
TIBCO SmartSockets™

.NET User’s Guide and Tutorial
Software Release 6.8
July 2006

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY
(OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE.
THE EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY
ANY OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND
CONDITIONS OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED
SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT,
THE CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING
DOWNLOAD OR INSTALLATION OF THE SOFTWARE (AND WHICH IS DUPLICATED IN THE
TIBCO SMARTSOCKETS INSTALLATION GUIDE). USE OF THIS DOCUMENT IS SUBJECT TO
THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE
ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document contains confidential information that is subject to U.S. and international copyright
laws and treaties. No part of this document may be reproduced in any form without the written
authorization of TIBCO Software Inc.

TIB, TIBCO, Information Bus, The Power of Now, TIBCO Adapter, RTclient, RTserver, RTworks,
SmartSockets, and Talarian are either registered trademarks or trademarks of TIBCO Software Inc.
in the United States and/or other countries.

EJB, J2EE, JMS and all Java-based trademarks and logos are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system
platforms for a specific software version are released at the same time. Please see the readme.txt file
for the availability of this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO
SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.

Copyright © 1991–2006 TIBCO Software Inc. ALL RIGHTS RESERVED.

TIBCO Software Inc. Confidential Information

| iii
Contents

Figures . v

Preface . vii

About This Book . viii

Intended Audience. viii

Related Documentation . ix
Using the Online Documentation . ix

How to Contact TIBCO Support. x

Chapter 1 Using the TIBCO SmartSockets Class Library with Visual Studio .NET 1

Referencing the TIBCO SmartSockets .NET Assembly . 2

Using the Global Assembly Cache (GAC) Utility . 3
Installing the SmartSockets Assembly in the GAC . 3
Uninstalling the SmartSockets Assembly from the GAC . 3

Chapter 2 Getting Started with TIBCO SmartSockets .NET API . 5

TIBCO SmartSockets .NET Configuration . 6
Using the App.config File . 6
Using an External File . 7
Using an External File with App.config . 7

Writing a SmartSockets Program in Visual Studio .NET . 8
Introduction to the Classes, Events, and Delegates used in this Program. 8
Writing the Program . 10

Example Programs . 17
SSChat: Multi-User Chat Room . 17
Exploring frmMain. 18
Notes: . 21
WhoWhere: Electronic Message Board . 24
The Display Board Form. 29

Index . 39
 TIBCO SmartSockets .NET User’s Guide and Tutorial

iv | Contents
TIBCO SmartSockets .NET User’s Guide and Tutorial

| v
Figures

Figure 1 The Add Reference Window . 2

Figure 2 Form Window . 10

Figure 3 Code Window. 11

Figure 4 Form1 with Text Box . 12

Figure 5 C# Method Wizard . 13

Figure 6 Figure 9 SSChat Login Window . 17
 TIBCO SmartSockets .NET User’s Guide and Tutorial

vi | Figures
TIBCO SmartSockets .NET User’s Guide and Tutorial

| vii
Preface

TIBCO SmartSockets is a message-oriented middleware product that enables
programs to communicate quickly, reliably, and securely across:

• local area networks (LANs)

• wide area networks (WANs)

• the Internet

TIBCO SmartSockets takes care of network interfaces, guarantees delivery of
messages, handles communications protocols, and directs recovery after system
or network problems. This enables you to focus on higher-level requirements
rather than the underlying complexities of the network.

This guide and tutorial is intended for software developers and project managers
who want to familiarize themselves with the SmartSockets .NET API. Here you
will find information about using the SmartSockets .NET API with Microsoft
Visual Studio .NET, tutorials designed to get you started with SmartSockets .NET
API, and a complete reference for the SmartSockets s.

Topics

• About This Book, page viii

• How to Contact TIBCO Support, page x
 TIBCO SmartSockets .NET User’s Guide and Tutorial

viii | About This Book
About This Book

This User’s Guide and Tutorial provides the detailed information you need to use
and develop distributed applications with the TIBCO SmartSockets™ .NET API.
This guide also includes a tutorial to help you quickly learn to use the
SmartSockets .NET API. Before starting the tutorial, install SmartSockets.
Installation instructions for SmartSockets can be found in the TIBCO SmartSockets
Installation Guide.

This guide is intended to be a supplement to the TIBCO SmartSockets User’s Guide.
Many key concepts are explained in detail there and are the same for both the
.NET and C application program interfaces (APIs). This guide gives a brief
overview of SmartSockets, emphasizing the differences between the .NET and C
APIs.

For detailed reference information about the SmartSockets .NET classes, see the
online reference information provided in MSDN Help format with the
SmartSockets product. The TIBCO SmartSockets Installation Guide tells you where
to find those files. For an overview of the new features, changes, and
enhancements in this Version 6.8 release, see the TIBCO SmartSockets Release Notes.

Intended Audience

This guide is for software developers and project managers who want to know
how SmartSockets and the SmartSockets .NET API can help them build
distributed applications with program-to-program communication.

Some prerequisite knowledge is needed to understand the concepts and examples
in this guide:

• basic knowledge of the Windows operating system

• working knowledge of the Microsoft .NET Framework

• understanding of general messaging and publish/subscribe concepts and
terminology

• understanding of the SmartSockets messaging and publish/subscribe
concepts described in the TIBCO SmartSockets User’s Guide
TIBCO SmartSockets .NET User’s Guide and Tutorial

Preface | ix
Related Documentation

This guide and tutorial supplements the information presented in the following
documents:

• TIBCO SmartSockets Installation Guide

• TIBCO SmartSockets Tutorial

• TIBCO SmartSockets User’s Guide

Familiarize yourself with the information in these more general documents before
working with this guide and tutorial, which is specific to the SmartSockets .NET
API.

The following documents are also included in the SmartSockets documentation
set:

• TIBCO SmartSockets API Quick Reference

• TIBCO SmartSockets Application Programming Interface

• TIBCO SmartSockets C++ User’s Guide

• TIBCO SmartSockets cxxipc Class Library

• TIBCO SmartSockets Java User’s Guide and Tutorial

• TIBCO SmartSockets .NET User’s Guide and Tutorial

• TIBCO SmartSockets Utilities

• TIBCO SmartSockets C++, Java, and .NET Class Libraries (These API reference
materials are available in HTML format only. Access the references through
the TIBCO HTML documentation interface.)

Using the Online Documentation
The SmartSockets documentation files are available for you to download
separately, or you can request a copy of the TIBCO Documentation CD.
 TIBCO SmartSockets .NET User’s Guide and Tutorial

x | How to Contact TIBCO Support
How to Contact TIBCO Support

For comments or problems with this manual or the software it addresses, please
contact TIBCO Support as follows.

• For an overview of TIBCO Support, and information about getting started
with TIBCO Support, visit this site:

http://www.tibco.com/services/support

• If you already have a valid maintenance or support contract, visit this site:

http://support.tibco.com

Entry to this site requires a user name and password. If you do not have a user
name, you can request one.
TIBCO SmartSockets .NET User’s Guide and Tutorial

| 1
Chapter 1 Using the TIBCO SmartSockets Class
Library with Visual Studio .NET

This chapter describes how to use the TIBCO SmartSockets .NET assembly with
Microsoft Visual Studio and how to register the assembly with the Global Access
Cache for future sessions.

Topics

• Referencing the TIBCO SmartSockets .NET Assembly, page 2

• Using the Global Assembly Cache (GAC) Utility, page 3
 TIBCO SmartSockets .NET User’s Guide and Tutorial

2 | Chapter 1 Using the TIBCO SmartSockets Class Library with Visual Studio .NET
Referencing the TIBCO SmartSockets .NET Assembly

To access the .NET API from within Microsoft Visual Studio .NET, you need to
add a reference to the .NET assembly. To add a reference to the TIBCO
SmartSockets Assembly in your Visual Studio .NET project, perform these steps:

1. Select Project>Add Reference. The Add Reference dialog box appears, as
shown in Figure 1.

Figure 1 The Add Reference Window

2. Select the TIBCO.SS.dll file as follows:

a. Select the .NET tab

b. Click Browse then navigate to %RTHOME%\bin\i86_w32,
where %RTHOME% is the directory in which SmartSockets is installed.

c. Double click TIBCO.SS.dll.

The TIBCO.SS.dll file appears in the Selected Components list box, as shown
in Figure 1.

3. Click OK.

You are now ready to use the TIBCO SmartSockets assembly in your project.
TIBCO SmartSockets .NET User’s Guide and Tutorial

Using the Global Assembly Cache (GAC) Utility | 3
Using the Global Assembly Cache (GAC) Utility

If you want to make the SmartSockets .NET assembly available to all applications
on the computer, you can install (register) the assembly in the GAC. This section
provides procedures to both install and uninstall the assembly.

Installing the SmartSockets Assembly in the GAC
To install the .NET assembly with the GAC, perform these steps:

1. Verify that the GAC utility program is installed on the computer. This
executable file, gacutil.exe, is usually stored in one of these locations:
C:\Program Files\Microsoft Visual Studio .NET\FrameworkSDK\bin\

or
C:\WINNT\Microsoft.NET\Framework\<version>\gacutil.exe

2. Run the GAC utility with the /i (install) option in a SmartSockets console
window:
gacutil_dir\gacutil.exe /i "ss_lib_dir\TIBCO.SS.dll"

where gacutil_dir is the full path to gacutil.exe and
where ss_lib_dir is the location of the SmartSockets library.

Example:
C:\WINNT\Microsoft.NET\Framework\v1.0.3705\gacutil.exe /i
"%RTHOME%\bin\i86_w32\TIBCO.SS.dll"

Uninstalling the SmartSockets Assembly from the GAC
To uninstall the assembly from the GAC:

1. Verify that the GAC utility program is installed on the computer. (See step 1,
above.)

2. Run the GAC utility with the /u (uninstall) option in a SmartSockets console
window:
gacutil_dir /u "ss_lib_dir\TIBCO.SS.dll"

where gacutil_dir is the full path to gacutil.exe and
where ss_lib_dir is the location of the SmartSockets library.

Example:
C:\WINNT\Microsoft.NET\Framework\v1.0.3705\gacutil.exe /u
"%RTHOME%\bin\i86_w32\TIBCO.SS.dll"
 TIBCO SmartSockets .NET User’s Guide and Tutorial

4 | Chapter 1 Using the TIBCO SmartSockets Class Library with Visual Studio .NET
TIBCO SmartSockets .NET User’s Guide and Tutorial

| 5
Chapter 2 Getting Started with TIBCO SmartSockets
.NET API

This chapter provides tutorial-style examples that you can work through to
familiarize yourself with TIBCO SmartSockets and the TIBCO SmartSockets .NET
API.

Topics

• TIBCO SmartSockets .NET Configuration, page 6

• Writing a SmartSockets Program in Visual Studio .NET, page 8

• Example Programs, page 17
 TIBCO SmartSockets .NET User’s Guide and Tutorial

6 | Chapter 2 Getting Started with TIBCO SmartSockets .NET API
TIBCO SmartSockets .NET Configuration

You can configure TIBCO SmartSockets .NET in one of three ways:

• Using the App.config file from within your .NET solution

• Using an external file

• Using both the App.config file and an external file

In all cases, use the Tut.loadOptions() method to load the configuration file or
files.

The following table provides a quick reference for configuring SmartSockets
.NET.

Using the App.config File
If you are using the .NET Framework version 1.1 or later, you can configure
SmartSockets options within the app.config file using the <appSettings>
element with the <add> parameter. Here is an example:

<?xml version="1.0" encoding="utf-8"?>
<configuration>

<appSettings>
<add key="ss.server_names" value="tcp:_node:5555" />
<add key="ss.unique_subject" value="/CSharpTest" />
<add key="ss.monitor_ident" value="CSharp Client" />

</appSettings>
</configuration>

The naming standards for SmartSockets configuration options are consistent with
those for SmartSockets java properties.

Use standard key, value attributes within the configuration options parameters.

Table 1 Configuration File Quick Reference

Config File Element Tag Parameter Tag Tut.loadOptions();
Parameters

App.config <appSettings> <add> None

External File <SmartSockets> <option name> URL or directory-path
location of config file
TIBCO SmartSockets .NET User’s Guide and Tutorial

TIBCO SmartSockets .NET Configuration | 7
Use Tut.loadOptions() without parameters to load SmartSockets options from
App.config.

Using an External File
You can configure SmartSockets options within an external XML file using the
<SmartSockets> element with the <option name> node. Use standard key, value
attributes with the <option name> element. Use Tut.loadOptions(<string>),
passing either a URL or a directory path to load the configuration file.

In this example, a URL identifies the location of the configuration file.

Tut.loadOptions("http://localhost/config/config.xml");

In this example, a directory path identifies the location of the configuration file.

Tut.loadOptions(""c:\\config\\config.xml"");

Below is an example configuration file.

<?xml version = "1.0" encoding = "UTF-8"?>
<AnyRootNode>

<SmartSockets>
<option name = "ss.server_names" value = "tcp:_node:5555"/>
<option name = "ss.unique_subject" value = "/xml_test_client"/>
<option name = "ss.monitor_scope" value = "/..."/>

</SmartSockets>
</AnyRootNode>

You can place the SmartSockets element at any level except at the root. If multiple
SmartSockets elements are found, they are parsed in the order found, overriding
previous options. Tut.loadOptions() will ignore any other elements, allowing
for an easy addition of SmartSockets configuration attributes into existing XML
files.

Using an External File with App.config
The options in App.config can act as a default configuration. You can then
override individual options using an external configuration file. The last options
loaded override any previously read options. Here is an example:

Tut.loadOptions();
Tut.loadOptions(""c:\\config\\config.xml"");

The first call to Tut.loadOptions() loads the configuration options from
App.config. The second call loads the options from config.xml, overriding any
options that were set inside App.config and exist in config.xml. Options that
are set in App.config, but not in config.xml still retain their values.
 TIBCO SmartSockets .NET User’s Guide and Tutorial

8 | Chapter 2 Getting Started with TIBCO SmartSockets .NET API
Writing a SmartSockets Program in Visual Studio .NET

This section provides a procedure to write a simple C# SmartSockets program in
Visual Studio .NET and descriptions of the classes used in the example.

The first part of the SmartSockets program invokes a connection to an RTserver
and sets up the delegates that will process messages and errors from the server.
The second part sends and receives a message to and from a subscribing RTclient.

Introduction to the Classes, Events, and Delegates used in this Program
This section briefly describes the classes used in the example program, which
follows. For detailed information about all SmartSockets Classes, Events, and
Delegates for .NET, see TIBCO SmartSockets .NET API Reference (HTML only).

TipcMt

The TipcMt methods create and retrieve information about message types, which
are templates for messages. Many of the constants associated with TipcMt can be
found in TipcMt fields; for example, the message type number for an “info”
message would be TipcMt_Fields.INFO.

TipcMsg

The TipcMsg methods construct, manipulate and destroy messages as well as
constructing and accessing the fields in the data section of a message.

TipcSvc

TipcSvc is a static factory class for creating instances of the TipcMt, TipcMsg,
TipcConnClient, TipcConnServer, and TipcSrv classes. Objects of the required
concrete classes that are created with this factory class.

TipcMsg msgOut = TipcSvc.createMsg(TipcMt_Fields.INFO)

TipcMsgEvent

TipcMsgEvent occurs when a message is processed, as in TipcSrv.mainloop.

Connection process events are raised while processing a message. This callback
type is the most frequently used. A process delegate method is called for every of
message received. When any message of any type is processed by calling process
or mainLoop, the process callback is called.
TIBCO SmartSockets .NET User’s Guide and Tutorial

Writing a SmartSockets Program in Visual Studio .NET | 9
TibcMsgHandler Delegate

Represents the method that will handle the TipcMsgEvent event.

Srv.TipcMsgEvent += new TipcMsgHandler(this.msgHandler);

TipcMsgEventArgs

This class contains event data for the TipcMsgEvent.

TipcSrv

TipcSrv methods communicate with RTserver to receive and process messages,
for example, TipcSrv.mainLoop

TipcException

Superclass of all SmartSockets exceptions. This class defines an error number
which may be set for some errors.

catch (TipcException ex) {
}

TipcDefs

The TipcDefs structure contains constants used across all classes.

Example: TipcDefs.CONN_FULL

TipcProcessCb

The user interface for connection process callbacks.

Connection process callbacks are executed while processing a message. This
callback type is the most frequently used. A process callback can be called for a
specific type of message, on a specific subject (destination), or created globally
and called for all messages. For example, a process callback can be created for the
INFO message type. When any message of that type is processed by calling
process or mainLoop, the process callback is called. If the process callback is
created globally, it is called for all INFO messages as well as any other type of
message.

TipcProcessCB is included in this section for completeness only. TIBCO
recommends that you use events and event handlers instead.
 TIBCO SmartSockets .NET User’s Guide and Tutorial

10 | Chapter 2 Getting Started with TIBCO SmartSockets .NET API
Writing the Program
Before you begin, start a new Visual C# Windows Application project and add the
TIBCO.SS reference. (See Referencing the TIBCO SmartSockets .NET Assembly on
page 2)

Perform these steps to create the RTserver connection program:

Task A Create a Quit Button

1. From the Windows Form Controls, select the Button icon and place a button
on the Form, as pictured in Figure 2.

Figure 2 Form Window

2. In the Properties window, to the right of the text field, type: Quit. The button
changes in real-time, reflecting what you type—the button should now have
the label Quit.

3. Double-click the Quit button you just created. The Code window appears, as
shown in Figure 3.
TIBCO SmartSockets .NET User’s Guide and Tutorial

Writing a SmartSockets Program in Visual Studio .NET | 11
Figure 3 Code Window

4. At the current insertion point in the code window, type:

private bool running = false;
Application.Exit();,

Indent just as you would when writing other programs.

5. Return to the Form window.

6. Test the Quit button:

a. On the toolbar, click Start. A window appears displaying the Quit button.

b. Click Quit to close Form1 and return to the code window.

7. Add a text box to the form, defining it as follows:

— Set the Multiline Property to true.

— Delete the Text property contents.

— Size the window appropriately.

The resulting window should be similar to the one in Figure 4.
 TIBCO SmartSockets .NET User’s Guide and Tutorial

12 | Chapter 2 Getting Started with TIBCO SmartSockets .NET API
Figure 4 Form1 with Text Box

Task B Create a Message Handler

1. Scroll up to the top of the code window and add the “using
TIBCO.SMARTSOCKETS;” directive:

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using TIBCO.SMARTSOCKETS;

2. Add the following fields to the Form1 class:

public TipcSrv Srv;
private bool running = false;

3. Open the Method Wizard by right-clicking on the Form1 class in the project
explorer, then select Add->Add Method.

4. Create a message handler method with a the following characteristics:

— Method access: public

— Return type: void

— Method name: msgHandler

— Parameter name: object target

— Parameter name: TipcMsgEventArgs e
TIBCO SmartSockets .NET User’s Guide and Tutorial

Writing a SmartSockets Program in Visual Studio .NET | 13
The C# Method Wizard window should look similar to the one shown in
Figure 5.

Figure 5 C# Method Wizard

5. Add code to msgHandler such that the method looks like this:

public void msgHandler(object target, TipcMsgEventArgs e) {

try {
TipcMsg msgOut = TipcSvc.createMsg(TipcMt_Fields.INFO);
msgOut.Dest = e.Msg.Sender;
msgOut.appendStr("Message Received!");
Srv.send(msgOut);
Srv.flush();

}

catch (TipcException ex) {
MessageBox.Show(ex.Message, "msgHandler: Exception",

MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 }

}

 TIBCO SmartSockets .NET User’s Guide and Tutorial

14 | Chapter 2 Getting Started with TIBCO SmartSockets .NET API
Task C Create Another Message Handler

6. Create a second message handler, identical to the one you created in Task B,
except name it msgHandler_Hail.

7. Add code to msgHandler_Hail such that the method looks like this:

public void msgHandler_Hail(object target, TipcMsgEventArgs e) {

try {
if (e.Msg.Type.Num == TipcMt_Fields.INFO &&

e.Msg.Dest.CompareTo("/hail") == 0) {
this.textBox1.Text += e.Msg.nextStr() +

System.Environment.NewLine;
} // if

}
catch (Exception ex) {

MessageBox.Show(ex.Message, "msgHandlerHail: Exception",
MessageBoxButtons.OK, MessageBoxIcon.Exclamation);

}

}

8. Add code to the form’s constructor, so that the constructor looks like this:

public Form1()
{

//
// Required for Windows Form Designer support
//
InitializeComponent();

try {
Srv = TipcSvc.Srv;
Srv.setOption("ss.unique_subject", "/cs_example");
Srv.setOption("ss.server_names", "tcp:_node");

/* add the delegates */
Srv.TipcMsgEvent += new TipcMsgHandler(this.msgHandler);
Srv.TipcMsgEvent += new TipcMsgHandler(this.msgHandler_Hail);

Srv.create(TipcDefs.CONN_FULL);
Srv.setSubjectSubscribe("/hail", true);

}
catch (Exception ex) {
MessageBox.Show(ex.Message, "msgHandlerHail: Exception",

MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
Application.Exit();

 }
}

TIBCO SmartSockets .NET User’s Guide and Tutorial

Writing a SmartSockets Program in Visual Studio .NET | 15
9. Add code to the Form’s Activated event such that the event looks like this:
private void Form1_Activated(object sender, System.EventArgs e) {

while (running) {
Srv.mainLoop(0.0);
Application.DoEvents();

}
}

Task D Test the Program

1. Verify that RTserver is running on the local machine.

2. Launch Form1 by selecting Debug->Launch without Debugging from the
menu bar, or enter CTRL+F5.

3. Start RTmonitor with the –runtime option from the SmartSockets command
prompt.

4. Enter the following commands:

MON> connect

09:01:10: TAL-SS-00088-I Connecting to project <rtworks> on
<tcp:_node:5555> RTserver
09:01:10: TAL-SS-00089-I Using tcp protocol
09:01:10: TAL-SS-00091-I Message from RTserver: Connection
established.
09:01:10: TAL-SS-00096-I Start subscribing to subject
</_CLSLAP01_2108>
09:01:10: TAL-SS-00111-I Start subscribing to subject </_CLSLAP01>
09:01:10: TAL-SS-00111-I Start subscribing to subject </_all>
09:01:10: TAL-SS-00111-I Start subscribing to subject </_mon>

MON> send info /hail "Hello!"

Sent info message to /hail subject.

MON> run 1 1

Received an unexpected message.

Note, the recommended method of handling the SmartSockets event loop
(TipcSrv.mainLoop) is through another thread. The Form1_Activated event was
used only for simplicity and brevity.
 TIBCO SmartSockets .NET User’s Guide and Tutorial

16 | Chapter 2 Getting Started with TIBCO SmartSockets .NET API
type = info
sender = </cs_example>
sending server = </_CLSLAP01_2008>
dest = </_CLSLAP01_2108>
app = <rtworks>
max = 2048
size = 40
current = 0
read_only = false
priority = 0
compression = false
delivery_mode = best_effort
ref_count = 1
seq_num = 0
resend_mode = false
user_prop = 0
arrival_timestamp = 09:02:10
data (num_fields = 1):
 str "Message Received!"
Processed a info message.

MON> send info /hail "Hello Again!"

5. Form1 displays both messages:

The message below is what was constructed and sent back to RTmonitor in the
msgHandler delegate. The messageHandler_Hail delegate displays the message
contents in Form1’s text box.
TIBCO SmartSockets .NET User’s Guide and Tutorial

Example Programs | 17
Example Programs

Now that you have written a simple TIBCO SmartSockets program, this section
presents two programs that use some of the more advanced SmartSockets
features. These programs are not presented in a tutorial format; instead portions
of the Visual Studio .NET Visual Basic 7 code for each program are reviewed and
key elements are discussed.

SSChat: Multi-User Chat Room
The SSChat program is an RTclient that implements a simple real-time, multi-user
chat room. The example files are located in the installation directory under
Examples\Microsoft.NET\vb7\sschat. The SSChat program is written using the
SmartSockets publish-subscribe technology to implement this function with a
minimum amount of code. The entire SSChat program is under 200 lines of Visual
Basic code.

The SSChat application starts with the Login window, as shown in Figure 9. The
Login window is a standard Visual Studio .NET form named frmLogin. It allows
the user to input their full name and handle, and to specify an RTserver to connect
to.

Figure 6 Figure 9 SSChat Login Window

The essential details of SSChat's implementation are included within the main
form, frmMain.
 TIBCO SmartSockets .NET User’s Guide and Tutorial

18 | Chapter 2 Getting Started with TIBCO SmartSockets .NET API
Exploring frmMain
There are several form class variables defined as follows:

Dim mtHi As TipcMt
Dim mtBye As TipcMt
Dim msgHi As TipcMsg
Dim msgOut As TipcMsg
Dim RTserver_Conn As TipcSrv
Dim HiCb_parms As New Collection

Dim tsThread As ThreadStart
Dim trtsThread As Thread
Dim rtthrdclass As rtthrdclass

The first two variables, mtHi and mtBye, hold TipcMt objects specifying two of the
custom message types SSChat defines. The second two, msgHi and msgOut, hold
pre-built messages that are sent multiple times during an execution of SSChat.
Finally, RTserver_Conn is a TipcSrv object that manages the connection to
RTserver.

Looking at the mainInit() method shows the actions taken upon entering the
chat room. The custom message types are registered and the server name is
configured. A connection to RTserver is created, process callbacks are instantiated
using user callbacks implemented from TipcProcessCb, and a “Hi” (mtHi)
message is constructed containing the user's name and chat handle, then sent.
Please note that in this example, callbacks are used for completeness. The use of
delegates is recommended over callbacks, and is demonstrated in the next
example, WhoWhere.

Public Sub mainInit()
Dim btn As Short
Dim server_names As String
Dim hi_cb As New HiCb
Dim bye_cb As New ByeCb
Dim data_cb As New DataCb

ctlUser.Text = fmLogin.DefInstance.ctlHandle.Text
ctlName.Text = fmLogin.DefInstance.ctlName.Text
ctlScript.ForeColor = System.Drawing.Color.Blue
ctlScript.Text = "[" & Format(Now(), "General Date") & "]"

If mtHi Is Nothing Then
mtHi = TipcSvc.createMt("hi", 1, "str str int2")
mtBye = TipcSvc.createMt("bye", 2, "str")
msgOut = TipcSvc.createMsg(TipcSvc.lookupMt("string_data"))

End If

msgOut.Dest = "_all"
msgOut.appendStr(fmLogin.DefInstance.ctlHandle.Text)
msgHi = msgOut.Clone
msgHi.Type = mtHi
msgHi.appendStr(fmLogin.DefInstance.ctlName.Text)
msgHi.appendInt2(Int(CDbl(True)))
TIBCO SmartSockets .NET User’s Guide and Tutorial

Example Programs | 19
server_names = ""
If Len(fmLogin.DefInstance.ctlServer.Text) > 0

Then server_names = fmLogin.DefInstance.ctlServer.Text
End If

RTserver_Conn = TipcSvc.Srv
RTserver_Conn.setOption("ss.unique_subject",

fmLogin.DefInstance.ctlHandle.Text)
RTserver_Conn.setOption("ss.project", "rtworks")
RTserver_Conn.setOption("ss.server_names", server_names)

RTserver_Conn.create()

HiCb_parms.Add(RTserver_Conn)
HiCb_parms.Add(msgHi)
HiCb_parms.Add(msgOut)
HiCb_parms.Add(ctlScript)

RTserver_Conn.addProcessCb(bye_cb, mtBye, ctlScript)
RTserver_Conn.addProcessCb(data_cb,

TipcSvc.lookupMt("string_data"), ctlScript)
RTserver_Conn.addProcessCb(hi_cb, mtHi, HiCb_parms)

RTserver_Conn.setSubjectSubscribe("_all", True)

RTserver_Conn.send(msgHi)
RTserver_Conn.Flush()

'
' Here, we need a thread to allow us to do the MainLoop to
' receive messages from the server. So, create the appropriate
' objects, and set the server conn to
' use within the thread. Then, start the thread.

rtthrdclass = New rtThrdClass
tsThread = New ThreadStart(AddressOf rtthrdclass.mainThreadProc)
trtsThread = New Thread(tsThread)
rtthrdclass.thrdServerConn = RTserver_Conn
rtthrdclass.thrdStop = False
trtsThread.Start()
End Sub

By cloning the msgOut message, the Dest property is the same for msgHi.
Appending True requests other SSChat clients to reply upon receipt of the
message.
 TIBCO SmartSockets .NET User’s Guide and Tutorial

20 | Chapter 2 Getting Started with TIBCO SmartSockets .NET API
To receive messages, the SSChat application must maintain a message loop. This
is done in a separate thread. It is a simple loop that processes events and checks
for messages without a timeout to provide the best possible GUI response.

Public Class rtThrdClass
Public thrdServerConn As TipcSrv
Public thrdStop As Boolean
Public Sub mainThreadProc()

While thrdStop = False
thrdServerConn.MainLoop(0)
Thread.Sleep(0)

End While
End Sub

End Class

The loop is terminated when the thrdStop flag is set to true in mainCleanup().

Once the form has been loaded, SSChat is in its primary mode, waiting for
keystrokes from the user or messages from RTserver. Examine what happens
when a key is pressed. Note that when you press the Enter key, the current text is
sent out to the other chat participants.

Private Sub ctlMessage_KeyDown(…) Handles ctlMessage.KeyDown
Dim KeyCode As Short = eventArgs.KeyCode
Dim Shift As Short = eventArgs.KeyData \ &H10000

Dim str_Renamed As String

If (Shift And VB6.ShiftConstants.ShiftMask) = 0 Then
If KeyCode = System.Windows.Forms.Keys.Return Then

msgOut.NumFields = 1
str_Renamed = ctlMessage.Text

If VB.Left(str_Renamed, 1) = Chr(13) Then
str_Renamed = VB.Right(str_Renamed,

Len(str_Renamed) - 2)
End If

msgOut.appendStr(str_Renamed)
RTserver_Conn.send(msgOut)
RTserver_Conn.Flush()
ctlMessage.Text = ""

End If
End If

End Sub
TIBCO SmartSockets .NET User’s Guide and Tutorial

Example Programs | 21
Notes:
• Setting the NumFields property to 1 eliminates all but the first field of the

message.

• msgOut is already mostly constructed; all you have to do is add the chat text,
send and flush to guarantee immediate delivery. Using a previously
constructed message will improve performance.

Now that you have reviewed the sending process of chat text from SSChat, take a
look at the three message processing events that handle the receiving process.
Note that these events are implementing the TipcProcessCb interface. The
TipcMsg event from the first ctlHiCb receives the “Hi” messages:

Friend Class HiCb
Implements TipcProcessCb

Public Sub process(ByVal msg As TIBCO.SMARTSOCKETS.TipcMsg,
ByVal arg As Object) Implements

TIBCO.SMARTSOCKETS.TipcProcessCb.process
Dim msgIn As TipcMsg
Dim msgHi As TipcMsg
Dim msgOut As TipcMsg
Dim srv_conn As TipcSrv
Dim cb_parms As Collection
Dim ctlScript As TextBox
Dim inHandle As String
Dim inUserName As String
Dim inInt As Int32

msgIn = msg
cb_parms = arg

msgIn.Current = 0
inHandle = msgIn.nextStr()
inUserName = msgIn.nextStr()
inInt = msgIn.nextInt2()
srv_conn = cb_parms.Item(1)
msgHi = cb_parms.Item(2)
msgHi.Current = 0
msgOut = cb_parms.Item(3)
msgOut.Current = 0
ctlScript = cb_parms.Item(4)

If inUserName.CompareTo(msgOut.nextStr()) = 0 Then
If inInt Then

msgHi.Dest = msgIn.Sender
msgHi.NumFields = msgHi.NumFields - 1
msgHi.appendInt2((Int(CDbl(False))))
srv_conn.send(msgHi)
srv_conn.flush()

End If

End If
 TIBCO SmartSockets .NET User’s Guide and Tutorial

22 | Chapter 2 Getting Started with TIBCO SmartSockets .NET API
ctlScript.AppendText(ControlChars.NewLine &
ControlChars.NewLine)

ctlScript.ForeColor = System.Drawing.Color.Blue

ctlScript.AppendText("[" + inHandle + " connected as " +
inUserName + "]")

End Sub
End Class

Now look at the code that handles the “Bye” messages, sent when a user leaves
the chat room, terminating the SSChat process. It is very similar to the “Hi”
message event handler, except it does not send any replies.

Friend Class ByeCb
Implements TipcProcessCb

Public Sub process(ByVal msg As TIBCO.SMARTSOCKETS.TipcMsg,
ByVal arg As Object) Implements

TIBCO.SMARTSOCKETS.TipcProcessCb.process
Dim msgIn As TipcMsg
Dim ctlScript As TextBox

msgIn = msg
ctlScript = arg

ctlScript.AppendText(ControlChars.NewLine &
ControlChars.NewLine)

ctlScript.ForeColor = System.Drawing.Color.Blue
ctlScript.AppendText("[" + msgIn.nextStr + "

disconnected]")

End Sub

End Class
TIBCO SmartSockets .NET User’s Guide and Tutorial

Example Programs | 23
The event handler for chat data messages is shown below (similar to the other two
message events, it updates the output window with the originating chat user's
handle and chat text):

Friend Class DataCb
Implements TipcProcessCb

Public Sub process(ByVal msg As TIBCO.SMARTSOCKETS.TipcMsg,
ByVal arg As Object) Implements

TIBCO.SMARTSOCKETS.TipcProcessCb.process

Dim msgIn As TipcMsg
Dim ctlScript As TextBox

msgIn = msg
ctlScript = arg

ctlScript.AppendText(ControlChars.NewLine &
ControlChars.NewLine)

ctlScript.AppendText(msgIn.nextStr() + ": ")
ctlScript.AppendText(msgIn.nextStr())

End Sub
End Class

In the code above, the first msgIn.nextStr() is the chat handle and the second
msgIn.nextStr() retrieves the actual user message from TipcMsg.

Finally, SSChat's mainCleanup()subroutine, which stops the listener thread, sends
the “Bye” message, and disconnects from RTserver (if a connection has been
established) is shown below:

Public Sub mainCleanup()
Dim msgBye As TipcMsg
If Not trtsThread Is Nothing Then

'
' Tell the thread to stop
rtthrdclass.thrdStop = True
'
' Wait until the thread has ended
trtsThread.Join(10000)
trtsThread = Nothing

End If
If Not RTserver_Conn Is Nothing Then

If RTserver_Conn.ConnStatusEx <> TipcDefs.CONN_NONE Then
msgBye = TipcSvc.createMsg(mtBye)
msgBye.Dest = msgOut.Dest
msgOut.Current = 0
msgBye.appendStr(msgOut.nextStr())
RTserver_Conn.send(msgBye)
RTserver_Conn.flush()
RTserver_Conn.destroy(TipcDefs.CONN_NONE)

End If
RTserver_Conn = Nothing

End If
 TIBCO SmartSockets .NET User’s Guide and Tutorial

24 | Chapter 2 Getting Started with TIBCO SmartSockets .NET API
If Not mtBye Is Nothing Then
mtBye.destroy()
mtBye = Nothing

End If
If Not mtHi Is Nothing Then

mtHi.destroy()
mtHi = Nothing

End If
End Sub

Data Flow

The data flow in the SSChat program is:

1. Chat users joining the room are announced to the group members by
publishing a “Hi” message containing information about the new user.

2. Other SSChat RTclients receive the new user's announcement and reply
directly and exclusively to the originating RTclient, by publishing a “Hi”
message back.

3. Upon receiving a “Hi” or “Bye” message, an SSChat RTclient updates its
output window with the status change indicating which other client entered
or left the room.

4. As data messages are received, SSChat displays these messages to its chat
window.

WhoWhere: Electronic Message Board
The WhoWhere program is a graphical RTclient, implementing an in/out
message board useful for tracking employee whereabouts. The WhoWhere
program is located in the installation directory under
Examples\Microsoft.NET\vb7\whowhere.

WhoWhere is an electronic counterpart to the sign in and out boards commonly
used in corporate offices. WhoWhere uses TIBCO SmartSockets publish-subscribe
technology to update other users message boards. Other SmartSockets features
demonstrated by this program are:

• Custom message types

• Process and error Delegates

• Messages within messages

• Hierarchical naming scheme for publish-subscribe messages

• Publishing to subjects with multiple subscribers as well as individual
RTclients
TIBCO SmartSockets .NET User’s Guide and Tutorial

Example Programs | 25
WhoWhere tracks employee whereabouts. Each employee belongs to a
department. The department an employee belongs to specifies the SmartSockets
subject used to set apart message board groups. This allows potentially thousands
of users in hundreds of departments to be present on the same LAN or WAN,
without any conflict.

The WhoWhere application is composed of several Visual Studio .NET forms and
one code module. Most of the forms (those for logging in, managing the
configuration and specifying leave information) are handled with the usual
Visual Studio .NET techniques; examination of the source code should be fairly
self-explanatory. The important parts of the application are handled by the
Display Board form and the modGlobals module.

First, look at some of the data structures used in the modGlobals module:

Public Structure configType
Dim Name As String
Dim Password As String
Dim Lunch As Short
Dim Email As String
Dim Homepage As String
Dim MailApp As String
Dim WebApp As String
Dim server As String
Dim Alerts As Short
Dim Department As String
Dim EmailBrowser As Short

End Structure

Public Config As configType

The configType structure holds the local configuration information. This data is
stored in the Windows registry by the SaveSettings subroutine and reloaded with
LoadSettings. This allows the configuration to be persistent between executions of
the application. The data includes the user's name, password and other
configuration information. A subset of this information is maintained for all the
other known employees on the message board as well, as shown in the userType
data structure:

Public Structure userType
Dim Who As String
Dim Email As String
Dim Homepage As String
Dim Message As String
Dim Where As String
Dim ReturnInfo As String

End Structure
 TIBCO SmartSockets .NET User’s Guide and Tutorial

26 | Chapter 2 Getting Started with TIBCO SmartSockets .NET API
Public Myself As userType
Public Users(maxUsers) As userType
Public nUsers As Integer

Public wwSubject As String
Public Srv As TipcSrv
Public mtAnnounce As TipcMt
Public mtUpdate As TipcMt
Public mtResponse As TipcMt

Public Enum wwMessageTypes
wwAnnounce = 100
wwUpdate
wwResponse

End Enum

Public AnnounceCbParms As New Collection

Myself holds a copy of this user's message board information; Users() is the
array that holds the actual message board information. nUsers is the number of
users in the array and therefore the number of users displayed on the board.
wwSubject holds the publish-subscribe subject name used for the WhoWhere
client communication.

A global handle to the RTserver connection in the application is held in the Srv
variable. Additionally, WhoWhere defines three new message types identified by
the numbers 100, 101, and 102 as the enumeration wwMessageTypes specifies;
mtAnnounce, mtUpdate and mtResponse act as global references to these message
type objects that are created. Next, the initializeClient subroutine connects to
RTserver and assigns user-defined delegates to SmartSockets events.

Public Sub initializeClient()

displayErrors = True

If Srv Is Nothing Then
' get a handle to our server connection
Srv = TipcSvc.Srv

' set our options before we connect
Srv.setOption("ss.server_names", Config.server)
Srv.setOption("ss.project", programName)
Srv.create(TipcDefs.CONN_FULL)

destroyMts()

' create custom message types
mtAnnounce = TipcSvc.createMt("wwAnnounce",

wwMessageTypes.wwAnnounce, "int2 msg")
mtResponse = TipcSvc.createMt("wwResponse",

wwMessageTypes.wwResponse, "int2 msg")
TIBCO SmartSockets .NET User’s Guide and Tutorial

Example Programs | 27
' update is the msg that gets sent inside announce
' and response, and also by itself for updating status
mtUpdate = TipcSvc.createMt("wwUpdate",
wwMessageTypes.wwUpdate, "int2 str str str str str str")

' install event handlers for message types
' in this example, we use delegates instead of
' callbacks. For .NET applications, delegates
' are much more efficient.
AddHandler Srv.TipcMsgEvent, AddressOf MsgHandler
AddHandler Srv.TipcErrorEvent, AddressOf ErrorHandler

End If

wwSubject = "/" & programName & "/" & Config.Department
Dim status As Boolean
status = Srv.getSubjectSubscribe(wwSubject)
If status = False Then

Srv.setSubjectSubscribe(wwSubject, True)
End If
Srv.flush()

' send a message announcing our arrival
doUpdate()

End Sub

Only message board traffic published to the wwSubject subject is seen by this
client. It is this hierarchical naming feature of SmartSockets that accounts for its
scalability. Without changing the client, and with only one level of partitioning
(the department), a large number of separate message boards can coexist. This is
demonstrated in the RTserver.SubjectSetSubscribe statement in the
initalizeClient() subroutine above. As illustrated in the code, a call to the
doUpdate subroutine is made. This sends the equivalent of a “Hello” message
from this RTclient to the other users displaying this department's message board.
The following code for doUpdate builds and sends an announcement message
using the mtAnnounce object as a reference (notice how a second SmartSockets
message of type mtUpdate is included inside the announcement message):

Public Sub doUpdate()

' build and send an anouncement message
' for initially joining a message board subject
' or doing an 'update all'
Dim am, myData As TipcMsg
myData = TipcSvc.createMsg(mtUpdate)
 TIBCO SmartSockets .NET User’s Guide and Tutorial

28 | Chapter 2 Getting Started with TIBCO SmartSockets .NET API
With myData
.appendInt2(messageFormat)
.appendStr(Myself.Who)
.appendStr(Myself.Email)
.appendStr(Myself.Homepage)
.appendStr(Myself.Where)
.appendStr(Myself.Message)
.appendStr(Myself.ReturnInfo)

End With

am = TipcSvc.createMsg(mtAnnounce)
am.appendInt2(messageFormat)
am.appendMsg(myData)
am.Dest = wwSubject
Srv.send(am)
Srv.flush()

End Sub

The following subroutine, publishMyStatus, is used to send an update message when
the current user's status changes, for example, when they leave or return to the
office. A message of type mtUpdate is sent alone this time, not included inside another
message.

Private Sub publishMyStatus()

' build and send just an update message when
' our status changes (go to lunch, return, etc.)
Dim myData As TipcMsg

myData = TipcSvc.createMsg(mtUpdate)
With myData

.appendInt2(messageFormat)

.appendStr(Myself.Who)

.appendStr(Myself.Email)

.appendStr(Myself.Homepage)

.appendStr(Myself.Where)

.appendStr(Myself.Message)

.appendStr(Myself.ReturnInfo)

.Dest = wwSubject
End With

Srv.send(myData)
Srv.flush()

End Sub

The setAway subroutine updates the buttons available on the WhoWhere
graphical user interface (GUI). There are two subroutines, goAway and
comeBack, that make calls to publishMyStatus, as shown here:

Public Sub goAway()
publishMyStatus()
frmBoard.DefInstance.setAway(True)

End Sub
TIBCO SmartSockets .NET User’s Guide and Tutorial

Example Programs | 29
Public Sub comeBack()
Myself.Where = inStatus
publishMyStatus()
frmBoard.DefInstance.setAway(False)

End Sub
End Module

The Display Board Form
The Display Board Form is the main user-interface object of the WhoWhere
application. This form displays the message board with dynamic updating and
allows the user to interact with the program through the command buttons. In the
next example, the form's Load subroutine calls the other initialization routines
such as initializeGUI, which positions and sizes various screen elements.
initializeClient configures the environment for SmartSockets, assigns
delegates to SmartSockets events and manages subscriptions to the relevant
subjects.

A thread is also created to run a loop processing messages in the background.
This is how the application receives and processes messages using the
TipcSrv.Mainloop method. Note that the loop must be terminated by setting a flag
in the frmBoard_Close subroutine.

Private Sub frmBoard_Load(ByVal eventSender As System.Object,
ByVal eventArgs As System.EventArgs)

Handles MyBase.Load
Me.Left = Val(GetSetting(regAppName, "WindowPos", "Left",
Str(System.Windows.Forms.Screen.PrimaryScreen.Bounds.Width –

Me.Width)))
Me.Top = Val(GetSetting(regAppName, "WindowPos",

"Top", "0"))
Me.Text = programName & " v" & programversion
initializeGUI()
noErrBox = True
initializeClient()

'
' Here, we need a thread to allow us to do the MainLoop to
' receive messages from the server. So,

create the appropriate
' objects, and set the server connection to
' use within the thread. Then, start the thread.

rtthrdclass = New rtThrdClass()
tsThread = New ThreadStart(

AddressOf (rtthrdclass.mainThreadProc)
trtsThread = New Thread(tsThread)
rtthrdclass.thrdServerConn = Srv
rtthrdclass.thrdStop = False
trtsThread.Start()
 TIBCO SmartSockets .NET User’s Guide and Tutorial

30 | Chapter 2 Getting Started with TIBCO SmartSockets .NET API
Me.Show()
Me.Visible = True

End Sub

Here is the rtThreadClass, demonstrating the use of TipcSrv.Mainloop to listen for
and process messages.

Public Class rtThrdClass
Public thrdServerConn As TipcSrv
Public thrdStop As Boolean
Public Sub mainThreadProc()

While thrdStop = False
thrdServerConn.MainLoop(0)
Thread.Sleep(0)

End While
End Sub

End Class

The form's Unload code saves the program settings and disconnects from the
RTserver.

Private Sub frmBoard_Closed(ByVal eventSender As System.Object,
ByVal eventArgs As System.EventArgs)
Handles MyBase.Closed

DoLoop = False
SaveSetting(regAppName, "WindowPos", "Left",

Me.Left.ToString)
SaveSetting(regAppName, "WindowPos", "Top", Me.Top.ToString)
saveSettings()
If Not rtthrdclass Is Nothing Then

'
' Tell the thread to stop
rtthrdclass.thrdStop = True
'
' Wait until the thread has ended
trtsThread.Join(10000)
trtsThread = Nothing

Srv.destroy()
End If

End Sub

As shown in the next example, the comeBack and goAway subroutines are called
when the absence or return (btnBack) buttons are clicked:

Private Sub btnHome_Click(ByVal eventSender As System.Object,
ByVal eventArgs As System.EventArgs)
Handles btnHome.Click

Myself.Where = "HOME"
Myself.Message = "(left for the day)"
Myself.ReturnInfo = "the next work day"
goAway()
btnBack.Focus()

End Sub
TIBCO SmartSockets .NET User’s Guide and Tutorial

Example Programs | 31
Private Sub btnLunch_Click(ByVal eventSender As System.Object,
ByVal eventArgs As System.EventArgs)
Handles btnLunch.Click

Myself.Where = "LUNCH"
Myself.Message = "(at lunch)"
Myself.ReturnInfo = "at " &

Format(DateAdd(Microsoft.VisualBasic.DateInterval.Minute,
Config.Lunch, TimeOfDay))

goAway()
btnBack.Focus()

End Sub

Private Sub btnExtended_Click(ByVal eventSender As
System.Object,

ByVal eventArgs As
System.EventArgs)

Handles btnExtended.Click
frmExtended.DefInstance.ShowDialog()
If extendedCancel Then Exit Sub
goAway()
btnBack.Focus()

End Sub

Private Sub btnBack_Click(ByVal eventSender As System.Object,
ByVal eventArgs As System.EventArgs)

Handles btnBack.Click
comeBack()

End Sub

The displayBoard subroutine is the most important in terms of user interface; it
re-populates the message board with data from the Users() array. The board has
nUsers+1 rows; the extra is used to display the column headings.

Public Sub displayBoard()
Dim i As Short
Dim wh As String

If board.Items.Count > 0 Then
board.Items.Clear()

End If

For i = 0 To nUsers - 1
Dim itm As New ListViewItem(Users(i).Who, i)
wh = Users(i).Where
If wh <> inStatus Then

wh = wh & " - returns " & Users(i).ReturnInfo
End If
itm.SubItems.Add(wh)
board.Items.Insert(i, itm)

Next i
btnMail.Visible = False
btnWeb.Visible = False
 TIBCO SmartSockets .NET User’s Guide and Tutorial

32 | Chapter 2 Getting Started with TIBCO SmartSockets .NET API
If Config.Alerts Then
Beep()

End If

End Sub

The msgHandler delegate handles announce, response, and update messages. It
then passes the messages to various subroutines. The newUser subroutine adds a
user to the message board. Note that is was registered in initializeClient().
As shown this example, if msgHandler processes an announcement message, it
responds by publishing a response message directly back to the originator:

' This is the message handler delegate to handle messages when they
arrive.
 Public Sub MsgHandler(ByVal target As Object,

ByVal args As TipcMsgEventArgs)
Dim msg As TipcMsg
Dim mt As TipcMt

msg = args.Msg
mt = msg.Type

If mt.Num = wwMessageTypes.wwAnnounce Then
HandleAnnounceMessage(msg)
Exit Sub

End If
If mt.Num = wwMessageTypes.wwResponse Then

HandleResponseMsg(msg)
Exit Sub

End If
If mt.Num = wwMessageTypes.wwUpdate Then

HandleUpdateMsg(msg)
Exit Sub

End If
MsgBox("Received unexpected message of type " & mt.Name)

End Sub

The following are called from the msgHandler delegate to handle different
message types.

Public Sub HandleAnnounceMessage(ByVal msg As TipcMsg)
Dim mver As Short
Dim m2 As TipcMsg
Dim resp As TipcMsg
Dim myData As TipcMsg

mver = msg.nextInt2
If mver > messageFormat Then

frmBoard.DefInstance.wrongMessageFormat("ANNOUNCE",
mver)
TIBCO SmartSockets .NET User’s Guide and Tutorial

Example Programs | 33
Else
m2 = msg.nextMsg
mver = m2.nextInt2
frmBoard.DefInstance.newUser(m2)
resp = TipcSvc.createMsg(mtResponse)
resp.Dest = msg.Sender
resp.appendInt2(mver)

myData = TipcSvc.createMsg(mtUpdate)
With myData

.appendInt2(messageFormat)

.appendStr(Myself.Who)

.appendStr(Myself.Email)

.appendStr(Myself.Homepage)

.appendStr(Myself.Where)

.appendStr(Myself.Message)

.appendStr(Myself.ReturnInfo)
End With

resp.appendMsg(myData)
Srv.send(resp)
Srv.flush()

End If
End Sub

Public Sub HandleResponseMsg(ByVal msg As TipcMsg)
Dim mver As Short
Dim m2 As TipcMsg
Dim resp As TipcMsg
Dim myData As TipcMsg

mver = msg.nextInt2
If mver > messageFormat Then

frmBoard.DefInstance.wrongMessageFormat("RESPONSE",
mver)

Else
m2 = msg.nextMsg
mver = m2.nextInt2
frmBoard.DefInstance.newUser(m2)

End If
End Sub

Public Sub HandleUpdateMsg(ByVal msg As TipcMsg)
Dim mver As Short

mver = msg.nextInt2
If mver > messageFormat Then

frmBoard.DefInstance.wrongMessageFormat("UPDATE",
mver)

Else
frmBoard.DefInstance.updateUser(msg)

End If

End Sub
 TIBCO SmartSockets .NET User’s Guide and Tutorial

34 | Chapter 2 Getting Started with TIBCO SmartSockets .NET API
The TipcErrorEvent event is fired when a SmartSockets error occurs. The delegate
that is registered in initializeClient() will be called when the event is fired.
In this case, the only action is to display relevant error information for the user to
acknowledge:

Public Sub ErrorHandler(ByVal target As Object,
ByVal args As TipcErrorEventArgs)

If displayErrors Then
MsgBox("SmartSockets error: " + args.errNum + ", " +

args.errString, MsgBoxStyle.Exclamation +
MsgBoxStyle.ApplicationModal +
MsgBoxStyle.OKOnly, "SmartSockets Error")

End If
End Sub

The newUser subroutine takes an update message as a parameter, and adds the
user information contained within to the Users() array, first removing any old
instance of the user. In this example, the number of users is incremented and
displayBoard is called to refresh the form display:

Public Sub newUser(ByRef um As TipcMsg)
Dim j As Object
Dim thisname As String
thisname = um.NextStr

' if user already on board, remove them
Dim i As Short
Dim wasRemoved As Boolean
i = 0
While (i < nUsers And Not wasRemoved)

If Users(i).Who = thisname Then
For j = i To nUsers - 2

Users(j) = Users(j + 1)
Next j
nUsers = nUsers - 1
wasRemoved = True

End If
i = i + 1

End While

With Users(nUsers)
.Who = thisname
.Email = um.NextStr
.Homepage = um.NextStr
.Where = um.NextStr
.Message = um.NextStr
.ReturnInfo = um.NextStr

End With

nUsers = nUsers + 1
displayBoard()
showCount()

End Sub
TIBCO SmartSockets .NET User’s Guide and Tutorial

Example Programs | 35
As shown in the next example, the updateUser subroutine takes an update
message as a parameter, and updates the user information contained within to the
Users() array. If the user is not currently in the array, they are added. Like the
newUser subroutine, it calls displayBoard to refresh the form display.

Public Sub updateUser(ByRef um As TipcMsg)
Dim i As Object
Dim thisname As String
Dim uIndex As Short
thisname = um.NextStr
' user already on board?
uIndex = -1
For i = 0 To nUsers - 1

If Users(i).Who = thisname Then
uIndex = i
Exit For

End If
Next i

' add this user if necessary
If uIndex = -1 Then

uIndex = nUsers
nUsers = nUsers + 1

End If

With Users(uIndex)
.Who = thisname
.Email = um.NextStr
.Homepage = um.NextStr
.Where = um.NextStr
.Message = um.NextStr
.ReturnInfo = um.NextStr

End With

displayBoard()
showCount()

End Sub

The btnUpdate subroutine, as shown below, is invoked when the Update All
button is clicked. It resets the user count and calls doUpdate, re-publishing an
announce message. The other users' message board applications will see this and
send response messages directly to the running WhoWhere RTclient, populating
the Users() array as the message callback events are invoked.

Private Sub btnUpdate_Click(ByVal eventSender As System.Object,
ByVal eventArgs As

System.EventArgs)
Handles btnUpdate.Click

nUsers = 0
doUpdate()
board.Focus()

End Sub
 TIBCO SmartSockets .NET User’s Guide and Tutorial

36 | Chapter 2 Getting Started with TIBCO SmartSockets .NET API
Data Flow

The flow of messages used in the WhoWhere program is:

1. Users just joining the message board group (specified by the department
configuration field) are announced to the group members by publishing an
mtAnnounce message containing information specific to the new user.

2. WhoWhere RTclients receive the new user’s announcement and reply directly
and exclusively to the originating RTclient by publishing an mtResponse message
containing their information.

3. Upon receiving an mtResponse message, a WhoWhere RTclient adds the enclosed
user information to their message board.

4. All WhoWhere RTclients receive mtUpdate messages, processing and changing the
updated information to their message board in real-time.

5. If you click Update All, the board information is discarded and re-built by
starting over as if a new client subscribed to the message board.

Notes

There are some points to note when you examine all the WhoWhere source code:

• Although not shown here, the frmConfiguration form calls initializeClient
upon successful completion (that is, when you click OK). This ensures that any
changes made to the configuration are accurately reflected by the WhoWhere
application’s state.

• When WhoWhere is invoked for the first time, the Configuration dialog box appears
where you set up your message board environment. Once you enter the
information, the Log In window appears.

• There is message format version-control in the WhoWhere program. The first field in
every message sent is added with a line similar to this:

message.AppendInt2 messageFormat

This value is decoded with passages similar to the next example in the message
processing events:

If mver > messageFormat Then
frmBoard.DefInstance.wrongMessageFormat("ANNOUNCE", mver)

Else
…

End If
TIBCO SmartSockets .NET User’s Guide and Tutorial

Example Programs | 37
The code extracts the first field from the messages, a two-byte integer, and checks
it against the global constant messageFormat (see modGlobals for the definition of
messageFormat). This ensures that if newer versions of WhoWhere, with different
message grammars are present in the same department, the older RTclients do not
corrupt their data with incompatible messages. Your applications may need more
sophisticated message version control. This can be implemented with the
UserProp property of TipcMsg objects.

• Remember, placing break points in the source code and stepping through the
code with Step Into (the F8 key) is the way to see the sequence of events being
encountered by the program.

• The global constant Debugging (see modGlobals) can be set to a non-zero
value. This enables printing of diagnostic information in the Visual Studio
.NET Immediate window, which is useful for grasping the overall operation of
the WhoWhere RTclient.

• When you enter your name in the Name field of the Configuration window,
enter your first name, followed by your last name (for example, Jane Smith).
Names are automatically displayed on the message board in alphabetical
order: last name appearing first, followed by a comma and then the first name
(for example, Smith, Jane).
 TIBCO SmartSockets .NET User’s Guide and Tutorial

38 | Chapter 2 Getting Started with TIBCO SmartSockets .NET API
TIBCO SmartSockets .NET User’s Guide and Tutorial

| 39
Index

A

App.config 6

C

callbacks versus delegates 18
chat room 17
configType 25
configuring SmartSockets .NET 6
connection process

callbacks 9
events 8

constants 9
constructing messages 8
creating instances of classes 8
customer support x

D

delegates versus callbacks 18
destroying messages 8
Display Board Form 29

E

environment, setting up 1
error numbers 9
errors 34
event data 9
events 8, 15
exceptions 9

F

frmConfiguration 36
frmMain 18

G

global assembly cache (GAC) utility 3

I

installing the assembly in the GAC 3

L

listener thread 23

M

mainCleanup() 20
mainInit() 18
mainLoop 8
message

board 24
handler 12
loop 20
processing events 21
types 8

messages 8
Microsoft Visual Studio .NET 2
msgHandler 13, 32
 TIBCO SmartSockets .NET User’s Guide and Tutorial

40 | Index
msgIn.nextStr() 23
msgOut 19

N

NumFields 21

O

object library, setting a reference 2

P

process callbacks 9
processing messages 9

R

receiving
messages 9
process 21

registering the assembly in the GAC 3
RTmonitor 15
rtThreadClass 30

S

SSChat 17
support, contacting x

T

technical support x
thrdStop flag 20
TibcMsgHandler 9
TipcDefs 9
TipcErrorEvent 34
TipcException 9
TipcMsg 8
TipcMsg event 21
TipcMsgEvent 9
TipcMsgEventArgs 9
TipcMt 8
TipcProcessCb 9, 18, 21
TipcSrv 9
TipcSrv.Mainloop 8, 15, 30
TipcSvc 8
Tut.loadOptions() 6

U

uninstalling the assembly from the GAC 3

V

Visual Studio, referencing .NET API 2

W

WhoWhere 24
TIBCO SmartSockets .NET User’s Guide and Tutorial

	TIBCO SmartSockets™
	Contents
	Figures
	Preface
	About This Book
	Intended Audience
	Related Documentation
	Using the Online Documentation

	How to Contact TIBCO Support

	Chapter 1 Using the TIBCO SmartSockets Class Library with Visual Studio .NET
	Referencing the TIBCO SmartSockets .NET Assembly
	Using the Global Assembly Cache (GAC) Utility
	Installing the SmartSockets Assembly in the GAC
	Uninstalling the SmartSockets Assembly from the GAC

	Chapter 2 Getting Started with TIBCO SmartSockets .NET API
	TIBCO SmartSockets .NET Configuration
	Using the App.config File
	Using an External File
	Using an External File with App.config

	Writing a SmartSockets Program in Visual Studio .NET
	Introduction to the Classes, Events, and Delegates used in this Program
	Writing the Program

	Example Programs
	SSChat: Multi-User Chat Room
	Exploring frmMain
	Notes:
	WhoWhere: Electronic Message Board
	The Display Board Form

	Index

