 8
real8_array 8
str 7
str_array 7

timestamp 8
timestamp_array 8
unknown values 63
utf8 8
utf8_array 8
verbose 33
xml 8

fields 7
accessing 53
appending 50
array 59
containing messages 60
GMD_FAILURE message 341
number of 53
pointer 61
pointer-sized 54
repetitive group of 33
type 7
type mismatches 478
unknown values 63
value 8

File command, monitoring 450
file descriptors 105, 141, 143, 148
file names

specifying xxv
file-based credentials

credentials command 599
with basic security 282

filenames
extensions for backup 515

files
acl.cfg 279
created for debug 484
defining extensions for backup filenames 515
format of catalog strings 516
format of security trace file 556
format of trace file 579
GMD area on disk 539
groups.cfg 278
include 48
incoming data message log 541
incoming internal message log 542
incoming message log 540, 542
incoming multicast message log 541
incoming RTserver message log 543
TIBCO SmartSockets User’s Guide

Index | 689
incoming status message log 543
mcast.cm 657
mcastopts.cm 657
message 64
outgoing data message log 544
outgoing internal message log 545
outgoing message log 544, 545
outgoing multicast message log 544
outgoing RTserver message log 545
outgoing status message log 546
reading commands from 623
resource catalog 515
rtgms.cm 652
rtmon.cm 499
rtserver.cm 498
socket 199
Trace_File option 578
Trace_File_Size option 579
users.cfg 277

finding an RTserver 567
finding RTservers 290, 293
floating-point format 88
flooding algorithm 302
flow control

specifying end 663
specifying start 662

for multicast 194
formats

floating-point 88
for real numbers 554
for time 578
integer 88, 105, 116

big-endian 123
little-endian 123

real number 105, 116
DEC D 123
DEC F 123
DEC G 123
IEEE 123

strings 116

functions
callback 113

TipcCbConnProcessGmdFailure 342
TipcCbConnProcessKeepAlive 152
TipcCbConnProcessKeepAliveCall 151
TipcConnErrorCbLookup 110
TipcConnQueueCbCreate 109

callbacks
callback-type-specific data argument 114

case-sensitivity xxv
communication 174
message 173
message type 172
monitoring

TipcMon* functions 143
poll 143
select 143, 147
system call 119, 122
TipcCbConnProcessGmdFailure 357
TipcCbSrvError 201, 238
TipcCbSrvProcessControl 207
TipcCbSrvProcessGmdFailure 357
TipcConn* 122, 158, 166, 167, 169, 186, 205, 207, 208
TipcConnAccept 74, 82, 83, 105, 106, 144, 146, 150,

333, 339
TipcConnCheck 76, 106, 143, 150, 151, 152, 342
TipcConnCreateClient 82, 83, 333, 339
TipcConnCreateClientProtocol 341
TipcConnDefaultCbCreate 108
TipcConnDefaultCbLookup 108
TipcConnDestroy 106, 341
TipcConnErrorCbCreate 110
TipcConnFlush 73, 74, 75, 76, 120, 122, 143, 339, 341
TipcConnGetArch 82
TipcConnGetBlockMode 74
TipcConnGetGmdMaxSize 335
TipcConnGetGmdNumPending 317, 338
TipcConnGetNode 82
TipcConnGetNumQueued 74
TipcConnGetPid 82
TipcConnGetSocket 72, 141, 143
TipcConnGetUniqueSubject 83
TipcConnGetUser 83
TipcConnGmdFileCreate 334, 336, 339
TipcConnGmdFileDelete 333, 339
 TIBCO SmartSockets User’s Guide

690 | Index
TipcConnGmdMsgDelete 317, 342
TipcConnGmdMsgResend 342
TipcConnGmdResend 317, 333, 339, 352
TipcConnKeepAlive 151, 152
TipcConnMainLoop 117, 141, 142, 144, 334, 338, 339
TipcConnMsgInsert 57, 73, 74, 116
TipcConnMsgNext 56, 74, 115, 116, 117, 119, 122,

142, 144, 147
TipcConnMsgProcess 107, 108, 113, 115, 116, 117,

341
TipcConnMsgSearch 56, 74, 116, 117, 118, 119
TipcConnMsgSearchType 56, 118
TipcConnMsgSend 73, 76, 120, 122, 143, 147, 317,

318, 334, 336, 339
TipcConnMsgSendRpc 56, 147, 246
TipcConnMsgWrite 121, 122
TipcConnProcessCbCreate 107
TipcConnProcessCbLookup 107
TipcConnQueueCbLookup 110
TipcConnRead 73, 74, 76, 115, 118, 119, 123, 124, 317,

334, 338, 342
TipcConnReadCbCreate 108
TipcConnReadCbLookup 109
TipcConnSetBlockMode 74, 106
TipcConnSetGmdMaxSize 80, 318, 335
TipcConnSetSocket 72
TipcConnWriteCbCreate 109
TipcConnWriteCbLookup 109
TipcDispatcherCreate 250
TipcDispatcherCreateDetached 250
TipcDispatcherDestroy 250
TipcDispatcherDispatch 250
TipcDispatcherMainLoop 250
TipcDispatcherSrvAdd 250
TipcDispatcherSrvRemove 250
TipcEventCreateConn 257
TipcEventCreateMsg 259
TipcEventCreateMsgType 259
TipcEventCreateSocket 261
TipcEventCreateTimer 262
TipcEventDestroy 257, 259
TipcEventGetCheckMode 257, 261
TipcEventGetConn 257
TipcEventGetData 263
TipcEventGetDispatcher 257, 259

TipcEventGetInterval 262
TipcEventGetSocket 261
TipcEventGetType 257, 259
TipcEventSetInterval 262
TipcGetGmdDir 333
TipcInitCommands 585
TipcMon* 169
TipcMonClientBufferPoll 382
TipcMonClientBufferSetWatch 408
TipcMonClientCbPoll 382
TipcMonClientCpuPoll 382
TipcMonClientExtPoll 382
TipcMonClientGeneralPoll 382
TipcMonClientInfoPoll 382
TipcMonClientMsgRecvSetWatch 408
TipcMonClientMsgSendSetWatch 408
TipcMonClientMsgTrafficPoll 383
TipcMonClientMsgTypeExPoll 383
TipcMonClientNamesNumPoll 383
TipcMonClientNamesPoll 383
TipcMonClientNamesSetWatch 409
TipcMonClientOptionPoll 383
TipcMonClientSubjectExPoll 383
TipcMonClientSubscribeNumPoll 383
TipcMonClientSubscribePoll 383
TipcMonClientSubscribeSetWatch 409
TipcMonClientTimePoll 383, 385
TipcMonClientTimeSetWatch 409
TipcMonClientVersionPoll 383
TipcMonProjectNamesPoll 382, 611
TipcMonServerBufferPoll 383
TipcMonServerConnPoll 383
TipcMonServerConnSetWatch 409
TipcMonServerCpuPoll 384
TipcMonServerGeneralPoll 384
TipcMonServerMsgTrafficExPoll 384
TipcMonServerNamesPoll 384
TipcMonServerNamesSetWatch 409
TipcMonServerOptionPoll 384
TipcMonServerRoutePoll 384
TipcMonServerStartTimePoll 384
TipcMonServerTimePoll 384
TipcMonServerVersionPoll 384
TipcMonSubjectNamesPoll 384
TipcMonSubjectNamesSetWatch 409
TIBCO SmartSockets User’s Guide

Index | 691
TipcMonSubjectSubscribePoll 384, 385
TipcMonSubjectSubscribeSetWatch 409
TipcMsg* 120
TipcMsgAck 317, 338
TipcMsgAppendMsg 60
TipcMsgClone 20, 56, 59
TipcMsgCreate 49, 56
TipcMsgDestroy 20, 56, 57, 115, 117, 338
TipcMsgFileCreate 65
TipcMsgFileDestroy 66
TipcMsgFileRead 56, 65
TipcMsgFileWrite 64, 65
TipcMsgGetCompression 5
TipcMsgGetDeliveryMode 10
TipcMsgGetDeliveryTimeout 11
TipcMsgGetDest 12, 21
TipcMsgGetExpiration 13
TipcMsgGetHeaderStrEncode 14
TipcMsgGetLbMode 15
TipcMsgGetNumFields 17, 53
TipcMsgGetPriority 18
TipcMsgGetReadOnly 19
TipcMsgGetRefCount 20
TipcMsgGetSender 22
TipcMsgGetSenderTimestamp 23
TipcMsgGetSeqNum 4, 6, 16, 24
TipcMsgGetType 25
TipcMsgGetUserProp 26
TipcMsgIncrRefCount 20, 56
TipcMsgNextMsg 60
TipcMsgNextType 58
TipcMsgRead 54, 60
TipcMsgSetCompression 5
TipcMsgSetCurrent 52
TipcMsgSetDelivery 10
TipcMsgSetDeliveryMode 336
TipcMsgSetDeliveryTimeout 11
TipcMsgSetDest 12, 21, 208
TipcMsgSetExpiration 13
TipcMsgSetHeaderStrEncode 14
TipcMsgSetLbMode 15
TipcMsgSetNumFields 17, 57
TipcMsgSetPriority 18
TipcMsgSetSender 22
TipcMsgSetSenderTimestamp 23

TipcMsgSetType 25
TipcMsgSetUserProp 26
TipcMsgWrite 51, 59
TipcMtCreate 43
TipcMtGetCompression 29
TipcMtGetDeliveryMode 30
TipcMtGetDeliveryTimeout 31
TipcMtGetGrammar 32
TipcMtGetHeaderStrEncode 34
TipcMtGetLbMode 35
TipcMtGetName 36
TipcMtGetNum 37
TipcMtGetPriority 38
TipcMtGetUserProp 39
TipcMtSetCompression 28
TipcMtSetDeliveryMode 30, 336
TipcMtSetDeliveryTimeout 31
TipcMtSetHeaderStrEncode 34
TipcMtSetPriority 38
TipcMtSetPriorityUnknown 38
TipcMtSetUserProp 39
TipcSrv* 167, 169, 186, 200, 205, 207, 208, 235, 237
TipcSrv*CbCreate 205
TipcSrv*CbLookup 205
TipcSrvCreate 189, 190, 198, 200, 201, 207, 235, 236,

346, 351
TipcSrvCreateCbCreate 200
TipcSrvCreateCbLookup 200
TipcSrvDestroy 200, 202, 236, 238, 346, 351
TipcSrvDestroyCbCreate 200, 238
TipcSrvDestroyCbLookup 200
TipcSrvGetConnStatus 200, 236
TipcSrvGmdFileCreate 352
TipcSrvGmdFileDelete 200, 352
TipcSrvGmdMsgServerDelete 347, 357
TipcSrvGmdMsgStatus 348, 349, 358
TipcSrvGmdResend 200
TipcSrvIsRunning 200
TipcSrvLogAddMt 200, 210, 214
TipcSrvLogRemoveMt 200, 210, 214
TipcSrvMsgInsert 57
TipcSrvMsgNext 56
TipcSrvMsgSearch 56
TipcSrvMsgSearchType 56, 246, 349
TipcSrvMsgSend 208, 209, 246
 TIBCO SmartSockets User’s Guide

692 | Index
TipcSrvMsgSendRpc 56
TipcSrvMsgWrite 208, 209
TipcSrvMsgWriteVa 208
TipcSrvSetAutoFlushSize 209
TipcSrvStdSubjectSetSubscribe 204, 577
TipcSrvStop 200
TipcSrvSubject* 143
TipcSrvSubjectCbCreate 205
TipcSrvSubjectCbDestroyAll 243
TipcSrvSubjectDefaultCbCreate 205, 242
TipcSrvSubjectGetSubscribe 203
TipcSrvSubjectGmdInit 354
TipcSrvSubjectLbInit 216
TipcSrvSubjectSetSubscribe 203
TutCommandParseFile 189
TutCommandParseStr 207, 585
TutCommandParseTypedStr 585
TutGetSocketDir 199
TutOptionSetUnknown 214
utility 174

TutSocketCheck 143
Xt Intrinsics

TipcConnGetXtSource 141
XtAppAddInput 141, 143
XtAppAddTimeOut 142
XtAppAddWorkProc 142
XtAppMainLoop 141, 143
XtAppPending 142
XtAppProcessEvent 142
XtRemoveInput 141

G

GDI
defining prompt 552

getting help
help command 606

getting values
for auto flush size 76
for delivery timeout 79
for keep alive timeout 78
for read timeout 77
for write timeout 78

GMD
acknowledging delivery 347
acknowledgment messages 313
asynchronous operation 317
automatic acknowledgement 538
automatic acknowledgement policy 539
Client_Reconnect_Timeout option 521
combined with monitoring 356
components

sequence number 315
delivery modes 345
delivery timeout property 31
disconnect actions 563
duplicate sequence numbers 337
error codes 347
file-based 80, 316

configuration 331
multiple RTserversconsiderations 353
reverting to memory 333
specifying directory 564

keeping accounting information 534
limitations 343
load balancing 219
memory-only 80, 316
message types 347
no subscribers 582
pending messages 337
polling for status 347
priority with GMD 343
processing failure messages 357
receiver processing 317
restrictions 343
sender processing 316
setting the value for GMD area 318
specifying file or memory 540
specifying GMD area 539
terminating for a specific message 357
time to acknowledge 562
waiting for completion 338
warm RTclients 346
with multicast 678
with multiple connections 248
TIBCO SmartSockets User’s Guide

Index | 693
GMD area 120
creating 334
deleting files from 333
highest sequence number 352
maximum size 335

GMD area connection property 80, 316
GMD_ACK message type 41, 320, 347, 354
GMD_DELETE message type 41, 347, 355
GMD_FAILURE message fields 341
GMD_FAILURE message type 41, 321, 347, 348, 355,

357
GMD_FAILURE messages 341
gmd_failure setting

Server_Disconnect_Mode option 563
GMD_INIT_CALL message type 41
GMD_INIT_RESULT message type 41
GMD_NACK message type 348, 355
Gmd_Publish_Timeout option 534

using for RTserver 354
GMD_STATUS_CALL message type 41, 348, 355
GMD_STATUS_RESULT message type 41, 349, 355
gmd_success setting

Server_Disconnect_Mode option 563
GMD-related failures 341
grammar message type property 32
graph

undirected 299
group 299
Group_Burst_Interval option 535
Group_Max_Buffer option 536
Group_Max_Tokens option 536
Group_Names option 537
Group_Threshold option 656
Group_Token_Rate option 538
groups

admin group 279
basic security 278, 279
multicast addresses 194
names of RTservers 537
setting permissions 279

groups command 605
GRP_ADMIN_SET_OUTBOUND_RATE_PARAMS

message type 650
GRP_ADMIN_SET_PGM_OPTIONS message

type 651

guaranteed message delivery
see also GMD 309

H

hardware failures 149
header string encode message property 14
help command 606
Help command, monitoring 451
helpopt command 607
heterogeneous environment 123
heterogeneous networks 85
hierarchical subject names 159
hierarchical subject namespace 159
history command 608
hosts

multi-homed 102
hot backup processes 208, 429, 430

I

identification strings 427
Monitor_Ident option 549

identifiers
case sensitivity xxv

identifying
specifying Unique_Subject 581

IEEE floating-point format 123
include files 48, 100, 186
indirect RTclients 298
information

deriving 426
integer formats 88, 105, 116

big-endian 123
incompatible 123
little-endian 123

interface
defining prompt 552

interior messages 301
internal callbacks 202
internal standard message types 40
 TIBCO SmartSockets User’s Guide

694 | Index
IP address
machines with multiple 102
multi-homed machines 527
RTservers with multiple 197

Ipc_Gmd_Auto_Ack option 538
Ipc_Gmd_Auto_Ack_Policy option 539
Ipc_Gmd_Directory option 539

GMD 334
Ipc_Gmd_Type option 540

J

JMS support
message types 41

JMS_BYTES message type 41
JMS_MAP message type 41
JMS_OBJECT message type 41
JMS_STREAM message type 42
JMS_TEXT message type 42

K

keep alive 77
Client_Keep_Alive_Timeout option 519
definition 150
Server_Keep_Alive_Timeout option 565
Server_Read_Timeout option 571
TCP/IP 150
timeout 150

keep alive timeout
disabling 78
getting existing settings 78
setting the value 78

keep alive timeout connection property 78
KEEP_ALIVE_CALL message type 78, 151
KEEP_ALIVE_RESULT message type 78, 151
keywords

_any 527

L

latency 648
LCN

See also logical connection names
libraries

compression library 271
little-endian integer layout 123
load balancing 215

GMD 219
overriding 217

load balancing message property 15
load command 609
load_balancing_off 217
local protocol 85, 150, 163, 195

connect problem 199
localhost

specifying connection to RTgms 191
location

of mcast.cm file 657
Log_In_Client option 540
Log_In_Data option 541
Log_In_Group option 541
Log_In_Internal option 542
Log_In_Msgs option 542
Log_In_Server option 543
Log_In_Status option 543
Log_Out_Client option 544
Log_Out_Data option 544
Log_Out_Group option 544
Log_Out_Internal option 545
Log_Out_Msgs option 545
Log_Out_Server option 545
Log_Out_Status option 546
logging

messages 210
messages by RTserver 295
TIBCO SmartSockets User’s Guide

Index | 695
logical connection names 101, 290, 307
address part 102
configuring compression 273
connect prefix 291
extended 273
finding other RTservers 293
modifiers 291
next 196
node part 101
protocol part 101, 192
randomizing 196
start prefix 195

looking up message types 42
loss rate

percentage of gain 662
loss, recovering from 648
lost date

multicast NAKs 660
ls command 591

M

Max_Client_Conns option 546
Max_Server_Accept_Conns option 547
Max_Server_Connect_Conns option 547
Max_Server_Conns option 548
maximum size of GMD area 335
mcast_cm_file option 658
memory usage

stats command 625
message

compression
interior 301
properties

arrival timestamp 4
correlation ID 6
message ID 16

routing 296, 301
message compression 271

See also compression
message data fields See fields

message event
API summary 259
description 258
example 264

message files 40, 64, 108, 109, 210, 295
creating 65
destroying 66
grammar 32
reading 65
text 64

comments in 64
using 65

message functions 173
message ID message property 16
message logging

starting 213
stopping 214

message queue 109, 118
adding message to 74
getting message from 74
priority 74
searching for specific message 74

message queue connection property 74
message type

creating 597
message type functions 172
message types 27, 384

ADMIN_SET_OUTBOUND_RATE_PARAMS 495
call and result numbers for RPC 246
CALL and RESULT pairs 385
categories

data 212
internal 212

changing logging categories 214
CONNECT_CALL 351
CONTROL

processing 207
security 279

defined 2
DISCONNECT 351
GMD 320, 347
GMD_ACK 320, 347, 354
GMD_DELETE 347, 355
GMD_FAILURE 321, 347, 348, 355, 357
GMD_NACK 348, 355
 TIBCO SmartSockets User’s Guide

696 | Index
GMD_STATUS_CALL 348, 355
GMD_STATUS_RESULT 349, 355
GRP_ADMIN_SET_OUTBOUND_RATE_PARAMS

650
GRP_ADMIN_SET_PGM_OPTIONS 651
KEEP_ALIVE_CALL 78, 151
KEEP_ALIVE_RESULT 78, 151
logging categories 210
looking up 42
MON_* 356
MON_*_POLL_CALL 362, 367
MON_*_POLL_RESULT 362, 367
MON_*_SET_WATCH 362, 367
MON_*_STATUS 362, 367
MON_CLIENT_BUFFER_POLL_CALL 367, 389
MON_CLIENT_BUFFER_POLL_RESULT 367, 382,

389
MON_CLIENT_BUFFER_SET_WATCH 367, 413
MON_CLIENT_BUFFER_STATUS 367, 408, 413
MON_CLIENT_CB_POLL_CALL 367, 389
MON_CLIENT_CB_POLL_RESULT 368, 382
MON_CLIENT_CONGESTION_SET_WATCH 368,

414
MON_CLIENT_CONGESTION_STATUS 368, 414
MON_CLIENT_CPU_POLL_CALL 368, 390
MON_CLIENT_CPU_POLL_RESULT 368, 382, 390
MON_CLIENT_EXT_POLL_CALL 368
MON_CLIENT_EXT_POLL_RESULT 368, 382
MON_CLIENT_GENERAL_POLL_CALL 368, 390
MON_CLIENT_GENERAL_POLL_RESULT 369,

382, 390
MON_CLIENT_INFO_POLL_CALL 369, 391
MON_CLIENT_INFO_POLL_RESULT 370, 382,

391
MON_CLIENT_MSG_RECV_SET_WATCH 370,

414
MON_CLIENT_MSG_RECV_STATUS 370, 408, 414
MON_CLIENT_MSG_SEND_SET_WATCH 370,

414
MON_CLIENT_MSG_SEND_STATUS 371, 414
MON_CLIENT_MSG_TRAFFIC_POLL_CALL 371,

391
MON_CLIENT_MSG_TRAFFIC_POLL_RESULT 3

71, 383, 391

MON_CLIENT_MSG_TYPE_EX_POLL_CALL 371,
391

MON_CLIENT_MSG_TYPE_EX_POLL_RESULT 3
72, 383, 391

MON_CLIENT_MSG_TYPE_POLL_CALL 372
MON_CLIENT_MSG_TYPE_POLL_RESULT 373
MON_CLIENT_NAMES_NUM_POLL_CALL 373,

392
MON_CLIENT_NAMES_NUM_POLL_RESULT 38

3, 392
MON_CLIENT_NAMES_POLL_CALL 373, 392
MON_CLIENT_NAMES_POLL_RESULT 373, 383,

392, 427
MON_CLIENT_NAMES_SET_WATCH 373, 415
MON_CLIENT_NAMES_STATUS 374, 409, 415,

427
MON_CLIENT_OPTION_POLL_CALL 374, 392
MON_CLIENT_OPTION_POLL_RESULT 374, 383,

392
MON_CLIENT_SUBJECT_EX_POLL_CALL 374,

393
MON_CLIENT_SUBJECT_EX_POLL_RESULT 374,

383
MON_CLIENT_SUBJECT_POLL_CALL 374
MON_CLIENT_SUBJECT_POLL_RESULT 375, 393
MON_CLIENT_SUBSCRIBE_NUM_POLL_CALL 3

75, 393
MON_CLIENT_SUBSCRIBE_NUM_POLL_RESUL

T 375, 383, 393
MON_CLIENT_SUBSCRIBE_POLL_CALL 375, 393
MON_CLIENT_SUBSCRIBE_POLL_RESULT 375,

383, 393
MON_CLIENT_SUBSCRIBE_SET_WATCH 375,

415
MON_CLIENT_SUBSCRIBE_STATUS 375, 409, 415
MON_CLIENT_TIME_POLL_CALL 375, 385, 394
MON_CLIENT_TIME_POLL_RESULT 375, 383,

385, 394
MON_CLIENT_TIME_SET_WATCH 376, 410, 415
MON_CLIENT_TIME_STATUS 376, 409, 415
MON_CLIENT_VERSION_POLL_CALL 376, 394
MON_CLIENT_VERSION_POLL_RESULT 376,

383, 394, 398
MON_PROJECT_NAMES_POLL_CALL 376, 394
TIBCO SmartSockets User’s Guide

Index | 697
MON_PROJECT_NAMES_POLL_RESULT 376,
382, 394

MON_PROJECT_NAMES_SET_WATCH 376, 416
MON_PROJECT_NAMES_STATUS 376, 408, 416
MON_SERVER_BUFFER_POLL_CALL 376, 395
MON_SERVER_BUFFER_POLL_RESULT 376, 383,

395
MON_SERVER_CONGESTION_SET_WATCH 377,

416
MON_SERVER_CONGESTION_STATUS 377, 416
MON_SERVER_CONN_POLL_CALL 377, 395
MON_SERVER_CONN_POLL_RESULT 377, 383,

395
MON_SERVER_CONN_SET_WATCH 377, 416
MON_SERVER_CONN_STATUS 377, 409, 416
MON_SERVER_CPU_POLL_CALL 377, 395
MON_SERVER_CPU_POLL_RESULT 377, 384, 395
MON_SERVER_GENERAL_POLL_CALL 378, 396
MON_SERVER_GENERAL_POLL_RESULT 378,

384, 396
MON_SERVER_MAX_CLIENT_LICENSES_SET_W

ATCH 378, 417
MON_SERVER_MAX_CLIENT_LICENSES_STATU

S 378, 417
MON_SERVER_MSG_TRAFFIC_EX_POLL_CALL

378, 396
MON_SERVER_MSG_TRAFFIC_EX_POLL_RESUL

T 379, 384
MON_SERVER_MSG_TRAFFIC_POLL_CALL 379,

380
MON_SERVER_MSG_TRAFFIC_POLL_RESULT 3

79, 396
MON_SERVER_NAMES_POLL_CALL 379, 396
MON_SERVER_NAMES_POLL_RESULT 379, 384,

396, 427
MON_SERVER_NAMES_SET_WATCH 379, 417
MON_SERVER_NAMES_STATUS 379, 409, 417,

427
MON_SERVER_OPTION_POLL_CALL 379, 397
MON_SERVER_OPTION_POLL_RESULT 380, 397
MON_SERVER_ROUTE_POLL_CALL 397
MON_SERVER_ROUTE_POLL_RESULT 380, 384,

397
MON_SERVER_START_TIME_POLL_CALL 380,

397

MON_SERVER_START_TIME_POLL_RESULT 380,
384, 397

MON_SERVER_TIME_POLL_CALL 380, 398
MON_SERVER_TIME_POLL_RESULT 380, 384,

398
MON_SERVER_VERSION_POLL_CALL 380, 398
MON_SERVER_VERSION_POLL_RESULT 380,

384
MON_SUBJECT_NAMES_POLL_CALL 380, 398
MON_SUBJECT_NAMES_POLL_RESULT 381, 384,

398
MON_SUBJECT_NAMES_SET_WATCH 381, 417
MON_SUBJECT_NAMES_STATUS 381, 409, 417
MON_SUBJECT_SUBSCRIBE_POLL_CALL 381,

385, 399
MON_SUBJECT_SUBSCRIBE_POLL_RESULT 381,

384, 385, 399
MON_SUBJECT_SUBSCRIBE_SET_WATCH 381,

410, 418
MON_SUBJECT_SUBSCRIBE_STATUS 381, 409,

418
monitoring 364, 367

list of 367
priority 363

polling 389
printing information about 478
processed locally by RTserver 293
properties

compression 28
delivery mode 30
grammar 32
name 36
number 37, 147
priority 38
user-defined 39

restricted 279
standard 27, 40, 214

BOOLEAN_DATA 40
CONTROL 40
data 40
ENUM_DATA 41
GMD_ACK 41
GMD_DELETE 41
GMD_FAILURE 41
GMD_INIT_CALL 41
 TIBCO SmartSockets User’s Guide

698 | Index
GMD_INIT_RESULT 41
GMD_STATUS_CALL 41
GMD_STATUS_RESULT 41
internal 40
JMS_BYTES 41
JMS_MAP 41
JMS_OBJECT 41
JMS_STREAM 42
JMS_TEXT 42
NUMERIC_DATA 42
status 40
STRING_DATA 42

user-defined 43, 295
watching 413

messages
ability to send 567
accessing 44
accessing in nonpriority order 117
acknowledging with GMD 338
acknowledgment of delivery 312
as fields in other messages 60
buffering

incoming 119
outgoing 122

callbacks 84
capturing 64
case sensitivity xxv
cloning 59
compressing
constructing 44, 49
CONTROL

setting allowable commands 533
converting 123
creating 49
current field

setting 113
debugging 478
defined 1
deleting 343
destroying 44, 56
duplicate 116, 340
exterior 301
fields

number of 53
GMD completion 338

GMD delivery timeout 562
GMD_FAILURE 341
GMD_FAILURE fields 341
heterogeneous environment 123
incoming

buffering 143
managed by a dispatcher 249
storing 73, 74

logging 210
logging by RTserver 295
logging categories for RTserver 295
logging incoming 540, 542
logging incoming data 541
logging incoming internal 542
logging incoming multicast 541
logging incoming RTserver messages 543
logging incoming status 543
logging outgoing 544, 545
logging outgoing data 544
logging outgoing internal 545
logging outgoing multicast 544
logging outgoing RTserver messages 545
logging outgoing status 546
logging to file 66
logging to file for debug 478
message queue

adding message to 74
getting message from 74
searching for specific message 74

modifying 19
outgoing

buffering 143
delivery mode 30
delivery timeout 31
header string encode 34
load balancing mode 35
priority 38
storing 73
user-defined property 39
write callbacks 109

pointer fields 61
printing information about 478
processing 113, 115, 207

using a convenience function 117
processing with run 616
TIBCO SmartSockets User’s Guide

Index | 699
properties
compression 5
data 7
delivery mode for GMD 318
delivery mode GMD example 336
delivery mode with GMD 345
delivery modes

message property 9
delivery timeout 65
delivery timeout for GMD 321
delivery timeout GMD example 335
destination 12, 158
expiration 13
header string encode 14
load balancing 15
num fields 17
priority 74
read only 19
reference count 20, 65
reply to 21
sender 22, 158
sender timestamp 23
sequence number 24, 315, 352
type 25
user-defined 26

receiving 207
receiving with GMD 337
remote procedure call 147
rereceiving 340
resending 342
resending old GMD 339
reusing 57
routing by RTserver to RTclient 293
routing example 164
searching for a specific message type 118
searching for specific 117
send command 617
sending 120, 123, 208

in heterogeneous environment 123
sending with GMD 336
setting non-data properties 49
setting wait period for next message 116
tracing lost 482
types in log file 211

unwanted 479
receiving 479

value
field type 8

waiting for GMD completion 338
modifying a message 19
MON_* message type 356
MON_*_POLL_CALL message types 362, 367
MON_*_POLL_RESULT message types 362, 367
MON_*_SET_WATCH message types 362, 367
MON_*_STATUS message types 362, 367
MON_CLIENT_BUFFER_POLL_CALL message

type 367, 389
MON_CLIENT_BUFFER_POLL_RESULT message

type 367, 382, 389
MON_CLIENT_BUFFER_SET_WATCH message

type 367, 413
MON_CLIENT_BUFFER_STATUS message type 367,

408, 413
MON_CLIENT_CB_POLL_CALL message type 367,

389
MON_CLIENT_CB_POLL_RESULT message

type 368, 382
MON_CLIENT_CONGESTION_SET_WATCH mes-

sage type 368, 414
MON_CLIENT_CONGESTION_STATUS message

type 368, 414
MON_CLIENT_CPU_POLL_CALL message

type 368, 390
MON_CLIENT_CPU_POLL_RESULT message

type 368, 382, 390
MON_CLIENT_EXT_POLL_CALL message type 368
MON_CLIENT_EXT_POLL_RESULT message

type 368, 382
MON_CLIENT_GENERAL_POLL_CALL message

type 368, 390
MON_CLIENT_GENERAL_POLL_RESULT message

type 369, 382, 390
MON_CLIENT_INFO_POLL_CALL message

type 369, 391
MON_CLIENT_INFO_POLL_RESULT message

type 370, 382, 391
MON_CLIENT_MSG_RECV_SET_WATCH message

type 370, 414
 TIBCO SmartSockets User’s Guide

700 | Index
MON_CLIENT_MSG_RECV_STATUS message
type 370, 408, 414

MON_CLIENT_MSG_SEND_SET_WATCH message
type 370, 414

MON_CLIENT_MSG_SEND_STATUS message
type 371, 414

MON_CLIENT_MSG_TRAFFIC_POLL_CALL mes-
sage type 371, 391

MON_CLIENT_MSG_TRAFFIC_POLL_RESULT mes-
sage type 371, 383, 391

MON_CLIENT_MSG_TYPE_EX_POLL_CALL mes-
sage type 371, 391

MON_CLIENT_MSG_TYPE_EX_POLL_RESULT mes-
sage type 372, 383, 391

MON_CLIENT_MSG_TYPE_POLL_CALL message
type 372

MON_CLIENT_MSG_TYPE_POLL_RESULT mes-
sage type 373

MON_CLIENT_NAMES_NUM_POLL_CALL mes-
sage type 373, 392

MON_CLIENT_NAMES_NUM_POLL_RESULT mes-
sage type 383, 392

message types
MON_CLIENT_NAMES_NUM_POLL_RESULT

373
MON_CLIENT_NAMES_POLL_CALL message

type 373, 392
MON_CLIENT_NAMES_POLL_RESULT message

type 373, 383, 392, 427
MON_CLIENT_NAMES_SET_WATCH message

type 373, 415
MON_CLIENT_NAMES_STATUS message type 374,

409, 415, 427
MON_CLIENT_OPTION_POLL_CALL message

type 374, 392
MON_CLIENT_OPTION_POLL_RESULT message

type 374, 383, 392
MON_CLIENT_SUBJECT_EX_POLL_CALL message

type 374, 393
MON_CLIENT_SUBJECT_EX_POLL_RESULT mes-

sage type 374, 383
MON_CLIENT_SUBJECT_POLL_CALL message

type 374
MON_CLIENT_SUBJECT_POLL_RESULT message

type 375, 393

MON_CLIENT_SUBSCRIBE_NUM_POLL_CALL
message type 375, 393

MON_CLIENT_SUBSCRIBE_NUM_POLL_RESULT
message type 375, 383, 393

MON_CLIENT_SUBSCRIBE_POLL_CALL message
type 375, 393

MON_CLIENT_SUBSCRIBE_POLL_RESULT mes-
sage type 375, 383, 393

MON_CLIENT_SUBSCRIBE_SET_WATCH message
type 375, 415

MON_CLIENT_SUBSCRIBE_STATUS message
type 375, 409, 415

MON_CLIENT_TIME_POLL_CALL message
type 375, 385, 394

MON_CLIENT_TIME_POLL_RESULT message
type 375, 383, 385, 394

MON_CLIENT_TIME_SET_WATCH message
type 376, 410, 415

MON_CLIENT_TIME_STATUS message type 376,
409, 415

MON_CLIENT_VERSION_POLL_CALL message
type 376, 394

MON_CLIENT_VERSION_POLL_RESULT message
type 376, 383, 394, 398

MON_PROJECT_NAMES_POLL_CALL message
type 376, 394

MON_PROJECT_NAMES_POLL_RESULT message
type 376, 382, 394

MON_PROJECT_NAMES_SET_WATCH message
type 376, 416

MON_PROJECT_NAMES_STATUS message
type 376, 408, 416

MON_SERVER_BUFFER_POLL_CALL message
type 376, 395

MON_SERVER_BUFFER_POLL_RESULT message
type 376, 383, 395

MON_SERVER_CONGESTION_SET_WATCH mes-
sage type 377, 416

MON_SERVER_CONGESTION_STATUS message
type 377, 416

MON_SERVER_CONN_POLL_CALL message
type 377, 395

MON_SERVER_CONN_POLL_RESULT message
type 377, 383, 395
TIBCO SmartSockets User’s Guide

Index | 701
MON_SERVER_CONN_SET_WATCH message
type 377, 416

MON_SERVER_CONN_STATUS message type 377,
409, 416

MON_SERVER_CPU_POLL_CALL message
type 377, 395

MON_SERVER_CPU_POLL_RESULT message
type 377, 384, 395

MON_SERVER_GENERAL_POLL_CALL message
type 378, 396

MON_SERVER_GENERAL_POLL_RESULT message
type 378, 384, 396

MON_SERVER_MAX_CLIENT_LICENSES_SET_WA
TCH message type 378, 417

MON_SERVER_MAX_CLIENT_LICENSES_STATUS
message type 378, 417

MON_SERVER_MSG_TRAFFIC_EX_POLL_CALL
message type 378, 396

MON_SERVER_MSG_TRAFFIC_EX_POLL_RESULT
message type 379, 384

MON_SERVER_MSG_TRAFFIC_POLL_CALL mes-
sage type 379

MON_SERVER_MSG_TRAFFIC_POLL_RESULT mes-
sage type 379, 396

MON_SERVER_NAMES_POLL_CALL message
type 379, 396

MON_SERVER_NAMES_POLL_RESULT message
type 379, 384, 396, 427

MON_SERVER_NAMES_SET_WATCH message
type 379, 417

MON_SERVER_NAMES_STATUS message type 379,
409, 417, 427

MON_SERVER_OPTION_POLL_CALL message
type 379, 397

MON_SERVER_OPTION_POLL_RESULT 384
MON_SERVER_OPTION_POLL_RESULT message

type 380, 384, 397
MON_SERVER_ROUTE_POLL_CALL message

type 380, 397
MON_SERVER_ROUTE_POLL_RESULT message

type 380, 384, 397
MON_SERVER_START_TIME_POLL_CALL message

type 380, 397
MON_SERVER_START_TIME_POLL_RESULT mes-

sage type 380, 384, 397

MON_SERVER_TIME_POLL_CALL message
type 380, 398

MON_SERVER_TIME_POLL_RESULT message
type 380, 384, 398

MON_SERVER_VERSION_POLL_CALL message
type 380, 398

MON_SERVER_VERSION_POLL_RESULT message
type 380, 384

MON_SUBJECT_NAMES_POLL_CALL message
type 380, 398

MON_SUBJECT_NAMES_POLL_RESULT message
type 381, 384, 398

MON_SUBJECT_NAMES_SET_WATCH message
type 381, 417

MON_SUBJECT_NAMES_STATUS message type 381,
409, 417

MON_SUBJECT_SUBSCRIBE_POLL_CALL message
type 381, 385, 399

MON_SUBJECT_SUBSCRIBE_POLL_RESULT mes-
sage type 381, 384, 385, 399

MON_SUBJECT_SUBSCRIBE_SET_WATCH message
type 381, 410, 418

MON_SUBJECT_SUBSCRIBE_STATUS message
type 381, 409, 418

Monitor_Ident option 549
Monitor_Scope option 550

using to monitor 365
monitoring

advanced 426
blocking 364
by RTclients 307
combined with GMD 356
command bar 452
current state 452
extension data 360, 362, 366, 382, 390
Graphical Development Interface (GDI) 446
incoming messages 456
indentification strings 549
information available 360
initiating 361
items that do not exist 364
location of requested information 362
 TIBCO SmartSockets User’s Guide

702 | Index
managing command files 453
menu bar 450
message types 364, 367

priority 363
multiple responses 364
options 364
poll command 611
polling or watching 366
RTclient by RTclient 168
RTclient message traffic 470
RTclients 454
rtmon.cm file 448, 453
RTserver by RTclient 166
RTserver information 465
RTserver response to request 361
send a message 471
sequential list mode 457
specifying categories 550
standard message types 362
standard output 452
stopping 474
subjects 161, 203, 364
time to return information 362
TipcMon* functions 143
view incoming messages 459
view log file 458
watch outgoing messages 460
watch results 411
watching 366
watching,description 408

Motif 141, 238
Multi_Threaded_Mode

options 551
Multicast

client failovers 675
with GMD 678

multicast
address field 194
enabling congestion control 665
flow control

specifying high water mark 662
specifying low water mark 663

Group_Names option 537
logging incoming messages 541
logging outgoing messages 544

loss rate 662
minimum transmission rate 665
root access 667
specifying data time to live 663
specifying NAK time to live 660
specifying port 659
specifying threshold 656
specifying transmission rate 664
using localhost 191

multi-homed hosts 102, 197
multi-homed machines

listening to all IP addresses 527
multiple connections 248

specifying GMD directory 564
using a dispatcher 249, 252
using commands with 248
without a dispatcher 251

multiple RTserver connections 248
multiple RTserver processes 298
multiple RTservers 293, 296
multithreading

specifying number of threads 569

N

NAK 648
name message type property 36
named options

creating 620
setting, displaying 620

naming services 428
negative acknowledgement 648
network bandwidth 298
network chatter 300
network failures 149, 166, 307, 313

automatic checking for 151
checking for 31, 77, 79
detecting 150
handling by connections 149
handling by sockets 87
TIBCO SmartSockets User’s Guide

Index | 703
keep alive query 77
undetected 152
unreceived data 151
unsent data 150

network protocols 85, 312
networks

bandwidth control 305
heterogeneous 85

new message types 597
node connection property 82
node part of logical connection name 101, 194
non-blocking operations 74
num fields message property 17
number message type property 37
NUMERIC_DATA message type 42

O

ODATA 648
option

Client_Drain_Timeout 518
options

associating with a name 620
Auth_Data_File 514
Authorize_Publish 514
Backup_Name 515
case sensitivity xxv
Catalog_File 515
Catalog_Flags 516
changing dynamically 247
Client_Burst_Interval 516
Client_Connect_Timeout 517
Client_Drain_Subjects 517
Client_Keep_Alive_Timeout 519
Client_Max_Buffer 519
Client_Max_Tokens 520
Client_Read_Timeout 520
Client_Reconnect_Timeout 521

warm RTclients 346
Client_Threads 522, 561
Client_Token_Rate 523
Command_Feedback 523
Compression 524

Compression_Args 524
Compression_Name 525
Compression_Stats 525
Conn_Max_Restarts 526
Conn_Names 527
Default_Connect_Prefix 528
Default_Msg_Priority 529
Default_Protocols 529
Default_Subject_Prefix 159, 530
Editor 532
Enable_Control_Msgs 533

processing control messages 207
Enable_Stop_Msgs 534
for debugging RTclient 482
for debugging RTserver 486
for multicast 657
Gmd_Publish_Timeout 534

using for RTserver 354
Group_Burst_Interval 535
Group_Max_Buffer 536
Group_Max_Tokens 536
Group_Names 537
Group_Threshold 656
Group_Token_Rate 538
Ipc_Gmd_Auto_Ack 538
Ipc_Gmd_Auto_Ack_Policy 539
Ipc_Gmd_Directory 539

GMD area 334
Ipc_Gmd_Type 540
Log_In_Client 540
Log_In_Data 541
Log_In_Group 541
Log_In_Internal 542
Log_In_Msgs 542
Log_In_Server 543
Log_In_Status 543
Log_Out_Client 544
Log_Out_Data 544
Log_Out_Group 544
Log_Out_Internal 545
Log_Out_Msgs 545
Log_Out_Server 545
Log_Out_Status 546
Max_Client_Conns 546
Max_Server_Accept_Conns 547
 TIBCO SmartSockets User’s Guide

704 | Index
Max_Server_Connect_Conns 547
Max_Server_Conns 548
mcast_cm_file 658
Monitor_Ident 549
Monitor_Scope 550
monitoring 364
Multi_Threaded_Mode 551
named

multiple connections 248
setnopt command 620

Pgm_Port 659
Pgm_Receive_Nak_Ttl 660
Pgm_Receive_Pgmcc 661
Pgm_Receive_Pgmcc_Acker_Interval 661
Pgm_Receive_Pgmcc_Loss_Constant 662
Pgm_Source_Admit_High 662
Pgm_Source_Admit_Low 663
Pgm_Source_Group_Ttl 663
Pgm_Source_Max_Trans_Rate 664
Pgm_Source_Min_Trans_Rate 665
Pgm_Source_Pgmcc 665
Pgm_Source_Pgmcc_Acker_Selection_Constant 66

6
Pgm_Source_Pgmcc_Init_Acker 666
Pgm_Udp_Encapsulation 667
Project 157, 552
Prompt 552
Proxy_Password 553
Proxy_Username 553
Real_Number_Format 554
RTserver GMD-related 355
Sd_Basic_Acl 554
Sd_Basic_Acl_Timeout 555
Sd_Basic_Admin_Msg_Types 555
Sd_Basic_Trace_File 556
Sd_Basic_Trace_Flags 556
Sd_Basic_Trace_Level 557
Sender_Get_Reply 557
Server_Async_Subscribe 558
Server_Auto_Connect 559
Server_Auto_Flush_Size 559
Server_Burst_Interval 560
Server_Connect_Timeout 560
Server_Delivery_Timeout 562
Server_Disconnect_Mode 563

configuring GMD 350
warm RTclients 346

Server_Gmd_Dir_Name 564
Server_Keep_Alive_Timeout 565
Server_Max_Reconnect_Delay 566
Server_Max_Tokens 566
Server_Msg_Send 567
Server_Names 567
Server_Num_Threads 569
Server_Read_Timeout 571
Server_Reconnect_Interval 572
Server_Start_Delay 572
Server_Start_Max_Tries 573
Server_Start_Timeout 573
Server_Threads 574
Server_Token_Rate 574
Server_Write_Timeout 575
setopt command 619
setting 189
setting for RTgms 650
setting RTserver 290
Sm_Security_Driver 575
Socket_Connect_Timeout 576

handling network failures 150
ss.monitor_level 549
Subjects 577
summary

RTclient 501
RTgms 653
RTmon 509
RTserver 505

Time_Format 578
Trace_File 578
Trace_File_Size 579
Trace_Flags 579
Trace_Level 580
TutCommandParseStr 189
Udp_Broadcast_Timeout 580
Unique_Subject 162, 581

file-based GMD 331
unsetopt command 629
Verbose 581
Zero_Recv_Gmd_Failure 582

original data 648
OSPF 297
TIBCO SmartSockets User’s Guide

Index | 705
overriding
load balancing 217

P

packets
messages into binary 66

password
setting for basic security 282

pathnames
for file-based GMD area 352

peer-to-peer
connection 158, 315
link 105
model 103

permissions 279
debugging with RTacl 282
permissions command 610
using wildcards 281

PGM
client failovers 675

PGM options
setting for each connection 651

Pgm_Port option 659
Pgm_Receive_Nak_Ttl option 660
Pgm_Receive_Pgmcc option 661
Pgm_Receive_Pgmcc_Acker_Interval option 661
Pgm_Receive_Pgmcc_Loss_Constant option 662
Pgm_Source_Admit_High option 662
Pgm_Source_Admit_Low option 663
Pgm_Source_Group_Ttl option 663
pgm_source_max_trans_rate 647
Pgm_Source_Max_Trans_Rate option 664
pgm_source_min_trans_rate 647
Pgm_Source_Min_Trans_Rate option 665
Pgm_Source_Pgmcc option 665
Pgm_Source_Pgmcc_Acker_Selection_Constant

option 666
Pgm_Source_Pgmcc_Init_Acker option 666
pgm_source_transmit_size_buffer 647
Pgm_Udp_Encapsulation option 667
pipes 88
pointer fields 61

poll command 611
Poll command, monitoring 451
poll function 143
polling

for GMD status 347
GMD status of message 348
processing results 386

by searching 386
with callbacks 388

polling message types 389
ports

specifying for multicast 659
printf

real number formats 554
printing

number formats 554
printing monitoring categories 412
prioritizing throughput versus reliablity 648
priority

for new message types 597
message type property

default 38
using with GMD 343

priority message type property 38
priority queue 115
process callback connection property 107
process callbacks 341
process ID connection property 82
process mutex connection property 81
processes

background 288
backup 429, 430
detached 288
hot backup 429, 430
identification string 427

processing
CONTROL messages 207
GMD failure messages 357
messages 207
messages with run command 616

Project Name command, monitoring 453
Project option 157, 552

belonging to a project 191
projects 191

definition 156
 TIBCO SmartSockets User’s Guide

706 | Index
Prompt option 552
protocol part of logical connection name 101
protocols 101, 192, 290

Ethernet 85
local 85, 150, 163, 195

connect problem 199
network 312
TCP/IP 85, 150
token ring 85
udp_broadcast 193

proxy servers
providing password 553
providing userid 553

Proxy_Password option 553
Proxy_Username option 553
pseudo field types 33
publish-subscribe 158

with wildcards 159
pwd command 591

Q

queue callback 116
queue callback connection property 109
quit command 615

R

randomizing server names 196
rate control

network bandwidth 305
rate control, throughput 647
RDATA 648
read buffer

size 73
read buffer connection property 73
read callback 116
read callback connection property 108
read mutex connection property 81
read only message property 19
read operations 152

read timeout
getting existing settings 77

read timeout connection property 77
read timeouts

disabling 77
real number formats 105, 116

DEC D 123
DEC F 123
DEC G 123
IEEE 123
incompatible 123

Real_Number_Format option 554
real-time database 300
receiving

messages 207
receiving messages with GMD 337
reconnecting to RTserver 237, 293

automatically 201
recovering from loss 648
reference count message property 20
reliability

running with hot backup 429
reliability versus throughput, prioritizing 648
remote procedure calls 117, 147, 246

blocking 147
keep alive 151
non-blocking 147, 246

renaming commands 591
repair data 648
repetitive group of fields 33
reply to message property 21
rereceiving messages 340
resending messages 342
resending old GMD messages 339
resource

catalog
specifying name 515

restarting RTserver 307
restricted message types 279
reusing messages 57
root access

RTgms 667
routing

shortest path 296
TIBCO SmartSockets User’s Guide

Index | 707
RPC 147
See also remote procedure calls

RTacl 282
supported commands 589

RTclient
callbacks 237
changing disconnect mode 351
connection to RTserver 166
debugging 482
description 166
direct 298
disconnecting from RTserver 350, 351
dispatcher 249
enabling ACKer for multicast 661
enabling message sends 567
events 249
executing commands 585
file-based GMD area 352
indirect 298
initially subscribing 577
load balancing 215
monitoring a project 307
monitoring extension data 360, 362, 366, 382, 390
not receiving data 481
Project option 552
receiving keep alives 520
reconnecting to RTserver 346, 350, 355
resending GMD messages 352, 354
running when RTserver down 237
specifying Unique_Subject option 581
start RTserver

as Windows service 195
timeout for data 571
user-defined 189
wait for broadcast 580
warm 346, 355
warm disconnect 350

RTgms
as a Windows service 668
controlling bandwidth rate 305
flow control

specifying high water mark 662
specifying low water mark 663

GMD issues 678
running without root access 667

setting options 650
for a connection 651

specifying data time to live 663
specifying localhost 191
specifying port 659
specifying transmission rate size 664
specifying uni or multi-cast 656
starting 668
stopping 671
transmission rate 665
Windows service 670

rtlink shell script 47, 98, 183
RTmon

Auto Scroll command 452
command bar 452
command line 452
current projects 453
current state 452
defining prompt 552
executing commands 587
exiting 615
File command 450
Graphical Development Interface (GDI) 446
Help command 451
main menu bar 450
managing command files 453
Poll command 451
Project Name command 453
RTclient message traffic 470
rtmon.cm file 448, 453
RTserver information 465
Run command 450
send a message 471
sequential list mode 457
specifying Unique_Subject option 581
standard output 452
stopping 474
to debug 478
View command 450
view incoming messages 459
view log file 458
Watch command 450
watch incoming messages 456
watch outgoing messages 460
watch RTclients 454
 TIBCO SmartSockets User’s Guide

708 | Index
watching 408
when to use 366

rtmon.cm file 448, 453
RTserver

ADMIN_SET message 495
automatic connections 559
automatically connecting to 200
automatically reconnecting on error 201
broadcast waits 580
client keep alive 520
cloud 300
configuring 290
connecting to 291, 595
connection example 596
controlling bandwidth rate 305
creating connections 290
debugging options 486
defining prompt 552
defining RTserver groups 537
description 163
destroying connection to 202
disconnect example 601
disconnecting from 600
distributed database 300
enabling stop command 534
executing commands 584
exiting 615
finding 193
finding other RTservers 290, 293
GMD information 354
GMD-related options 355
group 299
how GMD works 354
information tables 163
interior messages 301
locally processed message types 293
maximum inbound server-to-server

connections 547
maximum outbound server connections 547
maximum RTclients 546
maximum server connections 548
message routing 354
multi-homed 197
multiple 163, 296, 298
multiple connections 248

multiple processes 293
multi-thread mode 569
number to restart connection 526
options

setting for a connection 495
reconnect interval 572
reconnecting to RTserver 293
resending GMD messages 350, 355
restarting 307
routing 296
server connections 290
setting options 290
specified in Server_Names 567
specifying GMD disconnect actions 563
specifying Unique_Subject option 581
starting 195, 288
starting on a remote node 199
stopping background process 289
terminating GMD for a message 355
timeout for data 571
tolerance for busy processes 575
udp_broadcast and multiple IP addresses 197
waiting for connect message 560
warm connection to 235, 346
with an interactive command interface 287

RTserver and RTclient
function 154

RTserver subscribe 299
rtserver.cm files 288
rtserver64 command 184, 199, 282, 284, 289
RTservers

connecting to 248
multiple connections 248

run command 616
Run command, monitoring 450

S

sbrk address 483
scanning server names 196
Sd_Basic_Acl option 554
Sd_Basic_Acl_Timeout option 555
Sd_Basic_Admin_Msg_Types option 555
TIBCO SmartSockets User’s Guide

Index | 709
Sd_Basic_Trace_File option 556
Sd_Basic_Trace_Flags option 556
Sd_Basic_Trace_Level option 557
sdbasic.cm 499
searching for a specific message 117
security 275, 282

acl.cfg file 279
basic security 276
configuration files 276
groups.cfg file 278, 279
permissions 279
Proxy_Password option 553
Proxy_Username option 553
RTacl 282
setting username and password 282
username and password based 276
users.cfg file 277

select function 143, 147
send command 617
sender message property 22
sender timestamp message property 23
Sender_Get_Reply option 557
sending

messages 120, 208
messages with GMD 336

sequence number message property 24
serializing messages 66
server connections 103, 290
server create callbacks 198, 238
server destroy callbacks 202, 238
server names traverse callbacks 239
server process

number of allowed connections 105
Server_Async_Subscribe option 558
Server_Auto_Connect option 559

using 200
Server_Auto_Flush_Size option 559
Server_Burst_Interval option 560
Server_Connect_Timeout option 560
Server_Delivery_Timeout option 562

message types 597
Server_Disconnect_Mode option 563

configuring GMD 350
TipcSrvCreate 190
warm RTclients 346

Server_Disconnect_Mode options
and load balancing 219

Server_Gmd_Dir_Name option 564
Server_Keep_Alive_Timeout option 565
Server_Max_Reconnect_Delay option 566
Server_Max_Tokens option 566
Server_Msg_Send option 567

creating backup processes 208
running a backup RTclient 430
using 208

Server_Names option 567
finding other RTservers 293
number of times to try 573
reconnect interval 572
sleeping between traversals 572
specifying proxy servers 192
TipcSrvCreate 190

Server_Num_Threads option 569
overriding value 286

Server_Read_Timeout option 571
Server_Reconnect_Interval option 572
Server_Start_Delay option 572

TipcSrvCreate 190
Server_Start_Max_Tries option 573

TipcSrvCreate 190
Server_Start_Timeout option 573

TipcSrvCreate 190
Server_Threads

options 574
Server_Token_Rate option 574
Server_Write_Timeout option 575
setnopt command 620
setopt command 619
setting options

named
setnopt command 620

setopt command 619
unsetopt command 629

setting properties
for auto flush size 76
for delivery timeout 79
for GMD area 318
for keep alive timeout 78
for write timeout 78

sh command 622
 TIBCO SmartSockets User’s Guide

710 | Index
shared memory 88
shell

defaults for operating systems 622
shell commands

executing with sh 622
specifying xxv

shortest-path routing 296, 301
size

read buffer 73
write buffer 73

sm_security_driver
Sm_Security_Driver option 575
SmartPGM 647
SNMP monitoring 426
socket connection property 72
socket descriptors 148
socket event

API summary 261
check mode 260
description 260

socket file 199
Socket_Connect_Timeout option 576

handling network failures 150
sockets 85

buffers 87
compared to connections 88
datagram 86, 313
definition 86
handling network failures 87
how they work 87
loss of data 312
OpenVMS implementation 86
raw 86
stream 86, 313
wait 576

software failures 149
software redundancy 429
source command 623
specifying location of mcast file 658
speed

setting transmission rate for multicast 664
ss.monitor_level option 549
standard message types 40, 214
standard subjects 162, 204

start prefix 195
start_always 195
start_never 195
start_on_demand 195

start_always start prefix 195
start_never start prefix 195
start_on_demand start prefix 195
starting

message logging 213
RTserver 195, 288
RTserver on a remote node 199

startup command files
hot backup example 431
RTclient 498
RTgms 652
RTmon 499
RTserver 498

stats command 625
status message types 40
stopping

background RTserver 289
message logging 214

stopping RTserver
Enable_Stop_Msgs option 534

string formats 116
incompatible 123

STRING_DATA message type 42
subject callbacks 205, 241
subjects 160

* wildcard 160
_time 204
absolute names 159
definition 158
defunct 164
hierarchical names 159
hierarchical namespace 159
initial subscription 577
message event 258
monitoring 161, 203, 364
peer-to-peer connections 162
standard 162, 204
subscribe command 626
subscribing to 158, 203
unsubscribe command 630
user-defined 163
TIBCO SmartSockets User’s Guide

Index | 711
wildcard examples 160
wildcards 159

Subjects option 577
subscribe

RTserver 299
subscribe command 626
subscribing to a subject 203
support, contacting xxvi
system call functions 119, 122

T

T_IO_CHECK_READ 256, 260
T_IO_CHECK_WRITE 256, 260
T_IPC_EVENT_CONN 257
T_IPC_EVENT_MSG 259
T_IPC_EVENT_MSG_TYPE 259
T_IPC_EVENT_SOCKET 261
T_IPC_EVENT_TIMER 262
T_IPC_EVENT_USER 263
T_IPC_LB_NONE 218
T_IPC_LB_ROUND_ROBIN 218
T_IPC_LB_SORTED 218
T_IPC_LB_WEIGHTED 218
TCP/IP protocol 85, 150

keepalive 150
technical support xxvi
text

displaying 602
text editor

invoking 603
text message files 64
threads

with connections 81, 125, 139
with RTclient 226

throughput rate control 647
throughput versus reliability, prioritizing 648
time

specifying your own format 578
time converter

specifying in Time_Format option 578
time resolution 147
Time_Format option 578

timer event
API summary 262
description 262
example 264

TipcCbConnProcessGmdFailure function 342, 357
TipcCbConnProcessKeepAlive function 152
TipcCbConnProcessKeepAliveCall function 151
TipcCbSrvError function 201, 238
TipcCbSrvProcessControl function 207
TipcCbSrvProcessGmdFailure function 357
TipcConn* function 122, 158, 166, 167, 169, 186, 205,

207, 208
TipcConnAccept function 74, 82, 83, 105, 106, 144, 146,

150, 333, 339
TipcConnCheck function 76, 106, 143, 150, 151, 152,

342
TipcConnCreateClient function 82, 83, 333, 339
TipcConnCreateClientProtocol function 341
TipcConnDefaultCbCreate function 108
TipcConnDefaultCbLookup function 108
TipcConnDestroy function 106, 341
TipcConnErrorCbCreate function 110
TipcConnErrorCbLookup function 110
TipcConnFlush function 73, 74, 75, 76, 120, 122, 143,

339, 341
TipcConnGetArch function 82
TipcConnGetBlockMode function 74
TipcConnGetGmdMaxSize function 335
TipcConnGetGmdNumPending function 317, 338
TipcConnGetNode function 82
TipcConnGetNumQueued function 74
TipcConnGetPid function 82
TipcConnGetSocket function 72, 141, 143
TipcConnGetUniqueSubject function 83
TipcConnGetUser function 83
TipcConnGetXtSource function 141
TipcConnGmdFileCreate function 334, 336, 339
TipcConnGmdFileDelete function 333, 339
TipcConnGmdMsgDelete function 317, 342
TipcConnGmdMsgResend function 342
TipcConnGmdResend function 317, 333, 339, 352
TipcConnKeepAlive function 151, 152
TipcConnMainLoop function 117, 141, 142, 144, 334,

338, 339
TipcConnMsgInsert function 57, 73, 74, 116
 TIBCO SmartSockets User’s Guide

712 | Index
TipcConnMsgNext function 56, 74, 115, 116, 117, 119,
122, 142, 144, 147

TipcConnMsgProcess function 107, 108, 113, 115, 116,
117, 341

TipcConnMsgSearch function 56, 74, 116, 117, 118, 119
TipcConnMsgSearchType function 56, 118
TipcConnMsgSend function 73, 76, 120, 122, 143, 147,

317, 318, 334, 336, 339
TipcConnMsgSendRpc function 56, 147, 246
TipcConnMsgWrite function 121, 122
TipcConnProcessCbCreate function 107
TipcConnProcessCbLookup function 107
TipcConnQueueCbCreate function 109
TipcConnQueueCbLookup function 110
TipcConnRead function 73, 74, 76, 115, 118, 119, 123,

124, 317, 334, 338, 342
TipcConnReadCbCreate function 108
TipcConnReadCbLookup function 109
TipcConnSetBlockMode function 74, 106
TipcConnSetGmdMaxSize function 80, 318, 335
TipcConnSetSocket function 72
TipcConnWriteCbCreate function 109
TipcConnWriteCbLookup function 109
TipcDispatcher API 248
TipcDispatcherCreate function 250
TipcDispatcherCreateDetached function 250
TipcDispatcherDestroy function 250
TipcDispatcherDispatch function 250
TipcDispatcherMainLoop function 250
TipcDispatcherSrvAdd function 250
TipcDispatcherSrvRemove function 250
TipcEvent API 248
TipcEventCreateConn function 257
TipcEventCreateMsg function 259
TipcEventCreateMsgType function 259
TipcEventCreateSocket function 261
TipcEventCreateTimer function 262
TipcEventDestroy function 257, 259
TipcEventGetCheckMode function 257, 261
TipcEventGetConn function 257
TipcEventGetData function 263
TipcEventGetDispatcher function 257, 259
TipcEventGetInterval function 262
TipcEventGetSocket function 261
TipcEventGetType function 257, 259

TipcEventSetInterval function 262
TipcGetGmdDir function 333
TipcInitCommands function 585
TipcInitThreads function 139, 140
TipcMon* function 169
TipcMon* monitoring functions 143
TipcMonClientBufferPoll function 382
TipcMonClientBufferSetWatch function 408
TipcMonClientCbPoll function 382
TipcMonClientCpuPoll function 382
TipcMonClientExtPoll function 382
TipcMonClientGeneralPoll function 382
TipcMonClientInfoPoll function 382
TipcMonClientMsgRecvSetWatch function 408
TipcMonClientMsgSendSetWatch function 408
TipcMonClientMsgTrafficPoll function 383
TipcMonClientMsgTypeExPoll function 383
TipcMonClientNamesNumPoll function 383
TipcMonClientNamesPoll function 383
TipcMonClientNamesSetWatch function 409
TipcMonClientOptionPoll function 383
TipcMonClientSubjectExPoll function 383
TipcMonClientSubscribeNumPoll function 383
TipcMonClientSubscribePoll function 383
TipcMonClientSubscribeSetWatch function 409
TipcMonClientTimePoll function 383, 385

using 385
TipcMonClientTimeSetWatch function 409
TipcMonClientVersionPoll function 383
TipcMonExt* function 390
TipcMonProjectNamesPoll function 382, 611
TipcMonServerBufferPoll function 383
TipcMonServerConnPoll function 383
TipcMonServerConnSetWatch function 409
TipcMonServerCpuPoll function 384
TipcMonServerGeneralPoll function 384
TipcMonServerMsgTrafficExPoll function 384
TipcMonServerNamesPoll function 384
TipcMonServerNamesSetWatch function 409
TipcMonServerOptionPoll function 384
TipcMonServerRoutePoll function 384
TipcMonServerStartTimePoll function 384
TipcMonServerTimePoll function 384
TipcMonServerVersionPoll function 384
TipcMonSubjectNamesPoll function 384
TIBCO SmartSockets User’s Guide

Index | 713
TipcMonSubjectNamesSetWatch function 409
TipcMonSubjectSubscribePoll function 384, 385

using 385
TipcMonSubjectSubscribeSetWatch function 409
TipcMsg* function 120
TipcMsgAck function 317, 338
TipcMsgAddNamedXmlPtr function 62
TipcMsgAppendBinaryPtr function 61, 62
TipcMsgAppendInt2ArrayPtr function 61, 62
TipcMsgAppendInt4ArrayPtr function 61, 62
TipcMsgAppendInt8ArrayPtr function 61, 62
TipcMsgAppendMsg function 60
TipcMsgAppendMsgArrayPtr function 61, 62
TipcMsgAppendMsgPtr function 61, 62
TipcMsgAppendReal16ArrayPtr function 61, 62
TipcMsgAppendReal4ArrayPtr function 61, 62
TipcMsgAppendReal8ArrayPtr function 61, 62
TipcMsgAppendStrArrayPtr function 61, 62
TipcMsgAppendStrPtr function 61, 62
TipcMsgAppendUnknown function 63
TipcMsgAppendXmlPtr function 61
TipcMsgClone function 20, 56, 59
TipcMsgCreate function 49, 56
TipcMsgDestroy function 20, 56, 57, 115, 117, 338
TipcMsgFieldSetSize function 62
TipcMsgFileCreate function 65
TipcMsgFileDestroy function 66
TipcMsgFileRead function 56, 65
TipcMsgFileWrite function 64, 65

use in debugging 478
TipcMsgGetCompression function 5
TipcMsgGetCurrentFieldKnown function 63
TipcMsgGetDeliveryMode function 10
TipcMsgGetDeliveryTimeout function 11
TipcMsgGetDest function 12, 21
TipcMsgGetExpiration function 13
TipcMsgGetHeaderStrEncode function 14
TipcMsgGetLbMode function 15
TipcMsgGetNumFields function 17, 53
TipcMsgGetPriority function 18
TipcMsgGetReadOnly function 19
TipcMsgGetRefCount function 20
TipcMsgGetSender function 22
TipcMsgGetSenderTimestamp function 23
TipcMsgGetSeqNum function 4, 6, 16, 24

TipcMsgGetType function 25
TipcMsgGetUserProp function 26
TipcMsgIncrRefCount function 20, 56
TipcMsgNextMsg function 60
TipcMsgNextType function 58
TipcMsgNextUnknown function 63
TipcMsgPrint function

use in debugging 478
TipcMsgPrintError function

use in debugging 479
TipcMsgRead function 54, 60
TipcMsgSetCompression function 5
TipcMsgSetCurrent function 52
TipcMsgSetDelivery function 10
TipcMsgSetDeliveryMode function 336
TipcMsgSetDeliveryTimeout function 11
TipcMsgSetDest function 12, 21, 208
TipcMsgSetExpiration function 13
TipcMsgSetHeaderStrEncode function 14
TipcMsgSetLbMode function 15
TipcMsgSetNumFields function 17, 57
TipcMsgSetPriority function 18
TipcMsgSetSender function 22
TipcMsgSetSenderTimestamp function 23
TipcMsgSetType function 25
TipcMsgSetUserProp function 26
TipcMsgWrite function 51, 59
TipcMtCreate function 43
TipcMtGetCompression function 29
TipcMtGetDeliveryMode function 30
TipcMtGetDeliveryTimeout function 31
TipcMtGetGrammar function 32
TipcMtGetHeaderStrEncode function 34
TipcMtGetLbMode function 35
TipcMtGetName function 36
TipcMtGetNum function 37
TipcMtGetPriority function 38
TipcMtGetUserProp function 39
TipcMtPrint function

use in debugging 478
TipcMtSetCompression function 28
TipcMtSetDeliveryMode function 30, 336
TipcMtSetDeliveryTimeout function 31
TipcMtSetHeaderStrEncode function 34
 TIBCO SmartSockets User’s Guide

714 | Index
TipcMtSetPriority function 38
changing monitoring message priorities 363

TipcMtSetPriorityUnknown function 38
TipcMtSetUserProp function 39
TipcSrv* function 167, 169, 186, 200, 205, 207, 208, 235,

237
TipcSrv*CbCreate function 205
TipcSrv*CbLookup function 205
TipcSrvConn API 248
TipcSrvCreate function 189, 190, 198, 200, 201, 207,

235, 236, 346, 351, 595
shortening connection names 192

TipcSrvCreateCbCreate function 200
TipcSrvCreateCbLookup function 200
TipcSrvDestroy function 200, 202, 236, 238, 346, 351,

595, 600
TipcSrvDestroyCbCreate function 200, 238
TipcSrvDestroyCbLookup function 200
TipcSrvGetConnStatus function 200, 236
TipcSrvGmdFileCreate function 352
TipcSrvGmdFileDelete function 200, 352
TipcSrvGmdMsgServerDelete function 347, 357
TipcSrvGmdMsgStatus function 348, 349, 358
TipcSrvGmdResend function 200
TipcSrvIsRunning function 200
TipcSrvLogAddMt function 200, 210, 214
TipcSrvLogRemoveMt function 200, 210, 214
TipcSrvMsgInsert function 57
TipcSrvMsgNext function 56
TipcSrvMsgSearch function 56
TipcSrvMsgSearchType function 56, 246, 349
TipcSrvMsgSend function 208, 209, 246
TipcSrvMsgSendRpc function 56
TipcSrvMsgWrite function 208, 209
TipcSrvMsgWriteVa function 208
TipcSrvPrint function

use in debugging 481
TipcSrvSetAutoFlushSize function 209
TipcSrvStdSubjectSetSubscribe function 204, 577
TipcSrvStop function 200
TipcSrvSubject* function 143
TipcSrvSubjectCbCreate function 205
TipcSrvSubjectCbDestroyAll function 243
TipcSrvSubjectDefaultCbCreate function 205, 242
TipcSrvSubjectGetSubscribe function 203

TipcSrvSubjectGmdInit function 354
TipcSrvSubjectLbInit function 216
TipcSrvSubjectSetSubscribe function 203, 217
TipcSrvSubjectSetSubscribeLb function 217, 225
token ring protocol 85
Trace_File option 578
Trace_File_Size option 579
Trace_Flags option 579
Trace_Level option 580
transport protocol 648
troubleshooting 477

Cisco routers 490
multicast 487

tuning rate control 647
TutCommandParseFile function 189, 498
TutCommandParseStr function 207, 350, 585
TutCommandParseStr option 189
TutCommandParseTypedStr function 585
TutGetSocketDir function 199
TutOptionSetUnknown function 214
TutSocketCheck function 143
type message property 25

U

udp_broadcast protocol 193
multi-homed RTservers 197

Udp_Broadcast_Timeout option 580
specifying in connection name 193
TipcSrvCreate 190

unalias command 628
unique subject 22, 162

connecting to multiple RTservers 353
RTclient using 204

unique subject connection property 83
Unique_Subject option 162, 581

as connection property 83
file-based GMD 331

unknown field values 63
unsetopt command 629
unsubscribe command 630
unwatch command 631
user connection property 83
TIBCO SmartSockets User’s Guide

Index | 715
user event
API summary 263
description 263

user-defined message property 26
user-defined message type 43
user-defined message type property 39
user-defined subjects 163
username

setting for basic security 282
users

basic security 277
setting permissions 279

users command 633
using message files 65
using wildcards 160
utilities

TutCommandParseTypedStr 585
utility functions 174

RTacl 282
TutSocketCheck 143

V

variables
stop watching 631
watching 634

verbose field type 33
Verbose option 581
View command, monitoring 450

W

waiting
messages 338

waiting for operations to complete 74
warm connection 201, 202, 235

Server_Auto_Connect option 559
warm connections 307, 346
warm RTclient 346
warm setting

Server_Disconnect_Mode option 563
Watch command, monitoring 450
watch command, monitoring 634
watching

processing results 411
watching a variable 634

stop watching 631
wildcards

in permissions 281
in subject names 159
in subjects 160
subject examples 160
with publish-subscribe 159

window
displaying output 602

Windows service
starting RTgms 670
starting RTserver 195

write buffer 120
connection property 73, 76
size 73

write callback 120
write callback connection property 109
write connection callback 336
write mutex connection property 81
write operations 152
write timeout

getting existing settings 78
setting the value 78

write timeout connection property 77
write timeouts

disabling 77
 TIBCO SmartSockets User’s Guide

716 | Index
X

X.500 297
Xt Intrinsics 141
Xt Intrinsics functions

TipcConnGetXtSource 141
XtAppAddInput 141, 143
XtAppAddTimeOut 142
XtAppAddWorkProc 142
XtAppMainLoop 141, 143
XtAppPending 142
XtAppProcessEvent 142
XtRemoveInput 141

XtAppAddInput Xt Intrinsics function 141, 143
XtAppAddTimeOut Xt Intrinsics function 142
XtAppAddWorkProc Xt Intrinsics function 142
XtAppMainLoop Xt Intrinsics function 141, 143
XtAppPending Xt Intrinsics function 142
XtAppProcessEvent Xt Intrinsics function 142
XtRemoveInput Xt Intrinsics function 141

Z

Zero_Recv_Gmd_Failure option 582
ZLIB

for message compression 271
TIBCO SmartSockets User’s Guide

	TIBCO SmartSockets™
	Contents
	Figures
	Tables
	Preface
	Related Documentation
	TIBCO Product Documentation
	Using the Online Documentation

	Conventions Used in This Manual
	Typeface Conventions
	Notational Conventions
	Identifiers
	Case

	How to Contact TIBCO Support

	Chapter 1 Messages
	Message Composition
	Message Properties
	Arrival Timestamp
	Compression
	Correlation ID
	Data
	Delivery Mode
	Delivery Timeout
	Destination
	Expiration
	Header String Encode
	Load Balancing Mode
	Message ID
	Num Fields
	Priority
	Read Only
	Reference Count
	Reply To
	Sender
	Sender Timestamp
	Sequence Number
	Type
	User-Defined Property

	Message Types
	Message Type Properties
	Compression
	Delivery Mode
	Delivery Timeout
	Grammar
	Header String Encode
	Load Balancing Mode
	Name
	Number
	Priority
	User-Defined Property

	Standard Message Types
	User-Defined Message Types
	Working With Messages
	Compiling, Linking, and Running
	Include Files
	Constructing a Message
	Accessing the Fields of a Message
	Accessing Fields by Name
	Destroying a Message
	Reusing a Message

	Advanced Uses of Messages
	Checking the Type of the Current Field
	Cloning a Message
	Array Fields
	Constructing a Message Within a Message
	Pointer Fields
	Unknown Field Values
	High Performance Guidelines

	Message Files
	Text Message Files
	Binary Message Files
	Using Message Files
	Advanced Use of Message Files

	Chapter 2 Connections
	Features of Connections
	Connection Composition
	Socket
	Read Buffer
	Write Buffer
	Message Queue
	Block Mode
	Auto Flush Size
	Read Timeout
	Write Timeout
	Keep Alive Timeout
	Delivery Timeout
	GMD Area
	Thread Synchronization
	Peer Information
	Callbacks

	Sockets
	Protocols: TCP/IP and Local
	What is a Socket?
	How Sockets Work
	Advantages of Connections Over Sockets

	Working With Connections
	Compiling, Linking, and Running
	Include Files
	Logical Connection Names
	Multiple IP Addresses
	Creating Connections
	Destroying a Connection
	Callbacks
	Receiving and Processing Messages
	Sending Messages
	Sending Messages in a Heterogeneous Environment

	Using Threads With Connections
	Adding Multiple Threads for a Client
	Compiling, Linking, and Running
	Working With Threads and Connections

	Advanced Uses of Connections
	Mixing Connections and Xt Intrinsics (Motif)
	Mixing Connections and the Select Function
	Mixing Connections and the Windows Message Loop
	Remote Procedure Calls
	Time Resolution
	File Descriptor Upper Limit

	Handling Network Failures
	What is Fault Tolerance?
	Potential Network Failures
	Keep Alives
	Blocking and Non-Blocking Read/Write Operations

	Chapter 3 Publish-Subscribe
	Publish-Subscribe Overview
	RTserver and RTclient Composition
	Projects
	Subjects
	What is RTserver?
	What is RTclient?
	Ease of Use

	TIBCO SmartSockets Multicast
	When Should I Use Multicast?

	Essential API Functions
	Message Type Functions:
	Message Functions:
	Communication Functions:
	Utility Functions:

	Working With RTclient
	Compiling, Linking, and Running
	Include Files
	Differences Between the TipcConn* and TipcSrv* API
	Setting Options
	Creating a Connection to RTserver
	Creating a Connection to RTgms
	Belonging to a Project
	Logical Connection Names for RT Processes
	RTservers with Multiple IP Addresses
	Finding and Starting RTserver
	Automatically Reconnecting to RTserver
	Destroying the Connection to RTserver
	Using Subjects
	Callbacks
	Receiving and Processing Messages
	Sending Messages

	Message File Logging
	Message File Logging Categories
	Logging Messages
	Changing Logging Categories

	Load Balancing
	Overriding Load Balancing
	Load Balancing Modes
	Load Balancing and GMD
	Load Balancing Example
	Compiling, Linking, and Running

	Using Threads with the RTclient API
	Advanced RTclient Usage
	Advanced Example With Warm Connections and Server Callbacks
	Warm Connection to RTserver
	RTclient-Specific Callbacks
	Remote Procedure Calls
	Changing RTclient Options
	Connecting to Multiple RTservers

	Using a Dispatcher
	Types of Dispatchers
	Single Threaded RTclients
	Events
	Multiple Thread Example with Timer and Message Events

	Message Compression
	Compressing by Message Type
	Compressing at the Connection Level

	Security
	Basic Security

	subscribe allow user * * /_*_*
	Starting and Stopping RTserver
	Starting RTserver
	Stopping RTserver

	Working with RTserver
	Setting Options
	Creating Connections
	Logical Connection Names
	Finding Other RTserver Processes
	Reconnecting to Other RTserver Processes
	Receiving and Processing Messages from RTclient
	Message File Logging

	Dynamic Message Routing
	Why is Dynamic Message Routing Needed?
	Multiple RTserver Processes
	Distributed Publish-Subscribe Database
	Lowest Cost Message Routing
	RTserver Subscribes

	Network Considerations
	Controlling Network Bandwidth and Usage
	Handling Network Failures In Publish Subscribe

	Chapter 4 Guaranteed Message Delivery
	Features of GMD
	Why is GMD Needed?
	Loss of Data When Sockets Fail
	Acknowledgment of Delivery
	Alternatives to Stream Sockets

	File-Based and Memory-Based GMD
	GMD Composition
	Sequence Number
	GMD Area
	Delivery Mode
	GMD Message Types
	Delivery Timeout

	Working With GMD
	Compiling, Linking, and Running

	Configuring GMD
	Reverting to Memory-Based GMD
	Deleting Files From an Old GMD Area
	Creating a GMD Area
	Limiting GMD Resources

	Sending Messages
	Receiving Messages
	Acknowledging Messages
	Waiting for Completion of GMD

	Resending Messages
	Receiving Duplicate Messages

	Handling GMD Failures
	GMD_FAILURE Messages
	Delivery Timeout Failures
	Default Processing of GMD_FAILURE Messages
	Resending a Message
	Deleting a Message

	Limitations of GMD
	Publish-Subscribe and GMD
	Delivery Mode in Publish-Subscribe Model
	Warm RTclient in RTserver
	GMD Message Types

	RTclient GMD Considerations
	Configuring RTclient for GMD
	DISCONNECT Message Type
	GMD Area
	File-based GMD and Connections to Multiple RTservers

	RTserver GMD Considerations
	How GMD Works in RTserver
	Configuring RTserver for GMD

	Combining GMD and Monitoring
	Handling GMD Failures with RTclients and RTservers

	Chapter 5 Project Monitoring
	Monitoring Overview
	Monitoring Composition
	Where Monitoring Information Resides
	Specifying Items to be Monitored
	Monitor Scope and T_IPC_MON_ALL
	Watching or Polling: When to Use
	Monitoring Message Types

	Polling
	Processing Poll Results
	Polling Message Types
	Polling Example
	Compiling, Linking, and Running

	Watching
	Processing Watch Results
	Printing Watch Categories
	Watching Message Types
	Watching Example
	Compiling, Linking, and Running

	Advanced Monitoring
	Monitoring With SNMP
	Deriving Information
	Process Identification
	Naming (Directory) Services
	Running an RTclient With a Hot Backup
	Compiling, Linking, and Running

	Chapter 6 Using RTmon
	The RTmon Process
	RTmon Graphical Development Interface
	Starting a Graphical Development Interface Session

	Monitoring Your Project with RTmon GDI
	Selecting a Project to Monitor
	Selecting a Command File
	Monitoring RTclients
	Monitoring Subjects
	Monitoring Messages Being Received
	Monitoring Messages Being Sent
	Monitoring Server Connections
	Monitoring RTservers

	Sending Messages with RTmon GDI
	Stopping RTmon GDI Processes
	RTmon Command Interface
	Starting a Command Interface Session

	Chapter 7 Diagnosing Problems
	Using RTmon
	Debugging Messages
	Debugging Message Types and Message Files

	Diagnosing Connection Problems
	Receiving Unwanted Messages

	Diagnosing Memory Problems
	Diagnosing RTclient Problems
	Connections and Messages
	Why RTclient Is Not Receiving Data
	Tracing Lost Messages
	Useful Options
	Useful Commands

	Diagnosing RTserver Problems
	Files Created by RTserver
	Useful Command-Line Arguments
	Useful Options

	Multicast Troubleshooting
	Verify Your Configuration
	Verify Your PGM Option Settings
	Tracing Problems to Their Source
	Troubleshooting Multicast Problems with Cisco Systems Routers
	Multicast Testing Tools

	Summary

	Chapter 8 Options Reference
	Setting Option Values
	RTclient Options
	RTserver Options
	RTmon Options
	Specifying Options

	Startup Command Files
	RTclient
	RTserver
	RTmon

	RTclient Options Summary
	RTserver Options Summary
	RTmon Options Summary
	Multi-Thread Mode
	Option Reference
	Auth_Data_File
	Authorize_Publish
	Backup_Name
	Catalog_File
	Catalog_Flags
	Client_Burst_Interval
	Client_Connect_Timeout
	Client_Drain_Subjects
	Client_Drain_Timeout
	Client_Keep_Alive_Timeout
	Client_Max_Buffer
	Client_Max_Tokens
	Client_Read_Timeout
	Client_Reconnect_Timeout
	Client_Threads
	Client_Token_Rate
	Command_Feedback
	Compression
	Compression_Args
	Compression_Name
	Compression_Stats
	Conn_Max_Restarts
	Conn_Names
	Default_Connect_Prefix
	Default_Msg_Priority
	Default_Protocols
	Default_Subject_Prefix
	Disable_Mon_Watch_Types
	Editor
	Enable_Control_Msgs
	Enable_Stop_Msgs
	Gmd_Publish_Timeout
	Group_Burst_Interval
	Group_Max_Buffer
	Group_Max_Tokens
	Group_Names
	Group_Token_Rate
	Ipc_Gmd_Auto_Ack
	Ipc_Gmd_Auto_Ack_Policy
	Ipc_Gmd_Directory
	Ipc_Gmd_Type
	Log_In_Client
	Log_In_Data
	Log_In_Group
	Log_In_Internal
	Log_In_Msgs
	Log_In_Server
	Log_In_Status
	Log_Out_Client
	Log_Out_Data
	Log_Out_Group
	Log_Out_Internal
	Log_Out_Msgs
	Log_Out_Server
	Log_Out_Status
	Max_Client_Conns
	Max_Server_Accept_Conns
	Max_Server_Connect_Conns
	Max_Server_Conns
	Monitor_Ident
	Monitor_Level
	Monitor_Scope
	Multi_Threaded_Mode
	Project
	Prompt
	Proxy_Password
	Proxy_Username
	Real_Number_Format
	Sd_Basic_Acl
	Sd_Basic_Acl_Timeout
	Sd_Basic_Admin_Msg_Types
	Sd_Basic_Trace_File
	Sd_Basic_Trace_Flags
	Sd_Basic_Trace_Level
	Sender_Get_Reply
	Server_Async_Subscribe
	Server_Auto_Connect
	Server_Auto_Flush_Size
	Server_Burst_Interval
	Server_Connect_Timeout
	Server_Connection_Names
	Server_Delivery_Timeout
	Server_Disconnect_Mode
	Server_Gmd_Dir_Name
	Server_Keep_Alive_Timeout
	Server_Max_Reconnect_Delay
	Server_Max_Tokens
	Server_Msg_Send
	Server_Names
	Server_Num_Threads
	Server_Read_Timeout
	Server_Reconnect_Interval
	Server_Start_Delay
	Server_Start_Max_Tries
	Server_Start_Timeout
	Server_Threads
	Server_Token_Rate
	Server_Write_Timeout
	Sm_Security_Driver
	Socket_Connect_Timeout
	Srv_Client_Names_Min_Msgs
	Srv_Subj_Names_Min_Msgs
	Subjects
	Time_Format
	Trace_File
	Trace_File_Size
	Trace_Flags
	Trace_Level
	Udp_Broadcast_Timeout
	Unique_Subject
	Verbose
	Zero_Recv_Gmd_Failure

	Chapter 9 Command Reference
	RTserver Commands
	Supported RTserver Commands

	RTclient Commands
	Supported RTclient Commands

	RTmon Commands
	Supported RTmon Commands

	RTacl Commands
	Supported RTacl Commands

	Command Reference
	alias
	cd
	connect
	create
	credentials
	disconnect
	echo
	edit
	evaluate
	groups
	help
	helpopt
	history
	load
	permissions
	poll
	quit
	run
	send
	setopt
	setnopt
	sh
	source
	stats
	subscribe
	unalias
	unsetopt
	unsubscribe
	unwatch
	users
	watch

	Chapter 10 Using Multicast
	Multicast Requirements
	One-to-Many Communications Solution
	Features
	Architecture
	Multicast Deployment Guidelines
	RTgms Overview
	Bandwidth Management
	Tuning Rate Control
	Rate Control and Loss
	Congestion Control

	RTgms Options
	RTgms Startup Command Files

	RTgms Options Summary
	Option Reference
	Group_Threshold

	Setting PGM Options
	mcast_cm_file
	PGM Option Summary
	Pgm_Port
	Pgm_Receive_Nak_Ttl
	Pgm_Receive_Pgmcc
	Pgm_Receive_Pgmcc_Acker_Interval
	Pgm_Receive_Pgmcc_Loss_Constant
	Pgm_Source_Admit_High
	Pgm_Source_Admit_Low
	Pgm_Source_Group_Ttl
	Pgm_Source_Max_Trans_Rate
	Pgm_Source_Min_Trans_Rate
	Pgm_Source_Pgmcc
	Pgm_Source_Pgmcc_Acker_Selection_Constant
	Pgm_Source_Pgmcc_Init_Acker
	Pgm_Udp_Encapsulation

	Starting and Stopping RTgms
	Starting RTgms on UNIX
	Starting RTgms as a Service on Windows
	Stopping RTgms

	Interrupting RTgms
	Sending a Message using Multicast
	RTgms Commands
	Tailoring Your Multicast Deployment
	How Multicast Deployment Compares with Unicast Deployment
	Bandwidth Sharing
	Client Failovers in Multicast
	How Network Devices Forward Multicast
	Multicast and GMD
	UDP Encapsulation of PGM
	Multicast Deployment with Frame Relay Networks
	Example Cisco Systems Router Configuration

	Index

