
TIBCO SmartSockets™

Java Library User’s Guide and
Tutorial
Software Release 6.8
July 2006

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY
(OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE.
THE EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY
ANY OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND
CONDITIONS OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED
SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT,
THE CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING
DOWNLOAD OR INSTALLATION OF THE SOFTWARE (AND WHICH IS DUPLICATED IN THE
TIBCO SMARTSOCKETS INSTALLATION GUIDE). USE OF THIS DOCUMENT IS SUBJECT TO
THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE
ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document contains confidential information that is subject to U.S. and international copyright
laws and treaties. No part of this document may be reproduced in any form without the written
authorization of TIBCO Software Inc.

TIB, TIBCO, Information Bus, The Power of Now, TIBCO Adapter, RTclient, RTserver, RTworks,
SmartSockets, and Talarian are either registered trademarks or trademarks of TIBCO Software Inc.
in the United States and/or other countries.

EJB, J2EE, JMS and all Java-based trademarks and logos are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO
SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.

Copyright © 1991–2006 TIBCO Software Inc. ALL RIGHTS RESERVED.

TIBCO Software Inc. Confidential Information

| iii
Contents

Figures . ix

Tables . xi

Preface . xiii

About This Book . xiv

Intended Audience. xiv

Related Documentation . xv
Using the Online Documentation . xv

Conventions Used in This Manual . xvi
Typeface Conventions . xvi
Notational Conventions. xvii
Identifiers . xvii
Case . xviii

How to Contact TIBCO Support. xix

Chapter 1 Introducing TIBCO SmartSockets. 1

What Comprises TIBCO SmartSockets? . 2

TIBCO SmartSockets Features . 3
Java Message Service . 5
Platform Support. 5
Source Code Availability. 6
Programming Language Support . 6

Major Components of TIBCO SmartSockets . 6
Messages . 7
Message Types . 8
Connections . 8
RTserver and RTclient. 9
RTmon . 13

Chapter 2 Lesson Overview . 15

Before You Begin . 16
Required Software . 16
Including the Java Class Libraries . 16

TIBCO SmartSockets Java Class Library Scope. 16
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

iv | Contents
Using the Java Class Library . 17

The Java Class Library Lessons. 17

Chapter 3 Lesson 1: Your First Program . 19

Lesson 1 Overview . 20

A Hello World! Program . 21
Compiling. 23

A Program to Read a Message. 23
Running the Application. 25
What’s Going On . 26

Multiple RTserver Connections . 27

Error Handling. 28

Summary. 29

Chapter 4 Lesson 2: Publish-Subscribe. 31

Lesson 2 Overview . 32

What is RTserver?. 32
Distributing Message Load . 33
Connectivity . 33

Running RTserver . 34
Starting the RTserver . 35
Stopping the RTserver . 35
RTserver Options . 36

What is a TIBCO SmartSockets Project? . 36

What are Subjects?. 40
Understanding Hierarchical Subject Namespace . 41
Specifying Wildcards in Subjects . 42
Demonstrating Message Routing. 42
Demonstrating Publish-Subscribe Services. 44

Using Load Balancing . 46

Connecting to RTserver on Another Node . 49

Disconnecting from RTserver . 49

Summary. 50
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Contents | v
Chapter 5 Lesson 3: Messages . 53

Lesson 3 Overview . 54

What is in a Message?. 54
What is Automatic Data Translation? . 58

What are Message Types? . 58

Working With Messages . 61

Named Fields. 65

Summary . 67

Chapter 6 Lesson 4: Callbacks. 69

Lesson 4 Overview . 70

Introduction to Callbacks . 70
Creating Callbacks . 72
Manipulating Callbacks. 73
Destroying Callbacks . 73

Callback Types . 73
Process Callbacks . 74
Subject Callbacks . 75
Default Callbacks . 76
Read Callbacks . 76
Write Callbacks. 76
Server Create Callbacks. 76
Server Destroy Callbacks . 76
Error Callbacks . 77

Using Callbacks . 77
Writing a Process Callback. 77
Writing a Default Callback . 80
Writing a Subject Callback . 86
Using the TipSrv.mainLoop Convenience Method . 93
Using Server Create and Destroy Callbacks . 93

Creating Your Own Message Types . 99
Sample Programs. 101

Summary . 106
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

vi | Contents
Chapter 7 Lesson 5: TIBCO SmartSockets Options . 109

Lesson 5 Overview . 110
Option (Property) Databases . 110
Utility Methods for Handling Options . 111
Setting Simple RTclient Options. 112
Working with Enumerated Options . 112
Loading RTclient Options from a File or URL. 113
Making Custom Options Read-Only . 117
Java-Specific Options . 117

Summary. 118

Chapter 8 Lesson 6: Java Applets . 119

Lesson 6 Overview . 120

Applets and the Security Model . 120
Network Connections. 121
Local Machine Lookup . 121
Local File System Access . 121

Applet Life Cycle . 122

Using Messaging Threads . 122

Example Applet: ChatApplet . 124

Summary. 134

Congratulations! . 134

Chapter 9 RTclient Options . 135

Option (Property) Databases . 136

Loading RTclient Options . 136

Setting RTclient Options . 137
ss.backup_name . 140
ss.compression . 140
ss.compression_args. 141
ss.compression_name. 141
ss.compression_stats . 141
ss.default_msg_priority . 142
ss.default_protocols . 142
ss.default_subject_prefix . 142
ss.enable_control_msgs . 143
ss.group_names . 143
ss.ipc_gmd_directory . 144
ss.ipc_gmd_type . 144
ss.log_in_data . 145
ss.log_in_internal . 145
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Contents | vii
ss.log_in_status . 145
ss.log_out_data . 146
ss.log_out_internal . 146
ss.log_out_status . 146
ss.max_read_queue_length . 147
ss.max_read_queue_size. 147
ss.mcast_cm_file . 148
ss.min_read_queue_percentage . 148
ss.monitor_ident . 149
ss.monitor_level . 149
ss.monitor_scope . 150
ss.project . 150
ss.proxy.password . 151
ss.proxy.username . 151
ss.server_auto_connect . 151
ss.server_auto_flush_size . 152
ss.server_delivery_timeout . 152
ss.server_disconnect_mode. 153
ss.server_keep_alive_timeout . 154
ss.server_max_reconnect_delay . 154
ss.server_msg_send . 155
ss.server_names . 155
ss.server_read_timeout . 156
ss.server_start_delay . 156
ss.server_start_max_tries. 156
ss.server_write_timeout . 157
ss.socket_connect_timeout . 157
ss.subjects . 158
ss.time_format . 158
ss.trace_flags . 159
ss.unique_subject . 159
ss.user_name . 160

Chapter 10 Using Java Clients . 161

Using TIBCO SmartSockets Multicast . 162
Using Multicast with Java . 163
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

viii | Contents
Chapter 11 Guaranteed Message Delivery . 167

Overview of GMD . 168
GMD Features . 168
How GMD Works . 169

Configuring GMD . 170
Java GMD-Related Options. 170
Configuring File-Based GMD. 171
Configuring Memory-Based GMD . 173
Reverting to Memory-Based GMD. 174

Using GMD . 174
Java GMD Methods . 174
Sending GMD Messages. 176
Receiving GMD Messages . 176
Acknowledging GMD Messages . 177
Waiting for Completion of GMD . 177
Example of Using GMD . 178

Handling GMD Failures. 180
GMD_FAILURE Messages . 181
Delivery Timeout Failures . 181
Processing of GMD_FAILURE Messages . 182

File-Based GMD Considerations. 183
Resending GMD Messages. 184
Removing GMD Files. 184

Warm Connections . 185
New Warm Connections . 185
Connections with Warm RTclients . 187

GMD Limitations . 188

Appendix A Java API to C API Mapping . 189

Index . 217
TIBCO SmartSockets Java Library User’s Guide and Tutorial

| ix
Figures

Figure 1 RTserver and RTclient Architecture . 12

Figure 2 Process Connectivity with RTserver Cloud . 34

Figure 3 RTserver Message Routing . 43

Figure 4 Messages Delivered With and Without Load Balancing. 47

Figure 5 Composition of a Typical Message . 55

Figure 6 Composition of a NUMERIC_DATA Message . 57

Figure 7 Applet Viewer display of ChatApplet (login phase) . 131

Figure 8 Applet Viewer display of ChatApplet (chat phase) . 132

Figure 9 Browser display of ChatApplet . 133

Figure 10 Steps Involved in GMD Successful Delivery . 169
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

x | Figures
TIBCO SmartSockets Java Library User’s Guide and Tutorial

| xi
Tables

Table 1 Standard Message Types . 59

Table 2 Callback Interfaces. 71

Table 3 Java RTclient Options . 137

Table 4 Options Related to GMD . 170

Table 5 Java Classes and Methods for GMD . 174

Table 6 Interface TipcConnClient . 190

Table 7 Interface TipcConnServer . 193

Table 8 Class TipcMon . 193

Table 9 Class TipcMonExt . 196

Table 10 Interface TipcMsg. 197

Table 11 Interface TipcMt . 207

Table 12 Interface TipcSrv . 208

Table 13 C Functions With No Java Equivalent . 212
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

xii | Tables
TIBCO SmartSockets Java Library User’s Guide and Tutorial

| xiii
Preface

TIBCO SmartSockets is a message-oriented middleware product that enables
programs to communicate quickly, reliably, and securely across:

• local area networks (LANs)

• wide area networks (WANs)

• the Internet

TIBCO SmartSockets takes care of network interfaces, guarantees delivery of
messages, handles communications protocols, and directs recovery after system
or network problems. This enables you to focus on higher-level requirements
rather than the underlying complexities of the network.

Topics

• About This Book, page xiv

• Intended Audience, page xiv

• Related Documentation, page xv

• Conventions Used in This Manual, page xvi

• How to Contact TIBCO Support, page xix
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

xiv | About This Book
About This Book

This reference provides the detailed information you need to use and develop
distributed applications with the SmartSockets Java class library. This guide also
contains a tutorial to help you quickly learn to use the SmartSockets Java class
library. Before starting the tutorial, install SmartSockets and the SmartSockets
Java class library. Installation instructions for SmartSockets can be found in the
TIBCO SmartSockets Installation Guide.

This guide is intended to be a supplement to the TIBCO SmartSockets User’s Guide.
Many key concepts are explained in detail there and are the same for both the Java
and C application program interfaces (APIs). This guide gives a brief overview of
SmartSockets, emphasizing the differences between the Java and C APIs.

For detailed reference information on the SmartSockets Java classes, see the online
reference information, provided in JavaDoc format with the SmartSockets
product. The TIBCO SmartSockets Installation Guide tells you where to find those
files. For an overview of the new features, changes, and enhancements in this
Version 6.8 release, see the TIBCO SmartSockets Release Notes.

Intended Audience

This guide is for software developers and project managers who want to know
how SmartSockets and the SmartSockets Java class library can help them build
distributed applications with program-to-program communication.

Some prerequisite knowledge is needed to understand the concepts and examples
in this guide:

• working knowledge of Java

• familiarity with the operating system is required for developing SmartSockets
applications (UNIX, Windows, OpenVMS, or whatever platform is running
SmartSockets)

This includes knowing how to log in, log out, edit a text file, change
directories, list files, and build and run a program.

• understand general messaging and publish/subscribe concepts and
terminology

• understand the SmartSockets messaging and publish/subscribe concepts
described in the TIBCO SmartSockets User’s Guide
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Related Documentation | xv
Related Documentation

For more information about TIBCO SmartSockets, see:

• TIBCO SmartSockets API Quick Reference

• TIBCO SmartSockets Application Programming Interface

• TIBCO SmartSockets C++ User’s Guide

• TIBCO SmartSockets cxxipc Class Library

• TIBCO SmartSockets Installation Guide

• TIBCO SmartSockets Java Library User’s Guide and Tutorial

• TIBCO SmartSockets .NET User’s Guide and Tutorial

• TIBCO SmartSockets Tutorial

• TIBCO SmartSockets User’s Guide

• TIBCO SmartSockets Utilities

• TIBCO SmartSockets C++ and Java Class Libraries

C++ class library and Java application programming interface (API) reference
materials are available in HTML format only. Access the references through
the TIBCO HTML documentation interface.

Using the Online Documentation
The SmartSockets documentation files are available for you to download
separately, or you can request a copy of the TIBCO Documentation CD.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

xvi | Conventions Used in This Manual
Conventions Used in This Manual

This manual uses the following conventions.

Typeface Conventions
This manual uses the following typeface conventions

Example Use

monospace This monospace font is used for program output and code example listing and
for file names, commands, configuration file parameters, and literal
programming elements in running text.

monospace bold This bold monospace font indicates characters in a command line that you
must type exactly as shown. This font is also used for emphasis in code
examples.

Italic Italic text is used as follows:

• In code examples, file names etc., for text that should be replaced with an
actual value. For example: "Select install-dir/runexample.bat."

• For document titles.

• For emphasis.

Bold Bold text indicates actions you take when using a GUI, for example, click OK,
or choose Edit from the menu. It is intended to help you skim through
procedures when you are familiar with them and just want a reminder.

Submenus and options of a menu item are indicated with an angle bracket, for
example, Menu > Submenu.

Warning. The accompanying text describes a condition that severely affects the
functioning of the software.

Note. Be sure you read the accompanying text for important information.

Tip. The accompanying text may be especially helpful.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Conventions Used in This Manual | xvii
Notational Conventions
The notational conventions in the table below are used for describing command
syntax. When used in this context, do not type the brackets listed in the table as
part of a command line.

Identifiers
The term identifier is used to refer to a valid character string that names entities
created in a SmartSockets application. The string starts with an underscore (_) or
alphabetic character and is followed by zero or more letters, digits, percent signs
(%), or underscores. No other special characters are valid. The maximum length
of the string is 63 characters. Identifiers are not case-sensitive.

These are examples of valid identifiers:

EPS
battery_11
K11
__
_all

These are invalid identifiers:

20
battery-11
@com
$amount

Notation Description Use

[] Brackets Used to enclose an optional item in the command syntax.

< > Angle Brackets Used to enclose a name (usually in Italic) that represents an
argument for which you substitute a value when you use the
command. This convention is not used for XML or HTML
examples or other situations where the angle brackets are part
of the code.

{ } Curly Brackets Used to enclose two or more items among which you can
choose only one at a time.

Vertical bars (|) separate the choices within the curly brackets.

... Ellipsis Indicates that you can repeat an item any number of times in
the command line.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

xviii | Conventions Used in This Manual
Case
Function names are case-sensitive, and must use the mixed-case format you see in
the text. For example, TipcMsgCreate, TipcSrvStop, and
TipcMonClientMsgTrafficPoll are SmartSockets functions and must use the case
as shown.

Monitoring messages are also case-sensitive, and should be all upper case, such as
T_MT_MON_SERVER_NAMES_POLL_CALL. This makes it easy to distinguish
them from option or function names.

Although option names are not case-sensitive, they are usually presented in text
with mixed case, to help distinguish them from commands or other items. For
example, Server_Names, Unique_Subject, and Project are all SmartSockets
options.

Identifiers used with the products in the SmartSockets family are not
case-sensitive. For example, the identifiers thermal and THERMAL are equivalent
in all processes.

In UNIX, shell commands and filenames are case-sensitive, though they might
not be in other operating systems, such as Windows. To make it easier to port
applications between operating systems, always specify filenames in lower case.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

How to Contact TIBCO Support | xix
How to Contact TIBCO Support

For comments or problems with this manual or the software it addresses, please
contact TIBCO Support as follows.

• For an overview of TIBCO Support, and information about getting started
with TIBCO Support, visit this site:

http://www.tibco.com/services/support

• If you already have a valid maintenance or support contract, visit this site:

http://support.tibco.com

Entry to this site requires a user name and password. If you do not have a user
name, you can request one.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

xx | How to Contact TIBCO Support
TIBCO SmartSockets Java Library User’s Guide and Tutorial

| 1
Chapter 1 Introducing TIBCO SmartSockets

TIBCO SmartSockets is an interprocess messaging software product that enables
processes to communicate quickly, reliably, and securely across different
operating system platforms. The communicating processes can reside on the same
machine, on LANS, on WANs, or anywhere on the Internet. SmartSockets is an
industrial-strength package that takes care of network interfaces, guarantees
delivery of messages, handles communication protocols, and deals with recovery
after system or network failures. The SmartSockets' programming model is built
specifically to offer high-speed interprocess communication, scalability, reliability,
and fault tolerance. It supports a variety of communication paradigms, including
publish-subscribe, peer-to-peer, and request-reply. Included as part of the
package are graphical tools for monitoring and debugging your distributed
applications.

The term message is used throughout this manual. It should not be confused with
the universally known concept of an email message. A SmartSockets message is a
structured packet of information that is transferred between two or more
programs, which may or may not reside on the same machine. It is not unusual
for a SmartSockets message to exist only in memory and never be written to disk.
A message is a mechanism that enables program-to-program communication to
occur in a manner easily understood by both you and the programs.

Topics

• What Comprises TIBCO SmartSockets?, page 2

• TIBCO SmartSockets Features, page 3

• Major Components of TIBCO SmartSockets, page 6
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

2 | Chapter 1 Introducing TIBCO SmartSockets
What Comprises TIBCO SmartSockets?

TIBCO SmartSockets consists of a suite of programming interfaces and class
libraries, ready-to-run programs, source code for sample programs, and extensive
documentation. It is designed to get your network programs running as quickly
as possible.

These components are part of the standard SmartSockets distribution:

• SmartSockets Application Programming Interface (API) provides a C-callable
library of functions for communicating between programs and monitoring
your distributed applications.

• SmartSockets Java Class Library provides classes, objects, and interfaces to
Java applications, allowing them to leverage the functionality of the
SmartSockets API.

• SmartSockets C++ Class Library provides an object-oriented layer on top of
the standard SmartSockets services.

• RTserver, a powerful software message router, empowers applications with
the publish-subscribe communications model.

• RTmon, a powerful tool for monitoring and debugging your distributed
project, is accessible through a GUI and also through a command-line
interface.

• Structured message types, a message with predefined field types, enable
transparent data conversion. SmartSockets comes out of the shipping box
with many predefined message types to get you working quickly. You can
easily extend these by defining your own types.

• Options and Command Language enable you to reconfigure your
SmartSockets applications easily.

• Sample programs get you off to a fast start.

• Documentation is available in printed and electronic format, where it can be
viewed from any Internet browser.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

TIBCO SmartSockets Features | 3
TIBCO SmartSockets Features

Programs built with SmartSockets require fewer lines of code than those
constructed with other IPC mechanisms and have sophisticated added benefits.
SmartSockets provides guaranteed message delivery (GMD), ensuring that your
application’s data is delivered to the component processes in a completely reliable
manner. SmartSockets also provides fault-tolerance capabilities that make it easy
to develop robust systems. The key features are:

• Insulates you from complexities of network programming:

— interoperability in heterogeneous computing environment

— transparent multiple protocol support

— automatic data conversion across heterogeneous platforms

— location transparency; sending process(es) need not know location of
receiving process(es)

— thread-safe API

— multi-threaded servers

• Publish-Subscribe communications services:

— hierarchical namespace

— synchronous/asynchronous message transfer

— both peer-to-peer and client-server models

— high-speed message routing

— one-to-many, many-to-one message transfer

— both wildcard publishing and wildcard subscribing

— load balancing

— message compression

• Graphical monitoring and administration:

— animated graphical tree of your application with real-time updates

— graphical view of RTserver connectivity and IPC traffic

— point-and-click interface to program and IPC information

— watch events as they happen

— poll for information at regular intervals

— monitoring is nonintrusive; application does not need to be modified
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

4 | Chapter 1 Introducing TIBCO SmartSockets
— monitor multiple processes simultaneously

• Prioritized message queues:

— messages can be processed first-in, first-out (FIFO) or in priority order

— message queue can be searched for messages of a given type before reading

— high-priority messages can be placed in the front of the queue

• Guaranteed message delivery:

— messages are delivered even in the event of network or system failure

— guaranteed delivery can be specified on a message-by-message basis

— guaranteed delivery can be specified on all messages of a given type

• Fault tolerance:

— dynamic message routing across any system topology

— automatic detection and recovery from network/system failure

— hot failover of clients and servers

— auto start and restart of programs

— keep-alives (heartbeats)

— read/write/connect timeouts

— flexible message buffering for both senders and receivers

— multiple RTservers

• Structured messages:

— typed messages; types are defined using concise message grammar

— messages contain data and properties, such as sender, priority, and delivery
mode

— extensive API to create, construct, duplicate, and access messages

— reusable and extensible message types

— messages can exist within another message

— message fields can be accessed sequentially or by name

— messages can contain XML data
TIBCO SmartSockets Java Library User’s Guide and Tutorial

TIBCO SmartSockets Features | 5
• Robust and professional set of programming tools:

— object-oriented API with extensive set of callbacks

— reusable Java and C++ classes

— program and IPC traffic monitoring and debugging tools

— message logging

— settable options that require no programming

— commands (including commands that set options) that can be placed in text
files or entered interactively

— upward compatibility as you upgrade to new versions of SmartSockets

— support for Microsoft ActiveX programming environments

— native Java support using SmartSockets Java class library

• Simple installation and configuration:

— does not require root or SYSTEM privilege to install

— does not require a special process or daemon on every machine

— does not require any modifications to the operating system kernel

• Security services:

— Basic Security using usernames and passwords, and permissions lists in
RTserver

— message filtering through a gateway process

For information on the new features and options available with this release of
SmartSockets, see the TIBCO SmartSockets Installation Guide.

Java Message Service
In addition to using SmartSockets with Java, you can use the Java Message
Service (JMS). For more information about TIBCO SmartSockets JMS, contact
your TIBCO sales representative or TIBCO Product Support.

Platform Support
SmartSockets is supported on a number of different computing platforms,
including many types of UNIX and Windows, as well as most platforms that
support Java. This list is expanded frequently and others may be available.
Contact TIBCO Software Inc. for more information.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

6 | Chapter 1 Introducing TIBCO SmartSockets
Source Code Availability
The SmartSockets Java class library is shipped as a Java Archive (JAR) containing
the classes and interfaces necessary for building Java applications that utilize
SmartSockets. Most other parts of SmartSockets are shipped as executables or as
object-code libraries.

Programming Language Support
SmartSockets is designed to integrate effortlessly with Java, C, C++, and ActiveX
environments. However, any language that supports a C or C++ binding can
effectively use SmartSockets.

Major Components of TIBCO SmartSockets

The major components of SmartSockets are:
Messages are the packets of information sent between processes.

Message types are the templates that describe the data part of a message.

Connection is an endpoint of a communication link used to send and receive
messages between two processes.

RTserver is a process that extends the features of connections to provide
transparent publish-subscribe message routing among many
processes.

RTclient is any program that connects to RTserver and uses its services
(under this definition RTmon can be considered an RTclient).

RTmon is a powerful tool for monitoring and debugging your distributed
project. RTmon allows you to use a graphical point-and-click
interface for watching things like IPC traffic and process
information. RTmon is also accessible through a command-line
interface.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Major Components of TIBCO SmartSockets | 7
Messages
Within a SmartSockets application, interprocess communication occurs using
messages. A message is a packet of information sent from one process to one or
more other processes providing instructions or data for the receiving process.
Messages can carry many different kinds of information, including:

• graphical commands, such as changing the color of an object or popping up a
view on a specified display

• commands to a process’ command interface

• images or audio

• user-defined binary data, such as C data structures or Java objects

• process information, such as the names and the number of processes currently
subscribed to a particular subject

• IPC traffic information, such as how many messages are currently in the
message queue of a program

• executable programs

All of these different kinds of messages are classified by message types. For
example, numeric variable data is typically sent in a NUMERIC_DATA type of
message, and an operator warning is typically sent in a WARNING type of
message. A SmartSockets application can use both the standard message types
provided with SmartSockets as well as user-defined message types.

Message Composition

A message is composed of the header and the data. The header contains
properties that specify control information about the message. Examples of
SmartSockets message properties are the message sender, destination, type,
priority, and delivery mode. The data contains the information you wish to send
and is usually the largest part of the message. The message type property defines
the structure of the data part of the message.

Working with Messages

Typically, when building a SmartSockets application, these steps are required
when constructing a message:

1. Create a message of a particular type.

2. Set the properties of the message.

3. Append fields to the message data.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

8 | Chapter 1 Introducing TIBCO SmartSockets
The same message can be used many times, changing only the data part of the
message or a property such as the destination. There are many different types of
fields that can be appended to a message’s data. These field types include three
sizes of integers, character strings, three sizes of real numbers, and arrays of the
scalar field types, such as an array of four-byte integers. Fields can also be
associated with a name, allowing them to be accessed by that name. Messages
themselves can even be used as fields within other container messages; this
allows operations such as large transactions to be represented with a single
message.

Once a message is constructed, it can be sent to another process through a
connection or published to a subject to be delivered to multiple processes.

Message Types
As described earlier, each message has a type property that defines the structure
of the data property of the message. A message type can be thought of as a
template (or class) for a specific kind of message, and each message can be
considered an instance of a message type. For example, NUMERIC_DATA is a
message type with a predefined layout requiring a series of name-value pairs,
with each string name followed immediately by a numeric value. To send
numeric data to a process, the sending process constructs a message that uses the
NUMERIC_DATA message type. A message type is created once and is then
available for use as the type for any number of messages.

SmartSockets provides a large number of standard predefined message types that
you can use, and that are also used internally by SmartSockets. When a standard
message type does not satisfy a specific need, you can create your own
user-defined message types. Both standard and user-defined message types are
handled in the same manner. Once the message type is created, messages can be
constructed, sent, received, and processed through a variety of methods.

Connections
All messages are transmitted between processes through connections. A
connection is an endpoint of a direct communication link used to send and receive
messages between two processes. The two processes, called peer processes, share
the link.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Major Components of TIBCO SmartSockets | 9
RTserver and RTclient
While connections allow two processes to send messages to each other, RTserver
and RTclient allow many processes to communicate with each other. RTserver
routes messages between RTclients. A key feature of SmartSockets is the ability to
distribute RTservers and RTclients anywhere over a network. Different processes
can be run on different computers, taking advantage of all the computing power a
network has to offer. Processes can be dynamically started and stopped while the
system is running.

The functionality of RTserver and RTclient is layered on top of connections and
messages, but adds greater functionality and ease of use. Some of these features
are listed below.

• RTserver and RTclient simplify setup and control through options that require
no programming.

• RTserver can partition a group of RTclients into a project.

• RTserver and RTclient use logical addresses called subjects for the sender
property and destination property of messages.

• RTserver and RTclient use a publish-subscribe communications model,
allowing a program to send a message to multiple receivers with a single
operation.

• Messages can be dynamically routed through a network of RTservers using a
lowest cost algorithm.

• Messages can be compressed to conserve bandwidth; message compression is
useful in situations where you need to transfer messages across lower
bandwidth connections, such as WANs and wireless networks.

• Multiple RTservers can distribute the load of message routing.

• Messages can be uniformly distributed to a series of RTclients through load
balancing.

• An RTclient can continue running when RTserver is temporarily unavailable,
and even attempt to reconnect to other RTservers which may still be
operating.

• Through RTserver, program and IPC traffic information can be monitored by
an RTclient and also through the RTmon GDI.

• An RTclient can monitor data created by one or more other RTclients, referred
to as extension data, by directly polling the other RTclients; the RTserver is not
involved in creating this kind of monitoring data.

• RTserver and RTclient can use callbacks to execute user-defined functions
when certain operations occur.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

10 | Chapter 1 Introducing TIBCO SmartSockets
• RTserver automatically converts messages sent between different types of
computers.

• Messages can have guaranteed message delivery, which enables total recovery
from network failures.

• RTclient and RTserver are inherently thread-safe.

RTserver and RTclient Composition

Before you use RTserver and the RTclient API, you should have an understanding
of the concepts involved. The RTserver and RTclient architectures and the major
concepts that you need to understand are:

Projects

A SmartSockets project is a group of RTclients working together with one or more
RTservers to perform some set of tasks as part of a specific system. Within a
project, processes can communicate with other processes on the same machine or
over the network. RTclient processes in different projects cannot send messages to
each other.

Typically, an RTclient belongs to only one project. An RTserver does not belong to
any project, but can provide message routing services for one or more projects.
You can think of a project as a firewall that prevents messages from being
dispatched outside the specified process group. It is possible for an RTclient to
connect to more than one project in the same RTserver or to multiple projects
across RTservers. See the TIBCO SmartSockets User’s Guide for more information.

RTserver is a process that extends the features of connections to provide
transparent publish-subscribe message routing among many
processes.

RTclient is any program that connects to an RTserver and accesses its services
(under this definition RTmon is considered an RTclient).

Project is a group of RTservers and RTclients working together.

Subject is a logical address for a message; RTclient subscribes to, or registers
interest in, subjects; an RTclient also publishes or sends messages to
subjects.

Monitoring allows you to examine detailed information about your project in
real time.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Major Components of TIBCO SmartSockets | 11
For example, in Figure 1 the RTclients are running on the same network and are
each monitoring two factories, so the projects named FAC1 and FAC2 are used to
ensure that messages are not sent between the two separate projects. The option
Project is used to specify the project to which an RTclient belongs. The default
value for Project is rtworks. Always set this option to prevent becoming part of
the default project, which can cause unwanted messages to be received.

Subjects

Just as projects restrict the boundaries of where messages are sent, subjects also
further partition the flow of messages within a project. A subject is the
fundamental concept used in taking advantage of SmartSockets publish-subscribe
communication services. A subject is a logical message address that provides a
virtual connection between RTclients.

When an RTclient has subscribed to a subject, it gets any messages sent to
RTserver whose destination property is set to that subject. For example, in a stock
trading application, you might partition messages by stock market sectors, such
as computer stocks, automobile stocks, financial stocks. These areas would be
declared as subjects such as /stocks/computer, /stocks/auto,
/stocks/financial. All messages pertaining to computer stocks are constructed
with the /stocks/computer subject as their destination property. Any RTclient
interested in receiving messages published to /stocks/computers subscribes to
the /stocks/computer subject. This is also known as the publish-subscribe
communications model in that the RTclients publish messages to a specific
subject, and the RTclients subscribe to subjects in which they are interested.

If you are not using SmartSockets publish-subscribe services, when two processes
create connections to each other, they need protocol-specific network addresses to
begin communicating (for example, TCP/IP needs a node name and port
number). If a process wants to send a message to many other processes, it first
needs to know the protocol-specific network addresses of the other processes and
then creates connections to all of those processes. This kind of architecture does
not scale well as configuration is complicated and tedious. The RTserver/RTclient
architecture’s use of subjects for message addresses allows RTclient to simply
send the message with a subject as the destination property, and RTserver takes
care of routing the message to all RTclients that are receiving that subject.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

12 | Chapter 1 Introducing TIBCO SmartSockets
Figure 1 RTserver and RTclient Architecture

RTserver

Connections by themselves do not scale well to many processes. RTserver fills this
void and expands the capabilities of connection-based message passing. RTserver
is a powerful message router that uses connections to make large-scale
distributed IPC easier.

In addition to routing messages between RTclients, multiple RTservers can route
messages to each other. Multiple RTservers can distribute the load of message
routing. If a project is partitioned so that most of the messages being sent are
routed between processes on the same node, then the placement of an extra
RTserver on the local node can reduce the consumption of network bandwidth
(processes on the same node can use the non-network local IPC protocol).

S

C

= RTserver

= RTclient

Project FAC2

= a subject being
subscribed to by RTclient

/sb

= a connection
Note:

Project FAC1 has processes C1, S1, S2, and C2.

Project FAC2 has processes C3, S1, C4, S2, and C5.

Both RTserver S1 and S2 are used by both projects.

RTclient C1 cannot send messages to C3, C4, or C5
because they are not in the same project.

A message published (sent) to the /sb1 subject in
project FAC2 is received by both RTclient C4 and C5.

/sb3

/sb1

/sb1

S2

/sb2

/sb3

/sb2

S1

C3
C4 C5

C2C1
Project FAC1

Currently, native Java clients cannot make use of the local IPC protocol.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Major Components of TIBCO SmartSockets | 13
RTclient

An RTclient is a process that is connected to RTserver as a client. Usually, each
RTclient has exactly one connection to exactly one RTserver. This is a single, global
RTserver connection. An RTclient can send messages, receive messages, and create
callbacks using this connection, just as it does any other connection. The message
routing capabilities of RTserver are transparent to RTclient, and subjects provide a
virtual connection between RTclients.

An RTclient can have complete control over when it creates a connection to
RTserver, or it can automatically create the connection when it is first needed. An
RTclient can partially destroy its connection to RTserver and temporarily continue
running as if it were still connected, or an RTclient can fully destroy its connection
to RTserver and continue as if it had never been connected at all.

An RTclient can have multiple RTserver connections. Usually, the single, global
RTserver connection is sufficient, but when threads such as Java applets or
servlets need individual connections, you can create new RTserver connections
independent of the global RTserver connection. For more information, see
Multiple RTserver Connections on page 27.

RTmon
RTmon is a powerful tool you can use to monitor and manage your distributed
project. You can access the RTmon through the RTmon Graphical Development
Interface (GDI) or through a built-in command-oriented interface called the
RTmon Command Interface (CI).

The RTmon GDI is a graphical point-and-click interface that is intuitive and easy
to use. The RTmon provides an assortment of tools for viewing your project,
including graphical trees, browsers, graphical charts, and watch windows. The
RTmon CI is a command-line-based interface, allowing you to monitor and
manage your project using a command prompt.

The RTmon Main window presents an animated graphical tree of your project,
with nodes in the tree representing RTclients, the subjects to which they are
subscribing, and the RTservers running in the project. As changes occur, the tree is
updated in real time. The Watch Server Connections window graphically displays
the RTservers in your project and their connection topology. You can use this
window to monitor the load on your RTservers and their connections using a
variety of different metrics. RTmon even allows you to look at individual
messages and their contents as they are passed from process to process.

The RTmon GDI has been deprecated and may be removed in a future release.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

14 | Chapter 1 Introducing TIBCO SmartSockets
One of the principal features of RTmon is that it is non-intrusive. You can monitor,
debug, and log information in your project without changing the running
processes. RTmon also provides real-time system usage information on processes,
such as CPU and memory resources. This is useful for stopping a process that is
using excessive system resources.

The content and functionality of the RTmon GDI are identical between the
Windows and Motif platforms.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

| 15
Chapter 2 Lesson Overview

This chapter introduces you to your SmartSockets Java class library lessons,
which help you quickly start using the Java class library. These lessons show you
how simple it is to use SmartSockets to build, test, and debug a distributed
application consisting of a number of programs communicating with one another
using messages. Once you complete the exercises in these lessons, you will
understand how SmartSockets makes your job of network programming much
easier.

Topics

• Before You Begin, page 16

• TIBCO SmartSockets Java Class Library Scope, page 16

• Using the Java Class Library, page 17

• The Java Class Library Lessons, page 17
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

16 | Chapter 2 Lesson Overview
Before You Begin

Before you can start the lessons, you must have SmartSockets and the
SmartSockets Java class library installed on your system. The complete
information for installing SmartSockets and the SmartSockets Java class library is
in the TIBCO SmartSockets Installation Guide shipped with your order. Be sure to
check the online README file for any last minute changes or corrections.

Required Software
The SmartSockets Java class library is compatible with SmartSockets 5.0 or higher.
In addition, the Java class library was built using Java2. You must have Java 2
Software Developer Kit (JSDK), Version 1.3 or higher, to develop SmartSockets
Java programs.

Including the Java Class Libraries
Remember that to include SmartSockets Java class libraries, you must specify the
path to those class files in your development environment.

On Solaris using the C shell, set your environment variable using:

setenv CLASSPATH $RTHOME/java/lib/ss.jar:{$CLASSPATH}

For other shells, see your operating system documentation.

On Windows NT, edit the %RTHOME%\bin\i86_w32\ssvars32.bat batch file by
adding a semicolon to the end of the current path and append the path to the
ss.jar file:

%RTHOME%\java\lib\ss.jar

TIBCO SmartSockets Java Class Library Scope

While much of the functionality provided by the SmartSockets C language API is
made available to Java programs with the SmartSockets Java class library, not
every feature has been ported to Java. For up-to-date details of which specific
functionality is not yet present in the SmartSockets Java class library, see the
online JavaDoc format reference information. For the exact location of these files
in the distribution, see the TIBCO SmartSockets Installation Guide.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Using the Java Class Library | 17
Using the Java Class Library

The fastest way to learn SmartSockets is by example. Before many of the key
concepts of SmartSockets are introduced, the first lesson demonstrates how to
write, compile, and execute two sample Java programs that use SmartSockets for
interprocess communication.

The TIBCO SmartSockets User’s Guide describes SmartSockets in much greater
detail, using a layered approach: first describing messages, then peer-to-peer
connections, then client-server connections, and finally how to monitor and
debug a SmartSockets application. When concepts are not clear from the tutorial,
or are not presented in enough depth, refer to the TIBCO SmartSockets User’s Guide
for more details.

The Java Class Library Lessons

These are the lessons on using the SmartSockets Java class library. To best learn
how to use the Java class libraries, remember to do the lessons in order, and do
not skip any of the lessons. Begin the lessons, in this order:

• Lesson 1: Your First Program

• Lesson 2: Publish-Subscribe

• Lesson 3: Messages

• Lesson 4: Callbacks

• Lesson 5: TIBCO SmartSockets Options

• Lesson 6: Java Applets

After you have completed the lessons, you will better understand the more
advanced information in the remaining chapters:

• Chapter 9, RTclient Options

• Chapter 10, Using Java Clients

• Chapter 11, Guaranteed Message Delivery
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

18 | Chapter 2 Lesson Overview
TIBCO SmartSockets Java Library User’s Guide and Tutorial

| 19
Chapter 3 Lesson 1: Your First Program

In this lesson you learn about:

• how to use the SmartSockets Java classes

• how to write a program to send a message

• how to write a program to read a message

• how to compile and run SmartSockets Java programs

Topics

• Lesson 1 Overview, page 20

• A Hello World! Program, page 21

• A Program to Read a Message, page 23

• Multiple RTserver Connections, page 27

• Error Handling, page 28

• Summary, page 29
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

20 | Chapter 3 Lesson 1: Your First Program
Lesson 1 Overview

The files for this lesson are located in the directories:

Windows:
%RTHOME%\java\tutorial\lesson1

UNIX:
$RTHOME/java/tutorial/lesson1

During this lesson, you write, compile, and run these programs:

• send — sends a message with the text "Hello World!" contained in its data part

• receive — reads a message and prints out the data part of the message (in
this example, this is "Hello World!")

To use the SmartSockets Java classes effectively, it is important that you
understand these functional areas that each class manages:

• SmartSockets classes start with a T prefix

• IPC classes start with Tipc (the ipc is for interprocess communication)

• methods that manipulate messages are in the TipcMsg class

• methods that manipulate message types are in the TipcMt class

• methods that manipulate connections are in the TipcConn class

• methods that communicate with RTserver are in the TipcSrv class

• utility methods are in the Tut class

• methods allowing a client to monitor other clients and servers are in the
TipcMon class
TIBCO SmartSockets Java Library User’s Guide and Tutorial

A Hello World! Program | 21
A Hello World! Program

In this section, the complete source code for your first SmartSockets Java program
is presented. Be sure SmartSockets and the SmartSockets Java Class Library are
installed properly on your system.

The files for this lesson are located in the directories:

Windows:
%RTHOME%\java\tutorial\lesson1

UNIX:
$RTHOME/java/tutorial/lesson1

Step 1 Create a working directory

Before you begin writing your first program, create a working directory where
you have read and write access to store the examples.

Step 2 Copy the tutorial files

Copy the tutorial files from the lesson1 directory into your working directory.

Line numbers appear on the far left margins of code examples. Note that these
numbers are not part of the program but are used to refer to different lines in the
source code. This is the send.java program:

//--
// Program 1: send.java

1 import java.io.*;
2 import com.smartsockets.*;

3 public class send {

4 public static void main(String[] argv) {
5 TipcSrv srv = TipcSvc.getSrv();
6 TipcMsg msg = TipcSvc.createMsg(TipcMt.INFO);
7 msg.setDest("/ss/tutorial/lesson1");
8 msg.appendStr("Hello World!");

 try {
9 srv.send(msg);
10 srv.flush();
11 srv.destroy();
12 } catch (TipcException te) {
13 Tut.warning(te);
 } // catch
 } // main
 } // send
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

22 | Chapter 3 Lesson 1: Your First Program
It might be difficult to believe that a complete SmartSockets program can be
contained in so few lines; this is one of the main benefits of SmartSockets.
Hundreds of lines of interprocess communication code (such as sockets or RPCs)
can be reduced to just a few lines of SmartSockets Java code.

Let’s take a look at the key lines of this program:

The SmartSockets methods referred to in this program are:

• TipcSvc.getSrv()

• TipcSvc.createMsg()

• TipcMsg.setDest()

• TipcMsg.appendStr()

• TipcSrv.send()

• TipcSrv.flush()

• TipcSvc.destroy()

From the API naming conventions, you can see that the methods TipcSrv.send
and TipcSrv.flush are used to communicate with RTserver, because they are part
of the TipcSrv class.

Line 2 The SmartSockets Java package, com.smartsockets, is imported. This
step is required.

Line 5 A reference to the RTserver object is placed in the srv object. Using
TipcSvc.getSrv() allows a single global RTserver connection to be created
when needed.

Line 6 A TipcMsg object (msg) is created using the INFO message type.

Line 7 Sets the subject to which the message is being published. In this case the
subject is /ss/tutorial/lesson1.

Line 8 The text message "Hello, World!" is appended as the first data field in
the msg message object.

Line 9 The message is sent to RTserver using the send method. Note that the
send method automatically created a connection to RTserver, which must
already be running.

Line 10 The connection to RTserver is flushed, ensuring the message is sent
immediately.

Line 11 The connection to RTserver is closed. It is a good practice that all
programs sending data to RTserver destroy their connection when it is no
longer needed.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

A Program to Read a Message | 23
Compiling
Once the program has been written, it must be compiled with an appropriate Java
compiler for your platform. The examples in this manual are compiled with Sun
Microsystems Java Development Kit.

Step 3 Compile the sending program

To compile the send.java program, use this command:

$ javac send.java

Once compiled, the sending program is ready to run. Before running it, however,
you need to create a second program, receive.java, to read and print the
message that you are going to send using the send program.

A Program to Read a Message

The next program, receive.java, reads and prints out the contents of the
message being published from the send program described in A Hello World!
Program.

Step 4 Enter or copy the receive.java program

As before, enter this program interactively using your favorite editor, or copy it
from the receive.java file.

This is the receive.java program:

//--
// Program 2: receive.java

1 import java.io.*;
2 import com.smartsockets.*;

3 public class receive {

4 public static void main(String[] argv) {
5 TipcMsg msg = null;
6 String text = null;
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

24 | Chapter 3 Lesson 1: Your First Program
7 TipcSrv srv = TipcSvc.getSrv();
 try {
8 srv.setSubjectSubscribe("/ss/tutorial/lesson1", true);
9 msg = srv.next(TipcDefs.TIMEOUT_FOREVER);

10 msg.setCurrent(0);
11 text = msg.nextStr();
12 } catch (TipcException e) {
13 Tut.fatal(e);
 } // try-catch

14 System.out.println("Text from INFO message = " + text);
 } // main
 } // receive

As with the sending program, notice how the receiving program consists of so
few lines of code. Compare this with a similar program written using pipes,
sockets, or shared memory. SmartSockets programs are typically much shorter
than those developed with traditional low-level technologies and are instantly
able to leverage the power of the publish-subscribe paradigm.

Let’s take a look at the key lines of this program:

Step 5 Compile the receiving program

After you write the program, you need to compile it:

$ javac receive.java

Line 2 The SmartSockets Java package is imported. This step is required.

Line 7 A reference to the RTserver object is placed in the srv object.

Line 8 Subscribing to the /ss/tutorial/lesson1 subject allows receipt of
messages published by the send program.

Line 9 The srv object’s next method is used to wait for a message to be received.
This line blocks forever, as indicated by the
TipcDefs.TIMEOUT_FOREVER parameter. (The next method takes only
one parameter, the time in seconds to wait.)

Line 10 Now that a message has been received into the msg object, the setCurrent
method is used to position the field pointer. Note that the first data field
of the message is specified by the value 0.

Line 11 The string data contained in the message is extracted with the nextStr
method and copied into the text String object.

Line 14 The text data is printed on the console with the println method.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

A Program to Read a Message | 25
Running the Application
Now that both the sending and receiving programs have been created and
compiled, you can run the complete application to see if the message is
successfully transmitted.

Step 6 Start the RTserver

Two windows need to be open, both set to the working directory, to see the
application properly. In one window, start RTserver:

$ rtserver -check

Specifying the -check argument starts the non-optimized version of RTserver,
which performs additional validation and checking. The optimized version is
faster because there is no checking, but it is much harder to diagnose a problem.
During all your development and testing, you should run RTserver with the
checking turned on. Even in your production environment, you might prefer to
run the check version of RTserver. The optimized version is best for enterprise
applications where speed is the most important factor.

Step 7 Start the sending program

Start the sending program in the other window:

 $ java send

Step 8 Start the receiving program

To read and output the message, start the receiving program using this command
in the second window:

$ java receive

The receiving program is waiting for a message. This is because the sending
program was executed first. It sent its message, and because the receiving
program had not yet been started, there were no subscribers wishing to receive
the message. RTserver does not send out messages if there are no processes
available to receive them.

Step 9 Start the sending program again

This time, start the sending program while the receiving program is already
running. Go back to the first window and re-execute the sending program.
(Remember, the receiving program is still running and waiting for the message.)

$ java send

On platforms that support both 32- and 64-bit, use the rtserver64 command to
run the 64-bit version of the rtserver script.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

26 | Chapter 3 Lesson 1: Your First Program
This output is displayed in the window where the receiving program is running:

Text from INFO message = Hello World!

This indicates the message was read, and its field was accessed and displayed
properly.

An important lesson here is that synchronizing processes at startup is critical.
Make sure your receiving processes are started first. This is a common error for
first-time developers of network programs.

In just a short time, you have written your first successful SmartSockets
application in Java!

What’s Going On
Notice that nowhere do we call the constructor for TipcSrv or TipcMsg, despite
the obvious fact that instances of each class are being created. Instead, the TipcSvc
class is used to "get" instances of each. Looking at the online reference, notice that
TipcSrv and TipcMsg aren’t classes at all. They are interfaces. Why aren’t we
creating an instance of TipcSvc?

This concept is known as the abstract factory pattern. In this model, instances of
classes aren’t created directly. Instead, a factory class is used to create them
indirectly. TipcSvc is that factory class. You never have to create an instance of
TipcSvc because all of the methods in it are static. When you create a message
with TipcSvc.createMsg, it creates an instance of a non-public class that
implements the TipcMsg interface and returns a reference to that class to your
program, which you manipulate through the abstract TipcMsg interface. The
abstract factory model allows SmartSockets developers more freedom in altering
the structure of the library without impacting end-user code. The TipcMsg
interface could be implemented by several classes, or only one. The inheritance
hierarchy can be rearranged, and classes could be removed or renamed, without
affecting your code. Indeed, due to Java dynamic linking, you shouldn’t even
have to recompile your code when such changes are made.

Also note that the online reference does not list the methods send or flush under
TipcSrv. This is because TipcSrv extends TipcConnClient, and most of the
methods dealing with sending and reading messages are handled by that class.

Finally, it’s important to note that TipcSvc.getSrv does not actually create a
connection to RTserver. SmartSockets uses a "lazy" scheme when making
connections, deferring the process until the connection is actually required. For
the sender, this doesn’t happen until flush is called. The receiver creates a new
connection when next is called. You can also explicitly create a new connection
with the TipcSrv.create method.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Multiple RTserver Connections | 27
Multiple RTserver Connections

Usually, as shown in the code for A Hello World! Program, you use
TipcSvc.getSrv to create a single global RTserver connection. In some cases, you
may need to create multiple RTserver connections from your RTclient:

• threads such as Java applets or servlets might require individual connections
to register independent subscriptions and callbacks

• threads such as Java applets or servlets might require individual connections
for proper remote procedure call (RPC) handling

• topology bridges between two or more RTserver clouds might need to be
created to satisfy the needs of a large scale enterprise system

To create multiple RTserver connections, use the TipcSvc.createSrv method. This
creates new RTserver connections independent of the global RTserver connection
created by TipcSvc.getSrv. TipcSvc.createSrv allows properties to be associated
with a TipcSrv object so that each RTserver connection can have its own option
settings.

Here is an example of a program that creates multiple RTserver connections:

//---
// multi.java -- Java application with multiple connections

import com.smartsockets.*;

public class multi {
 public static void main(String[] argv) {
 TipcMsg msg = null;
 String text = null;

 try {
 // the sender connection
 TipcSrv sender = TipcSvc.createSrv();
 sender.setOption("ss.unique_subject", "sender");

 // the receiver connection
 TipcSrv receiver = TipcSvc.createSrv();
 receiver.setOption("ss.unique_subject", "receiver");

 // create the message
 msg = TipcSvc.createMsg(TipcMt.INFO);
 msg.setDest("/multi");
 msg.appendStr("Hello, World!");

 // subscribe the receiver connection to subject "/multi"
 receiver.setSubjectSubscribe("/multi", true);
 receiver.flush();
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

28 | Chapter 3 Lesson 1: Your First Program
 // send the message over the sender connection, then close the connection
 sender.send(msg);
 sender.flush();
 sender.destroy();

 // the receiver connection will now receive the message
 TipcMsg receivedMsg = receiver.next(TipcDefs.TIMEOUT_FOREVER);
 receivedMsg.setCurrent(0);
 text = receivedMsg.nextStr();
 }
 catch (TipcException e) {
 Tut.fatal(e);
 } // try-catch

 System.out.println("Text from INFO message = " + text);
 } // main
} // multi

Error Handling

One nice feature of Java is the enforced error-handling capability provided by the
exception mechanism. The SmartSockets Java Class Library fully utilizes
exceptions, throwing them to indicate many types of error conditions. As
illustrated by the example sending and receiving programs above, an important
part of any SmartSockets Java program is appropriate error-handling procedures
in the catch blocks following code that may throw an exception. The online class
library documentation details the exceptions that each method can throw, as well
as explanations of common error conditions.

Specific classes of exceptions should be caught when possible, instead of using
the blanket Exception class. All SmartSockets exceptions are inherited from the
TipcException class, which is itself derived from Exception. As an example of the
appropriate way to catch exceptions, see these examples:

try {
 srv.send(a_message);
 // possibly more code
} catch (TipcException err) {
 // handle the error here
}

TIBCO SmartSockets Java Library User’s Guide and Tutorial

Summary | 29
The above specifies the exact exception that may be thrown, TipcException. This
is preferred over the more generic code:

try {
 srv.send(a_message);
 // possibly more code
} catch (Exception err) {
 // handle error
}

Using the more specific exception object makes debugging easier and more
succinct, because other code in the try block is likely to generate different specific
exceptions.

Summary

The key concepts covered in this lesson are:

• Reliable interprocess communication can easily be added to your program
with the SmartSockets Java classes.

• SmartSockets uses a consistent naming convention for its classes, making it
easy to understand and locate the functionality you need.

• All SmartSockets programs must import the com.smartsockets package.

• With very few lines of code you were able to create a program to send a
message. With a few more lines of code you were able to write a program that
reads a message and outputs it (these programs also perform a number of
other valuable tasks that are covered in later lessons).

• Before publishing a message, be sure that your receiving program is running.

• Many SmartSockets methods potentially throw an exception. These
exceptions should be handled appropriately within catch blocks in case the
method did not complete correctly.

• SmartSockets programs should always try to catch the TipcException or
TipcException-derived exception thrown by a block of code in preference to
the more generic Exception class, to help differentiate SmartSockets errors.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

30 | Chapter 3 Lesson 1: Your First Program
TIBCO SmartSockets Java Library User’s Guide and Tutorial

| 31
Chapter 4 Lesson 2: Publish-Subscribe

In this lesson you learn about:

• how the SmartSockets publish-subscribe model works

• what an RTserver is and how to run it

• what a project is

• what a subject is

• how to send one message to many processes in a single operation

Topics

• Lesson 2 Overview, page 32

• What is RTserver?, page 32

• Running RTserver, page 34

• What is a TIBCO SmartSockets Project?, page 36

• What are Subjects?, page 40

• Using Load Balancing, page 46

• Connecting to RTserver on Another Node, page 49

• Disconnecting from RTserver, page 49

• Summary, page 50
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

32 | Chapter 4 Lesson 2: Publish-Subscribe
Lesson 2 Overview

The files for this lesson are located in the directories:

Windows:
%RTHOME%\java\tutorial\lesson2

UNIX:
$RTHOME/java/tutorial/lesson2

In the previous lesson, you wrote a program to send a message and a second
program to read and print out the message. This message was not transferred
directly from sender to receiver; rather, it went first from the sender to the
SmartSockets RTserver, and then from RTserver to the RTclient program (in this
case, the receiver). Notice that the intervention of RTserver is completely
transparent. In fact, RTserver performs many important tasks transparently. Many
of these tasks are described in this lesson.

SmartSockets does allow you to send messages directly between two RTclients,
peer-to-peer, without using RTserver. This is accomplished using connections. The
SmartSockets TipcConn class is used to work with peer-to-peer connections. The
lessons in this reference focus on using RTserver for interprocess communication,
because this is the method most commonly used and it offers numerous
advantages over SmartSockets peer-to-peer connections. For detailed information
on connections, see the TIBCO SmartSockets User’s Guide.

What is RTserver?

While connections allow two processes to send messages to each other, RTserver
allows multiple RTclients to communicate easily. RTserver routes messages
between RTclients. RTserver can be thought of as a message switch—a large
software switch for messages.

A key feature of SmartSockets is the ability to distribute RTservers and RTclients
over a network. Different processes can be run on different computers, taking
advantage of all the computing power a network’s systems have to offer.
RTservers and RTclients alike can be dynamically started and stopped while the
system is running.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

What is RTserver? | 33
The functionality of RTserver and RTclient is layered on top of connections and
messages, but adds capability and ease of use to these functions. While
connections provide a means for two processes to exchange messages,
connections by themselves do not scale well to many processes. RTserver fills this
void and expands the capabilities of connection-based message passing.

Distributing Message Load
In addition to routing messages between RTclients, multiple RTservers can route
messages to each other. Multiple RTservers can distribute the load of message
routing. If an application is partitioned such that most of the messages being sent
are routed between processes on the same node, then the use of multiple
RTservers can reduce the consumption of network bandwidth (processes on the
same node can use the non-network local IPC protocol). For more information,
see the TIBCO SmartSockets User’s Guide.

Connectivity
Each RTclient can have only one global connection, created using TipcSvc.getSrv,
whether the connection is to an RTserver or to another process that plays a
server-like role, such as RTgms. RTclients can connect to multiple RTservers if
they use the TipcSvc.createSrv method, which creates connections independent of
the global connection. Regardless of the type of connection, RTclients and
RTservers do not have to be on the same network node. RTserver can run
stand-alone, or it can connect to other RTservers. A message goes through one or
more RTservers during delivery to an RTclient (or multiple RTclients). Messages
are dynamically routed using a lowest cost algorithm, where each message passes
through the fewest number of RTservers possible or, if paths have specified costs,
the lowest cost path. (Lowest cost routing can be overridden, and message
routing can be manually configured with RTserver subscribes.)

Figure 2 presents an example of the connectivity process in an RTserver cloud. In
Figure 2, a message going from the RTclient A to the RTclient B goes through one
RTserver. A message going from the RTclient A to the RTclient C goes through two
RTservers. A message going from the RTclient A to the RTclient D goes through
three RTservers. Routing is dynamic and can change at any time. Whenever a new
RTserver becomes available or an existing RTserver goes down, routing tables in
the RTservers are updated to reflect the new topology. For more information, see
the TIBCO SmartSockets User’s Guide.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

34 | Chapter 4 Lesson 2: Publish-Subscribe
Figure 2 Process Connectivity with RTserver Cloud

Running RTserver

RTserver is an independent SmartSockets process that can be run anywhere on the
network. This chapter describes a few of the techniques for working with
RTserver. More detailed information is presented in the TIBCO SmartSockets User’s
Guide.

RTclient

RTclient

RTserver
2RTclient

B

RTclient
C

RTclient
D

RTserver
3

RTserver
4

RTclient

RTclient

RTclient
A

RTserver
1

RTclient

RTserver
Cloud
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Running RTserver | 35
Starting the RTserver
By default, the RTserver runs as a background process (on OpenVMS and
Windows, this is known as a detached process). Because of security restrictions,
Java RTclients cannot automatically start or restart RTservers, so it’s important to
make sure the RTserver is already running before your Java RTclient tries to
connect. For details on starting the RTserver, see the TIBCO SmartSockets User’s
Guide.

On UNIX, you can start the RTserver manually to run as a background process
with the rtserver command. Enter rtserver at the operating system prompt:

$ rtserver

On Windows, you can start the RTserver at the SmartSockets command prompt
($) or go the Start menu, select Programs, and select the SmartSockets program
folder. Select RTserver.

RTserver can be started automatically by C/C++ RTclients if it is not already
running. As mentioned, the Java RTclients are restricted by the security settings of
the Java Virtual Machine (VM) that executes them, and this means that Java
RTclients cannot automatically start RTserver.

Stopping the RTserver
You can stop the RTserver with the rtserver command and its argument -stop.
Execute rtserver on the computer where RTserver is running:

$ rtserver -stop

 Add the argument -server_names node to stop the RTserver on a remote node.
See the TIBCO SmartSockets User’s Guide for more information.

Java RTclients cannot automatically restart the RTserver as the C/C++ RTclients
can. Java RTclients enter an infinite loop, attempting to connect to RTserver, when
the current connection is lost or an initial connection fails. This behavior
continues until the connection is successfully completed, or the RTclient is
stopped by the user or operating system.

On platforms that support both 32- and 64-bit, use the rtserver64 command to
run the 64-bit version of the rtserver script.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

36 | Chapter 4 Lesson 2: Publish-Subscribe
RTserver Options
Options are available for both RTservers and RTclients. Options allow you to
specify easily-modified parameters used by programs. For example, the RTserver
Client_Max_Buffer option specifies the maximum number of message bytes that
RTserver buffers for one of its RTclients. The RTclient option ss.user_name sets the
name reported when a Java RTclient’s owner information is requested.

Specific values for the RTserver options can be set in the rtserver.cm command
file. Option values that have been specified in this command file are then set each
time RTserver is started.

The Java RTclient options are documented in Chapter 9, RTclient Options. For
more details about the RTserver options, see the TIBCO SmartSockets User’s Guide.

What is a TIBCO SmartSockets Project?

A SmartSockets project is a group of RTclients working together with one or more
RTservers to achieve the goals of a specific system. Within a project, RTclients and
RTservers can communicate with other RTclients and RTservers on the same
machine or over the network. However, RTclients in different projects cannot send
messages to each other.

An RTclient can belong to only one project at a time. An RTserver process does not
belong to any specific project, but it can provide message routing services for one
or more projects simultaneously. A project can be thought of as a firewall that
prevents messages from being dispatched outside the specified RTclient group.

A project is designated by a name, which must be an identifier (often the
application’s name is used for the project name). The default project name is
rtworks. You can change the default project name using the ss.project option. You
should set this option to prevent your Java RTclients from becoming part of the
default rtworks project; otherwise, unwanted messages may be received.
Remember that in the Java library, all of the standard SmartSockets options are
prefixed with ss.; in SmartSockets C programs, the equivalent option is simply
project.

In the sending and receiving programs you wrote in Lesson 1, the ss.project
option was not explicitly set. This resulted in these programs being part of the
rtworks default project. You should set this option to build a firewall between
your application and other SmartSockets applications. This example shows you
how to change the project name:
TIBCO SmartSockets Java Library User’s Guide and Tutorial

What is a TIBCO SmartSockets Project? | 37
The files for this lesson are located in the directories:

Windows:
%RTHOME%\java\tutorial\lesson2

UNIX:
$RTHOME/java/tutorial/lesson2

Step 1 Modify the sending program

Modify the sending program from the previous lesson to look like this example,
or copy the send.java file into your working directory:

//--
// send.java
1 import java.io.*;
2 import com.smartsockets.*;

3 public class send {
4 public static void main(String[] argv) {
 try {
5 Tut.setOption("ss.project", "smartsockets");
6 TipcSrv srv=TipcSvc.getSrv();
7 if (!srv.create()) {
8 Tut.exitFailure("Couldn't connect to RTserver!");
 }
9 TipcMsg msg = TipcSvc.createMsg(TipcMt.INFO);
10 msg.setDest("/ss/tutorial/lesson2");
11 msg.appendStr("Hello World!");
12 srv.send(msg);
13 srv.flush();
14 srv.destroy();
15 } catch (TipcException e) {
16 Tut.warning(e);
 } // catch
 } // main
 } // send

Let’s examine some of the key lines in your new sending program:
Line 5 Sets the project name to smartsockets. Now only processes that belong

to the smartsockets project can communicate with your sending
program. Note that all the members of the Tut class are static, so an
instance of the Tut class need not (and should not) be created.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

38 | Chapter 4 Lesson 2: Publish-Subscribe
Compile and run the sending and receiving programs, as was done in the
previous lesson. (If RTserver is not still running, start it now.)

Step 2 Compile the sending program

Compile the modified send.java program:

$ javac send.java

Step 3 Start the receiving program first

Start the receiving and sending programs in separate windows, as you did in
Lesson 1. First start the receiving program (the same one used in Lesson 1):

$ java receive

Step 4 Start the sending program

After a few moments, start the sending program:

$ java send

Step 5 Change the project and subscribe to the correct subject

Notice that the receiving program did not read nor print the message from the
sending program. This is because you set the ss.project option in the sending
program to smartsockets and have not yet set the ss.project option in the
receiving program. The receiving program still belongs to the default rtworks
project. RTserver prevents the message sent by the sending program from being
delivered to the receiving program, because it is in a separate project. In addition,
the receiving program is still subscribing to the /tutorial/lesson2 subject.

Line 7 Explicitly tries to make a connection to RTserver using the TipcSrv
create() method. Be sure this method is used within a try block, so that
the IOException that is potentially thrown can be handled. Also, check
the return value as shown below, because a false result indicates a
connection could not be made.

if (!srv.create()) {
 Tut.exitFailure(
 "Couldn’t connect to an RTserver!");
}

In this example, the program exits if a connection cannot be made.
Another alternative is to try connecting to an RTserver process on
another network node.

Line 12 Publishes the INFO message to the /ss/tutorial/lesson2 subject.

Line 14 Explicitly disconnects from RTserver, ensuring the data is flushed and
completes our connect-publish-disconnect cycle.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

What is a TIBCO SmartSockets Project? | 39
To fix these problems, modify receive.java to belong to the same project as
send.java and to subscribe to the /tutorial/lesson2 subject.

Step 6 Modify the receiving program

Modify the receiving program from the previous lesson to match this example, or
copy the receive.java file (from the lesson2 directory) into your working
directory:

//---
// Program 2: receive.java

1 import java.io.*;
2 import com.smartsockets.*;

3 public class receive {

4 public static void main(String[] argv) {
5 TipcMsg msg = null;
6 String text = null;

 try {
7 Tut.setOption("ss.project", "smartsockets");
8 TipcSrv srv=TipcSvc.getSrv();
9 if (!srv.create()) {
10 Tut.exitFailure("Couldn't connect to RTserver!");
 }
11 srv.setSubjectSubscribe("/ss/tutorial/lesson2", true);
12 msg = srv.next(TipcDefs.TIMEOUT_FOREVER);

13 msg.setCurrent(0);
14 text = msg.nextStr();
15 } catch (TipcException e) {
16 Tut.fatal(e);
 } // catch

17 System.out.println("Text from INFO message = " + text);
 } // main
} // receive

Now you need to compile the modified receiving program, and then you can run
it with the sending program you ran earlier.

Step 7 Compile the receiving program

Compile the receiving program:

$ javac receive.java
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

40 | Chapter 4 Lesson 2: Publish-Subscribe
Step 8 Start the receiving program first

Start the receiving and sending programs in separate windows as you did earlier
in the lesson. Make sure RTserver is running. Start the receiving program:
$ java receive

Step 9 Start the sending program

After a few moments, start the sending program:

$ java send

This output is displayed by the receiving program:

Text from INFO message = Hello World!

What are Subjects?

Just as projects restrict the boundaries of where messages are sent, subjects
partition the flow of messages within a project. A subject is a logical message
address that can be thought of as providing a virtual connection between
RTclients. Subjects allow an RTclient to publish a message to multiple processes
with a single operation. Subjects are designated by a name, which can be any
character string with a few restrictions.

A message in SmartSockets has both a sender and a destination property. (See the
TIBCO SmartSockets User’s Guide for a full discussion of message properties.)
When TipcConn peer-to-peer methods are used to send messages through
connections, the sender and destination properties are not used. There are no
predefined values for these properties when working with peer-to-peer
connections.

For RTserver to RTclient communication, however, subjects specify the sender and
destination properties. When an RTclient subscribes to a subject, it receives any
published messages whose destination property is set to that subject. Think of this
as the process signing up for messages sent to a particular subject. For example, in
a network monitoring application, you might partition messages by the types of
items to be monitored—routers, bridges, switches, and so on. These areas can be
declared as subjects such as /router, /bridge, and /switch. All messages
pertaining to routers are constructed with the /router subject as their destination

The modified sending and receiving programs communicate using the
/ss/tutorial/lesson2 subject in project smartsockets.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

What are Subjects? | 41
property. Any RTclient interested in receiving messages about routers subscribes
to the /router subject. This is also known as the publish-subscribe paradigm
because RTclients publish messages to specific subjects and subscribe to subjects
in which they are interested.

The SmartSockets publish-subscribe communications model allows an RTclient to
effortlessly publish messages to multiple receivers. Simply by specifying a subject
in the destination property, you ensure that RTserver routes the message to all
other RTclients in the same project that are subscribed to that subject. The
RTclients can subscribe to or unsubscribe from subjects at any time, which allows
the RTclients to control the quantity of incoming messages.

Understanding Hierarchical Subject Namespace
To provide greater flexibility and scalability for large applications, SmartSockets
subject names are arranged in a hierarchical namespace, much like UNIX file
names or World Wide Web URLs. This hierarchical namespace allows a large
numbers of subject names to be created with similar, but not conflicting, names;
for example, /stocks/NYSE/computer and /stocks/NASDAQ/gold. Many
powerful operations, such as publish-subscribe with wildcards, can be performed
in this namespace model. Small SmartSockets systems can be easily built without
requiring large amounts of complexity, and large systems can also be more easily
built with these hierarchical subject names.

A hierarchical subject name consists of components laid out left-to-right,
separated by slashes (/). Each component can contain any characters except a
slash, an asterisk (*), or an ellipsis (...), the latter two of which are used for
publish-subscribe wildcards. This list represents some examples of hierarchical
subject names:

• /system, /system/primary/eps

• /system/backup/eps

• /nodes/workstation1.talarian.com/ssuser

The hierarchy can be specified to any depth. For more details on hierarchical
subject names, see the TIBCO SmartSockets User’s Guide.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

42 | Chapter 4 Lesson 2: Publish-Subscribe
Specifying Wildcards in Subjects
When subscribing or publishing to a subject, you can use wildcards in the
specification of the subject name to match multiple subjects. Using wildcards in
subjects is much like using wildcards for file names on an operating system
command line. The asterisk (*) wildcard operates much the same as it does on
Windows, UNIX, or OpenVMS. It can be used for an entire subject name
component, or as part of a more complicated wildcard containing other
characters, such as foo*bar. A wildcard component using an asterisk never
matches across components, for example, "foo*bar" does not match "foo/bar".

The ellipsis (...) wildcard operates much as it does on OpenVMS, where it matches
any number of levels, including zero levels, of components. It must be used as an
entire component, for example, auto... is not a wildcard. Multiple wildcards can
be combined in a single subject name, for example, /a*b*/.../d. For more details
on using wildcards with subjects see the TIBCO SmartSockets User’s Guide.

Demonstrating Message Routing
This section illustrates how a message originating from a single RTclient is
published to multiple RTclients subscribed to the specified subject. In Figure 3 on
page 43, processes are represented by circles, and connections between processes
are represented by dark lines. As you can see, there is a single sending process
(Send), and two receivers (Receive1 and Receive2). Each of these RTclients is
connected to the same RTserver. The Receive1 and Receive2 programs have both
subscribed to the /sub1 subject. If the Send process wants to publish a message to
the /sub1 subject, this sequence of events occurs:

1. The sending program constructs a message with /sub1 as the destination
subject.

2. The sending program publishes the message.

3. RTserver receives the message.

4. RTserver looks at the destination (/sub1) of the message.

5. RTserver publishes the message to all RTclients currently subscribed to the
/sub1 subject.

6. Both Receive1 and Receive2 receive a copy of the message.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

What are Subjects? | 43
Figure 3 RTserver Message Routing

Figure 3 shows the message flow through RTserver. Note that if the Send program
was also subscribed to the /sub1 subject, it too would receive a copy of the
message from RTserver.

Send

Send publishes the message to RTserver
with a destination of /sub1.

Both Receive1 and Receive2 are
subscribing to the /sub1 subject.

Send

Receive1

Receive2

/sub1

/sub1

RTserver routes a copy to both
Receive1 and Receive2.

message
dest = /sub1

message
dest = /sub1

message
dest = /sub1

Receive2

/sub1

Receive1

/sub1

RTserver

RTserver
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

44 | Chapter 4 Lesson 2: Publish-Subscribe
Demonstrating Publish-Subscribe Services
Let’s go back to the sending and receiving examples earlier in this lesson. Line 10
of the sending program calls setDest, as shown.

msg.setDest("/ss/tutorial/lesson2");

The setDest method specifies the subject the message is being published to. For
the receiving program to get the message, line 11 of the receiving program is
required:

srv.setSubjectSubscribe("/ss/tutorial/lesson2", true);

This line allows the receiving program to start receiving any messages published
to the /ss/tutorial/lesson2 subject. Note the second parameter is set to true.
If this had been set to false, it would indicate that the receiving program is not
going to receive messages published to the /ss/tutorial/lesson2 subject.
Setting the second parameter to false unsubscribes the process from the
specified subject.

Step 10 Start the receiving program again

To illustrate this concept more clearly, you need three separate windows open. In
the first window, make sure RTserver is running, then start up the receiving
program:

$ java receive

Step 11 Edit the receiving program

Now edit the receiving program, changing line 11 so the receiving program
subscribes to the /smartsockets/foo subject. Line 11 should now look like:

srv.setSubjectSubscribe("/smartsockets/foo", true);

Step 12 Save the modified receiving program and compile

Save your changes to receive.java. Compile the program again:

$ javac receive.java

Step 13 Start the new receiving program

In the second window, start up the new receiving program:

$ java receive

Step 14 Start the sending program

Finally, in the third window, start up the sending program:

$ java send
TIBCO SmartSockets Java Library User’s Guide and Tutorial

What are Subjects? | 45
You should see that your original receiving program got the message and printed
it.

Text from INFO message = Hello World!

Notice that the new receiving program (subscribed to the /smartsockets/foo
subject) did not receive the message. In fact, it is still blocked, waiting for a
message. Stop the blocked program’s execution with Ctrl-c and return to the
operating system prompt.

Step 15 Edit the receiving program again to subscribe to another subject

To see how one message can be delivered to two processes in a single operation,
go back and edit the receiving program to once again receive the
/ss/tutorial/lesson2 subject. Line 11 should now look like:

srv.setSubjectSubscribe("/ss/tutorial/lesson2", true);

Step 16 Compile the modified receiving program

Compile the program as before:

$ javac receive.java

Step 17 Start the new receiving program

Now start the new receiving program in the first window:

$ java receive

Step 18 Start a second instance of the same receiving program

In the second window, start up a second instance of the same receiving program:

$ java receive

Step 19 Start the sending program

Finally, in the third window, start up the sending program:

$ java send

In a few moments, you should see that both windows where the receiving
programs are running display:

Text from INFO message = Hello World!

If you wish, you can start any number of receiving programs, run the sending
program, and observe as the message gets delivered to all of them with a single
operation.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

46 | Chapter 4 Lesson 2: Publish-Subscribe
Note that you did not have to change a single line of code in the sending program
to take advantage of this desirable feature. The ability to send a message to
multiple processes with a single operation, without having to specify the location
of the processes, is a key feature of SmartSockets. In addition to providing useful
functionality, this feature makes the testing, debugging, and maintenance of your
network application much easier. Through the use of subjects and SmartSockets
publish-subscribe services, you also achieve location transparency. This implies
that your programs can be easily relocated anywhere on your network without
changing a single line of code.

Using Load Balancing

In normal publish-subscribe operations, a message is published to all RTclients
subscribing to the subject to which the message is being sent. However, in some
situations you may wish to have messages sent to only one of a specified set of
RTclients. An example of this is a project where there is high message throughput
and each message takes some time to process. In this case, you may wish to
replicate a set of RTclients and have them take turns processing (or have the least
busy one handle) the messages to better keep up with message flow.

This is accomplished in SmartSockets with load balancing. Rather than have a
single RTclient handle all the messages, you can use load balancing to process the
messages across multiple RTclients. This is very useful when processing a heavy
message load. A load-balanced message is routed to only a single RTclient, not to
all RTclients subscribed to the destination subject. The RTclient to which the
message is routed is selected based on the load balancing mode specified. Load
balancing implies that there is a set of RTclients that are all equally capable of
processing load-balanced messages.

For example, consider the simple example shown in Figure 4. There are three
receivers, all subscribed to the same subject. Messages 1, 2, and 3 are published to
that subject. On the left side of the figure, each message is routed to all receivers
because there is no load balancing. The right side shows what happens when the
messages are marked to be delivered using round-robin load balancing. The first
message is delivered to Receiver 1, the second message to Receiver 2, and the
third message to Receiver 3. Each message is delivered to only a single RTclient.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Using Load Balancing | 47
Figure 4 Messages Delivered With and Without Load Balancing

Load balancing can be specified on a per-message basis or per-message-type basis
through the load balancing mode message property. Load balancing is dynamic in
that whenever an RTclient connects to or disconnects from RTserver, the load
balancing calculations are updated in real time. When an RTclient publishes the
first message using load balancing to a subject, RTserver starts collecting subject
subscription information from the appropriate other RTservers to accurately track
load balancing accounting. This increases the scalability of load balancing because
only the relevant RTservers dynamically exchange load balancing information.

By default, messages are not load balanced and are distributed to all subscribers.
Setting the load balance mode per message takes precedence over message type.
Setting load balancing for a message type takes precedence over the default value
of TipcDefs.LB_NONE.

RTserver

Receiver
1

3

2

1

3

1

3

1

Messages are NOT Load Balanced

RTserver

Publisher

2
1

Messages are Load Balanced

Messages

Receiver
2

Receiver
3

Receiver
1

Receiver
2

Receiver
3

3

2

1

2 2
3

Publisher

3

2

1

 TIBCO SmartSockets Java Library User’s Guide and Tutorial

48 | Chapter 4 Lesson 2: Publish-Subscribe
SmartSockets supports four load balancing modes:

For further information on load balancing, refer to the TIBCO SmartSockets User’s
Guide.

TipcDefs.LB_NONE is the default and specifies no load balancing. The
message is sent to all subscribers.

TipcDefs.LB_ROUND_ROBIN specifies that the list of subscribing RTclients is
held in a circular list, with each successive
message simply sent to the next RTclient in the list
(as shown in Figure 4). This mode is a good choice
when the subscribers are all capable of receiving
and processing a request with nearly equal speed.
There is no additional overhead with this mode.

TipcDefs.LB_WEIGHTED specifies that the message is published to the
RTclient that has the fewest pending requests.
This mode is a good choice when the subscribers
differ significantly in their ability to process a
request promptly, due to, for example, hardware
speed or network delays. This method can only
be used with GMD and requires no additional
overhead beyond what GMD requires.

TipcDefs.LB_SORTED specifies that the message is always sent to the
first RTclient in the list. The list is formed by
doing an alphabetical sort of the unique subject
name of each RTclient. This mode is a good choice
when you want a specific subscriber to process all
messages until it fails, when a hot standby can
take over. There is no additional overhead with
this mode.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Connecting to RTserver on Another Node | 49
Connecting to RTserver on Another Node

Up to this point, all of our sample programs have connected to an RTserver
process running on the same node. This is the default behavior of SmartSockets. If
you do not specify where the RTclient should try to find and connect to RTserver,
it always looks locally first.

This default behavior can be changed by setting the ss.server_names option for
the Java RTclient. This option can be used to specify where RTserver is located, as
well as what protocol to use when connecting. The ss.server_names option
contains a list of machines with which the RTclients attempt to establish a
connection.

Just as with the ss.project option, the ss.server_names option is set
programmatically. For more details on how an RTclient finds RTserver and
connects to it, see the TIBCO SmartSockets User’s Guide for more information on
starting the RTserver. Keep in mind, however, that Java clients can only connect to
running RTservers; Java clients cannot start new RTservers. For more details on
setting options (including ss.project,) see Lesson 5: TIBCO SmartSockets Options.

Disconnecting from RTserver

Every RTclient program should call the TipcSrv.destroy method before exiting. An
RTclient using the TCP/IP protocol to connect to RTserver may lose outgoing
messages if the process terminates without calling TipcSrv.destroy. The
TipcSrv.destroy method forces the operating system to deliver all outgoing
messages. Invoking flush is not, in itself, enough to guarantee message delivery
immediately prior to a program’s termination.

When the connection to the RTserver is destroyed by calling
TipcSrv.destroy(TipcSrv.CONN_NONE) all server create and server destroy
callbacks are also destroyed.

If an RTclient has registered any server create or server destroy callbacks then
these callbacks are destroyed when TipcSrv.destroy(TipcSrv.CONN_NONE) is
called.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

50 | Chapter 4 Lesson 2: Publish-Subscribe
Summary

The key concepts covered in this lesson are:

• SmartSockets provides both peer-to-peer and client-server communications
models (with the TipcConn and TipcSrv classes, respectively).

• RTserver is a standard SmartSockets process used to implement the
publish-subscribe communications services, allowing location transparency of
RTclients.

• An RTclient connects to a single RTserver. An RTserver process can connect to
other RTservers. Messages are dynamically routed from an RTclient to other
RTclients through one or more RTservers using a lowest cost algorithm.

• RTserver is not started automatically by Java RTclients if it is not already
running. RTserver can be started manually using the rtserver shell script.
RTserver can be stopped manually using the rtserver shell script with the
-stop command line argument.

• RTserver runs as a background (detached) process.

• By default, a client program tries to connect to an RTserver process on its same
node. A client program can connect to an RTserver on another node by setting
the ss.server_names option.

• The ss.project option is used by RTclients to prevent processes in another
project from communicating with them.

• Subjects are logical addresses set as the destination property of a message.
Subjects are used by RTserver to dynamically route messages to all RTclients
subscribed to that subject. This allows a single message to be delivered to
multiple RTclients with a single operation.

• Subjects are the fundamental unit used by SmartSockets to implement
publish-subscribe services.

• Subject names can be specified in a hierarchical manner, and to any number of
levels, for example, /company/software/tibco.

• Rather than deliver a message to all RTclients that have subscribed to a
subject, a message can be delivered to only one of a set of RTclients using load
balancing.

• Load balancing can be set on a per-message or per-message-type basis.

On platforms that support both 32- and 64-bit, use the rtserver64 command to
run the 64-bit version of the rtserver script.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Summary | 51
• Wildcards, asterisks (*) and ellipsis (...), can be used when subscribing or
publishing to a subject.

• Always be sure to call the TipcSrv’s destroy method before your program exits
to disconnect from RTserver and flush any messages still in the buffer.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

52 | Chapter 4 Lesson 2: Publish-Subscribe
TIBCO SmartSockets Java Library User’s Guide and Tutorial

| 53
Chapter 5 Lesson 3: Messages

In this lesson you learn about:

• what a message is

• how to construct and send messages

• how to receive and access messages

• how to use the SmartSockets Java Class Library to operate on messages

Topics

• Lesson 3 Overview, page 54

• What is in a Message?, page 54

• What are Message Types?, page 58

• Working With Messages, page 61

• Named Fields, page 65

• Summary, page 67
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

54 | Chapter 5 Lesson 3: Messages
Lesson 3 Overview

The files for this lesson are located in the directories:

Windows:
%RTHOME%\java\tutorial\lesson3

UNIX:
$RTHOME/java/tutorial/lesson3

As seen in the previous lessons, within a SmartSockets application, interprocess
communication occurs through messages. A message is a structured packet of
information sent from one process to one or more other processes providing
instructions or data. Messages can carry many different kinds of information in a
SmartSockets application, including: alarms, variable-value pairs representing
sensor information, and IPC information about a client.

These different kinds of messages are classified by message type. For example,
numeric data is typically sent in a NUMERIC_DATA message, and an operator
warning is typically sent in a WARNING message. A SmartSockets application
can use both the standard message types provided with SmartSockets and
user-defined message types you create.

What is in a Message?

A message is composed of several parts, or properties. The most important
property is the message data. All parts of a message can be accessed directly with
the SmartSockets API. Almost all parts of a message can be specified using the
API. With the exception of the message create method, which belongs to the
TipcSvc factory class, all methods for working with messages are members of the
TipcMsg class. Messages can be created with TipcSvc.createMsg and copied with
TipcMsg.clone.

Figure 5 shows an example of the message that you constructed and sent in the
previous lesson (Lesson 2: Publish-Subscribe). This message was a standard
SmartSockets message type, INFO, and was sent to the /ss/tutorial/lesson2
subject. The data part of the message consisted of a single string field containing
the string "Hello World!".
TIBCO SmartSockets Java Library User’s Guide and Tutorial

What is in a Message? | 55
Figure 5 Composition of a Typical Message

There are SmartSockets methods to get (access) and set (write) each part of the
message.

A message is composed of several properties. The SmartSockets Java Class
Library methods for setting and getting the message property are enclosed in
parentheses.
Type is the kind of message being manipulated (TipcMsg.setType,

TipcMsg.getType).

Sender is the name of the originator of a message (TipcMsg.setSender,
TipcMsg.getSender). SmartSockets automatically fills this in for
you when using RTserver to deliver the message.

Destination is the name of the subject where a message is going
(TipcMsg.setDest, TipcMsg.getDest).

Priority is the level of importance of a message (TipcMsg.setPriority,
TipcMsg.getPriority).

Delivery Mode is the level of guarantee when a message is sent through a
connection (TipcMsg.setDeliveryMode,
TipcMsg.getDeliveryMode).

Data

Message Composition

Type INFO

Sender /_workstation1_5415

Destination /ss/tutorial/lesson2

Priority 0

Delivery Mode T_IPC_DELIVERY_NONE

Reference Count 1

Sequence Number 0

User-Defined Property 0

Read Only FALSE

Hello World!Value
Field

strType

Delivery Timeout 0.0

Load Balancing Mode T_IPC_LB_NONE

Header String Encode FALSE
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

56 | Chapter 5 Lesson 3: Messages
There are a large number of SmartSockets methods to build the data part of a
message (TipcMsg.append*) and access the data part of a message
(TipcMsg.next*). See the online Java documentation for a complete description of
these methods.

Figure 6 shows an example of a more complex message. It is a SmartSockets
standard NUMERIC_DATA message, and the data part of this message is a series
of variable name-value pairs (voltage = 33.4534, switch_pos = 0). You
construct a message similar to this one later in this lesson.

Delivery
Timeout

is the number of seconds specifying how long to wait for
acknowledgment of delivery of a message sent through a
connection (TipcMsg.setDeliveryTimeout,
TipcMsg.getDeliveryTimeout).

Load Balancing
Mode

is the method of delivery for publish-subscribe operations, which
allows a message to be delivered to one or to all subscribing
RTclients (TipcMsg.setLbMode, TipcMsg.getLbMode).

Header String
Encode

controls whether or not header strings are converted to four-byte
integers when a message is sent through a connection. This field
cannot be directly accessed by Java clients.

Reference
Count

is the number of independent references to a message. This field
cannot be directly accessed by Java clients.

Sequence
Number

uniquely identifies a message for guaranteed message delivery
(TipcMsg.getSeqNum). SmartSockets assigns this number and it
cannot be manually set.

User-defined
Property

is a user-defined value that can be used for any purpose
(TipcMsg.setUserProp, TipcMsg.getUserProp). This field is not
used internally by SmartSockets.

Read Only controls whether or not a message can be modified
(TipcMsg.getReadOnly). SmartSockets automatically sets this
property and it cannot be manually set.

Data is the instructions or value part of a message (TipcMsg.append*,
TipcMsg.next*).

Typically, the data part of the message is the largest part of the message.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

What is in a Message? | 57
Figure 6 Composition of a NUMERIC_DATA Message

Data

Message Composition

Type NUMERIC_DATA

Sender /_workstation1_5415

Destination /system/thermal

Priority 10

Delivery Mode TipcDefs.DELIVERY_ALL

Reference Count 1

Sequence Number 3892675

User-Defined Property 42

Read Only FALSE

33.4534Value
Field

real8Type

switch_posValue
Field

strType

0.0Value
Field

real8Type

voltageValue
Field

strType

Delivery Timeout 20.0

Load Balancing Mode TipcDefs.LB_WEIGHTED

Header String Encode TRUE
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

58 | Chapter 5 Lesson 3: Messages
What is Automatic Data Translation?
One of the key features of SmartSockets is that it has structured messages. There is
no need for you to figure out how to encode your messages. SmartSockets takes
care of that for you and provides robust methods that allow you access to any part
of the structure of a message. Because the messages are structured, SmartSockets
knows how to automatically convert different data types when delivering the
message across a heterogeneous network. This is all done transparently for you,
using a receiver-makes-right approach in which the final receiver of the message
does the translation. This is most efficient, as data translation is only done once.

Many other messaging products do not have the concept of a structured message
type. They simply move a block of memory across the network. There is no API to
help build and access the different fields of the message, and there is no automatic
conversion of data. They leave these tasks up to you, increasing the amount of
time it takes to build your application.

What are Message Types?

As described earlier, each message has a type property that defines the structure
of the data property of a message. A message type can be thought of as a template
for a specific kind of message, and each message can be considered an instance of
a message type. For example, NUMERIC_DATA is a message type with a
predefined layout requiring a series of name-value pairs, with each string name
followed immediately by a numeric value. To send numeric data to a process, the
sending process constructs a message that uses the NUMERIC_DATA message
type. A message type is created once and is then available for use as the type for
any number of messages.

SmartSockets provides dozens of standard message types that cover a wide
variety of different types of information that can be passed. SmartSockets
standard message types allow you to begin building your application quickly,
without having to figure out how to define your own message types. When there
is no standard message type to satisfy your specific need, you can easily create a
user-defined message type. Both standard and user-defined message types are
handled in the same manner and can co-exist within the same program and
application. Once the message type is created, messages can be constructed, sent,
received, and processed through a variety of methods.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

What are Message Types? | 59
Table 1 lists some of the frequently-used standard message types. Each grammar
element shows the field type followed by a comment that gives a brief description
of the field. The monitoring message types (named MON_*) are considered
standard message types, but are discussed in detail in the TIBCO SmartSockets
User’s Guide.

Table 1 Standard Message Types

Message Type (Tipc.Mt) Grammar Description

ALERT id /*object*/

str /*message*/

alert message

BOOLEAN_DATA { id /*name*/

bool /*value*/ }

boolean data values

CANCEL_ALERT id /*object*/

str /*message*/

cancel an alert

CANCEL_WARNING id /*object*/

str /*message*/

cancel a warning

CONN_INIT str /*unique_subject*/

id /*node*/

id /*user*/

int4 /*pid*/

id /*arch*/

one-time connection initialization
information exchanged when RTclient
and RTserver rendezvous

CONNECT_CALL id /*project*/

str /*ident*/

int2 /*disconnect_mode*/

str_array

/*init_subscribes*/

int4_array /*lb_status*/

information RTclient supplies when
connecting to RTserver

CONNECT_RESULT bool /*status_flag*/

str /*status_output*/

str /*def_subj_prefix*/

information RTserver supplies back to
RTclient
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

60 | Chapter 5 Lesson 3: Messages
Any message type can be looked up, either by name or numeric ID, with the
overloaded method TipcSvc.lookupMt. For example, these two lines are equally
effective:

mt = TipcSvc.lookupMt("numeric_data");
mt = TipcSvc.lookupMt(TipcMt.NUMERIC_DATA);

DISCONNECT int2 /*disconnect_mode*/ RTclient explicitly disconnecting from
RTserver

ENUM_DATA { id /*name*/

id /*value*/ }

enumerated data values

INFO str /*message */ information message

NUMERIC_DATA { id /*name*/

real8 /*value*/ }

numeric data values

SERVER_STOP_CALL int /*stop_type*/ request RTserver to shut itself down

SERVER_STOP_RESULT str /*result_output*/ information RTserver supplies as it is
shutting down

STRING_DATA { id /*name*/

str /*value*/ }

string data values

SUBJECT_SET_SUBSCRIBE id /*subject*/

bool /*subscribe_flag*/

bool /*lb_flag*/

start or stop subscribing to a subject

WARNING id /*object*/

str /*message*/

warning message

Table 1 Standard Message Types

Message Type (Tipc.Mt) Grammar Description
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Working With Messages | 61
Working With Messages

Typically, these three steps are required when constructing a message:

1. Create a message of a particular type (TipcSvc.createMsg, TipcMsg.clone)

2. Set the properties of the message (TipcMsg.set*)

3. Append fields to the message data (TipcMsg.append*)

Many different types of fields can be appended to a message’s data. These field
types include three sizes of integers, two sizes of real numbers, character strings,
and arrays of the scalar field types (such as an array of four-byte integers). These
field types are listed in the online documentation for the TipcMsg class and can be
recognized by their FT_ prefix. Messages themselves can even be used as fields
within other container messages; this allows operations such as large transactions
to be represented with a single message. Once a message is constructed, it can be
published to other RTclients using the TipcSrv.send method.

To get a better feel for working with the SmartSockets Java API for building and
sending messages, you will enhance your sending program from the previous
lesson to send a NUMERIC_DATA message. The data part of a NUMERIC_DATA
message consists of one or more variable-value pairs, where a variable is a text
string and a value is a floating point number.

The files for this lesson are located in the directories:

Windows:
%RTHOME%\java\tutorial\lesson3

UNIX:
$RTHOME/java/tutorial/lesson3

Step 1 Copy the send2.java program

Copy the file send2.java into your working directory:

//--
// send2.java -- write a NUMERIC_DATA message

1 import java.io.*;
2 import com.smartsockets.*;

3 public class send2 {

4 public static void main(String[] argv) {
 try {
5 Tut.setOption("ss.project", "smartsockets");
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

62 | Chapter 5 Lesson 3: Messages
6 TipcSrv srv=TipcSvc.getSrv();
7 if (!srv.create()) {
8 Tut.exitFailure("Couldn't connect to RTserver!");
 }
 // create a message of type NUMERIC_DATA
9 TipcMsg msg = TipcSvc.createMsg(TipcMt.NUMERIC_DATA);

 // set the destination subject of the message
10 msg.setDest("/ss/tutorial/lesson3");

 // build a NUMERIC_DATA msg with 3 variable-value pairs,
 // set as follows (X, 10.0), (Y, 20.0) and (Z, 30.0)
11 msg.appendStr("X");
12 msg.appendReal8(10.0);
13 msg.appendStr("Y");
14 msg.appendReal8(20.0);
15 msg.appendStr("Z");
16 msg.appendReal8(30.0);

 // send the message
17 srv.send(msg);
18 srv.flush();

 // disconnect from RTserver
19 srv.destroy();
 } catch (TipcException e) {
20 Tut.warning(e);
 } // catch
 } // main
 } // send2

Let’s examine some of the key lines in this program:

Step 2 Compile the send2.java program

Now compile the send2.java program.

$ javac send2.java

You now need to modify your receiving program so that it can read and print the
contents of the NUMERIC_DATA message you are sending.

Line 9 Now creates a message of type NUMERIC_DATA instead of type
INFO.

Lines 11-16 The call to TipcMsg.appendStr is replaced with multiple calls to
TipcMsg.appendStr and TipcMsg.appendReal8 to build the data part
of the message.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Working With Messages | 63
Step 3 Copy the receive2.java program

Copy the file receive2.java into your working directory. This is an example of
the receive2.java program:

//--
// receive2.java -- receive a NUMERIC_DATA message

1 import java.io.*;
2 import com.smartsockets.*;

3 public class receive2 {

4 public static void main(String[] argv) {
5 TipcMsg msg = null;
6 TipcSrv srv = null;

 // set the ss.project
 try {
7 Tut.setOption("ss.project", "smartsockets");
8 srv=TipcSvc.getSrv();

 // connect to RTserver
9 if (!srv.create()) {
10 Tut.exitFailure("Couldn't connect to RTserver!");
 } // if
 // subscribe to the appropriate subject
11 srv.setSubjectSubscribe("/ss/tutorial/lesson3", true);
12 msg = srv.next(TipcDefs.TIMEOUT_FOREVER);
13 }
 catch (TipcException e) {
14 Tut.fatal(e);
 } // catch

 // position the field ptr to the beginning of the message
 try {
15 msg.setCurrent(0);
16 } catch (TipcException e) {
17 Tut.fatal(e);
 } // catch

18 System.out.println("Contents of NUMERIC_DATA message:");

 // read the data part of the message
 try {
19 String var_name;
20 while (true) {
21 var_name = msg.nextStr();
22 double var_value;
23 var_value = msg.nextReal8();
24 System.out.println("Var name = " + var_name +
 ", value = " + var_value);
 } // while
 }
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

64 | Chapter 5 Lesson 3: Messages
 // catch end-of-message-data exception, do nothing.
25 catch (TipcException e) {
 // we expect this exception from the while loop
 } // catch

 // drop our connection to RTserver
 try {
26 srv.destroy();
27 } catch (TipcException e) {
 // not concerned with problems dropping connection
 } // catch
 } // main

 } // receive2

Let’s look at how this program extracts information from the data part of the
message:

Step 4 Compile the receive2.java program

Now compile the receive2.java program using the command:

$ javac receive2.java

Step 5 Start the receiving program

To demonstrate that everything is still working, start the receiving and sending
programs in separate windows as you did earlier. First start the receive2
program using the command:

$ java receive2

Step 6 Start the sending program

After a few moments, start the sending program:

$ java send2

Lines 7-14 Set the project to "smartsockets" and connect to RTserver.

Line 20 Beginning of loop over fields in the data part of the message.

Lines 21-23 The TipcMsg.nextStr method retrieves the variable name and the
TipcMsg.nextReal8 method retrieves the variable value. When
TipcMsg.nextStr throws a NoSuchFieldException, there are no more
fields to access in the message, and the enclosing while loop is exited.

This is an expensive way to end the loop (throwing exceptions takes
a lot of time), and you can also use the TipcMsg.getNumFields
method to retrieve the field count and loop with a counter instead.

For more details, see the descriptions of the TipcMsg.next* methods
in the online Java documentation.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Named Fields | 65
This message output is displayed when you run the receiving program:

Contents of NUMERIC_DATA message:

Var name = X, Var Value = 10
Var name = Y, Var Value = 20
Var name = Z, Var Value = 30

Named Fields

Not only can you add and access fields to a message sequentially as demonstrated
in the previous example, you can also add, access, update, and delete fields in
messages by name. A name is associated with a field when the field is added to
the message, using the TipcMsg.addNamedType methods. Once you have added a
named field to a message, you can:

• access it using the TipcMsg.getNamedType methods

• update it using the TipcMsg.updateNamedType methods

• delete it using the TipcMsg.deleteNamedField method

Named fields and those without names can co-exist in the same message without
conflict. In addition, named fields can be accessed either using their name or
sequentially, like any other field.

This example shows how to add a named field and how to access it both by name
and sequentially:

import com.smartsockets.*;

/**
 * Named fields example program.
 */

public class NamedFieldsExample {

 public static void main(String[] argv) {

 try {
 /* Create a message */
 TipcMsg msg = TipcSvc.createMsg(TipcMt.INFO);

 /* Add a non-named int4 field, and a named string field */
 msg.appendInt4(5);
 msg.addNamedStr("string one", "hello");
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

66 | Chapter 5 Lesson 3: Messages
 /* Now get the string field */
 String str = msg.getNamedStr("string one");
 System.out.println("named string field is " + str);

 /* Rewind the index back to the first field, and get the int4 field */
 msg.setCurrent(0);
 int i = msg.nextInt4();
 System.out.println("first field is " + i);

 /*
 * Get the string field again. Note that we don't have to use the
 * name to get it, it's still just an indexed field, like any other.
 */
 str = msg.nextStr();
 System.out.println("second field is " + str);

 /*
 * Rewind the index pointer again, and we can "name" the int4 field.
 */
 msg.setCurrent(0);
 msg.setNameCurrent("int4 zero");

 /*
 * We can also get the name of the current field.
 */
 str = msg.getNameCurrent();
 System.out.println("name of first field is " + str);
 }
 catch (Exception e) {
 Tut.fatal(e);
 }
 }
}

TIBCO SmartSockets Java Library User’s Guide and Tutorial

Summary | 67
Summary

The key concepts covered in this lesson are:

• Message types are structured templates that describe what can go in a
message, and each message can be considered an instance of a message type.

• SmartSockets comes with a number of ready-to-use standard message types.
You can also define your own message types.

• A message consists of a set of header properties and a data part. The
properties in a message are the same across all message types. Properties
include its type, sender, destination, priority, read-only status, delivery mode,
delivery timeout, load balancing mode, header string encode, reference count,
sequence number, and a user-definable property.

• The data part of a message consists of fields that carry a unit of information.
The message data can contain any number of fields, although most messages
have a well-defined layout for their fields.

• SmartSockets converts all data to the proper format using a
final-receiver-makes-right approach. You do not have to worry about any data
translation between different platforms, except for IEEE to DEC floating-point
conversion, which is currently not available in the SmartSockets Java Class
Library.

• The SmartSockets Java Class Library has an extensive set of functions that
allows you to create and copy messages, and to get and set any of the message
properties, and to build and access the data part of a message.

• Typically, these steps are required when constructing a message:

a. Create a message of a particular type (TipcSvc.msgCreate, TipcMsg.clone).

b. Set the properties of the message (TipcMsg.set*).

c. Append fields to the message data (TipcMsg.append*).

• Messages are read from RTserver using TipcSrv.next.

• Typically, retrieving information from the data part of a message consists of
these steps:

a. Set the message pointer to the field of interest (TipcMsg.setCurrent).

b. Access the fields of the message (TipcMsg.next*).

• Individual fields in messages can be associated with a name. Named fields
can be accessed by name or sequentially. Named fields and non-named fields
can co-exist in the same message without conflict.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

68 | Chapter 5 Lesson 3: Messages
TIBCO SmartSockets Java Library User’s Guide and Tutorial

| 69
Chapter 6 Lesson 4: Callbacks

In this lesson you learn about:

• what callbacks are

• what types of callbacks are available in SmartSockets

• how to write a process and a default callback

• how to use server create and server destroy callbacks

• how to write a subject callback

• how to read and process multiple messages

• how to define your own message types

Topics

• Lesson 4 Overview, page 70

• Introduction to Callbacks, page 70

• Callback Types, page 73

• Using Callbacks, page 77

• Creating Your Own Message Types, page 99

• Summary, page 106
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

70 | Chapter 6 Lesson 4: Callbacks
Lesson 4 Overview

The files for this lesson are located in the directories:

Windows:
%RTHOME%\java\tutorial\lesson4

UNIX:
$RTHOME/java/tutorial/lesson4

In the previous lesson, the receiving programs read messages using TipcSrv.next
to read the next message in a program’s incoming message queue and then
operated on the message. To make full use of SmartSockets and its object-oriented
features, it is important that you learn about SmartSockets callbacks. Before
showing you some sample programs, the initial part of this lesson introduces the
concept of callbacks.

Introduction to Callbacks

SmartSockets makes heavy use of callbacks to allow you visibility into its internal
processing. A callback is a mechanism that allows you to be notified when a
specified event occurs, such as a message is placed into the input queue. The
callback can be associated with a certain event or with all events of a certain type.
Callbacks that are associated with all events of a given type are called global
callbacks. When the event occurs, the specified callback object’s method is
invoked to notify you that the event happened.

Your SmartSockets Java RTclient application contains classes that implement
callback interfaces (either directly or through inheritance) and the specific code
required for each handled event.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Introduction to Callbacks | 71
Table 2 summarizes the callback interfaces.

Only a very brief introduction to callback classes is provided in these lessons. See
the online Javadoc format documentation for more detailed information about the
specifics of SmartSockets Java callbacks.

All SmartSockets callback interfaces have some common characteristics:

• They are used to affect the processing of a message or simply to receive
notification of some event.

• They have an associated priority. Priorities determine the order in which
callback methods are invoked. Higher priority callbacks are called before
lower priority ones. If two callbacks have the same priority, their relative
calling order is undetermined. The getPriority and setPriority methods of the
TipcCb class are used to retrieve and assign, respectively, callback priorities.

• They are uniquely identified by method and argument within a given
application. This means that two callbacks cannot be registered to use the
same callback class and argument within the same program. Attempts to add
the same callback multiple times are ignored.

Table 2 Callback Interfaces

Callback
Interface Function

TipcCreateCb The create method is called when an RTserver connection is
successfully created

TipcDefaultCb The handle method is called when no Process callback for a
received message type is registered (see TipcProcessCb).

TipcDestroyCb The destroy method is called when an RTserver connection
is destroyed.

TipcErrorCb The error method is called when certain SmartSockets
errors occur.

TipcProcessCb The process method is called when a message of a
previously-specified matching type or subject is received.

TipcReadCb The read method is called when a message is read and
placed in the input queue.

TipcWriteCb The write method is called when a message is written and
removed from the output queue.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

72 | Chapter 6 Lesson 4: Callbacks
• Their action methods allow for an extra argument (of type Object) to be
supplied when invoked. This parameter is not used by SmartSockets and is a
convenient place to pass application-specific data to the callback operation.

Creating Callbacks
A callback is created by implementing the appropriate interface and then
registering an instance of the event-handling class with the addTypeCb method of
the active TipcSrv or TipcConn object. For example, to create an error callback (for
example, MyErrorCb) that gets invoked when a non-recoverable error occurs on
your program’s connection to RTserver, a class needs to be created that
implements the TipcErrorCb interface, as illustrated below:

public class MyErrorCbClass implements TipcErrorCb {
public error(int errNum, String errStr, Object obj) {
 // error handling here
 ...
}
}

Keep in mind that this does not necessarily have to be a new, single-purpose
object; Java classes can easily implement multiple interfaces.

You also need to add code similar to this to the main program to register the new
callback with SmartSockets:

// the add method returns a reference to the callback
// used later; you don’t want this to go out of scope,
// so this next line, the reference declaration, would
// probably be placed at the class level, if this class
// isn’t transient
TipcCb MyErrorCbRef;

// in this example, srv is the current TipcSrv object
MyErrorCbClass MyErrorCb = new MyErrorCbClass;
MyErrorCbRef = srv.addErrorCb(MyErrorCb, srv);
if (null == MyErrorCbRef) {
 // error
}

In general, you should always check to make sure the callback is successfully
registered. You also need to write the code for the error method in
MyErrorCbClass to actually handle the event.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Callback Types | 73
Manipulating Callbacks
To manipulate the various attributes of a callback, a handle (of type TipcCb) to the
callback must first be acquired. An application retrieves this handle in one of two
ways. First, the handle can be produced with the lookupTypeCb method of a
TipcConn or TipcSrv object, where Type is replaced with one of: Create, Destroy,
Default, Process, Error, Read, or Write. Alternately, the return value of the various
callback add methods can be used; it is also the TipcCb corresponding to the
added callback. Event callback properties can then be manipulated using the
SmartSockets TipcCb.* utility functions:

See the online documentation of the TipcCb class for more details on these
methods.

Destroying Callbacks
Event callbacks may be unregistered by calling the removeTypeCb method with
the TipcCb reference returned by the addTypeCb method.

Callback Types

There are a number of different callback types. In this lesson, you work with
callbacks that are associated with a program’s connection to RTserver. The next
paragraphs describe the different types of callback interfaces available in
SmartSockets. Following the descriptions, there are several example programs
illustrating the use of callbacks.

This section presents a description of the callbacks and the methods used to
register them. When possible, an example using the method is also presented.

getArgument returns the callback’s Object argument.

getCallback returns the class that implements this callback’s interface.

getPriority returns this callback’s priority.

setArgument sets the callback’s Object argument to the specified value.

setCallback sets the class that implements this callback’s interface.

setPriority sets the callback’s priority.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

74 | Chapter 6 Lesson 4: Callbacks
Process Callbacks
Message process callbacks are invoked by SmartSockets when explicitly
processing a message with the process method (defined in TipcConnClient and
inherited by TipcSrv) or within the context of a mainLoop method, which also
calls process internally. A process callback can be notified for a specific type of
message or for all message types (see Subject Callbacks on page 75).

For example, a process callback can be created to respond only to the
NUMERIC_DATA message type. When any message of that type is processed by
calling TipcSrv.process(), the process callback’s process method is fired. If a global
process callback is created, it is fired for all NUMERIC_DATA type messages as
well as for any other type of message.

In this example:

// srv is the active TipcSrv object
callbackRef = srv.addProcessCb(my_class, mt, srv);
if (null == callbackRef) {
 // error
}

the my_class argument is an instance of a class in your application that
implements the TipcProcessCallback interface. The argument mt is a TipcMt object
and is typically set by making a call to TipcSvc.mtLookup. If the second argument
is null, a global process callback, called for all message types, is created. The final
argument is of type Object and can be anything useful to your application. The
TipcSrv object srv is specified.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Callback Types | 75
Subject Callbacks
Message subject callbacks are invoked by SmartSockets when explicitly
processing a message with the process method (defined in TipcConnClient and
inherited by TipcSrv) or within the context of a mainLoop method, which also
calls process internally. This type of callback is the most frequently used. Subject
callbacks operate in a manner very similar to process callbacks except that the
function executed is selected based on the message’s destination, not its type. A
subject callback can be executed when a message is received for a specific
destination (remember that a subject is used as the value of a message’s
destination property) or for all message destinations. Just as with process
callbacks, you can define a default callback to be executed if no callback has been
defined for a given subject.

For example, a subject callback can be created to respond only to the
/stocks/computer subject. When any message with that destination is processed
by calling TipcSrv.process(), the subject callback’s process method is fired. If a
global subject callback is created, it is fired for all messages with the subject
/stocks/computer as well as for messages with any other subject.

In this example:

// srv is the active TipcSrv object
callbackRef = srv.addProcessCb(my_class,"/stocks/computer",srv);
if (null == callbackRef) {
 // error
}

the my_class argument is an instance of a class in your application that
implements the TipcSubjectCallback interface. The second argument is a string
specifying the subject. If the second argument is null, a global subject callback
(called for all subjects) is created. The final argument is of type Object and can be
anything useful to your application. The TipcSrv object srv is specified.

You can specify type as well as subject for a callback. This means that there are
four possible scenarios for callback execution. A callback can be defined to
execute for:

• All message types addressed to one subject

• One message type addressed to one subject

• One message type addressed to any subject

• All message types addressed to any subject
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

76 | Chapter 6 Lesson 4: Callbacks
Default Callbacks
Message default process callbacks are invoked by SmartSockets when processing
a message with the process method (within mainLoop) if a specific process
callback has not been registered. Default process callbacks are useful for
processing unexpected message types or for generic processing of most message
types. For example:

// srv is the active TipcSrv object
callbackRef = srv.addDefaultCb(my_class,srv);
if (null == callbackRef) {
 // error
}

Read Callbacks
The read method, addReadCb(), is executed when an incoming message is read
from RTserver into the read buffer of the program and first unpacked into a
message. Read callbacks are most commonly used for writing incoming messages
to message files.

Write Callbacks
The write method, addWriteCb(), is executed when an outgoing message is sent
to RTserver. Write callbacks are most commonly used for writing outgoing
messages to message files.

Server Create Callbacks
The server create method, addCreateCb(), is called when RTclient connects or
reconnects to RTserver. It can be useful for performing security checks such as
process authentication.

Server Destroy Callbacks
The destroy method, addDestroyCb(), is called when RTclient destroys its
connection to RTserver. Server destroy callbacks are useful for RTclients that need
to know when the connection to RTserver has been broken for any reason.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Using Callbacks | 77
Error Callbacks
The error method, addErrorCb(), is executed when an unrecoverable error
occurs. These errors include problems with the connection to RTserver and
network failures such as:

• a write timeout has occurred

• a read operation has failed

The most common occurrence of this error is when RTserver destroys its
connection with the program (that closes the connection).

• a write operation has failed

The most common occurrence of this error is when the RTserver destroys its
connection with the program (that closes the connection).

Using Callbacks

In this section you modify your examples from previous lessons to use process
and default callbacks.

Writing a Process Callback
To see a callback in action, define a message process callback object to operate on
incoming NUMERIC_DATA messages. Process callback objects are the most
common way in SmartSockets to perform the main processing of a message.

The next section describes a callback implementation in detail. This callback
object, whose process() method is invoked when a message of type
NUMERIC_DATA is processed with TipcSrv.process() or using
TipcSrv.mainLoop(), simply accesses and prints the fields of the message. There is
another example of a process callback in Processing of GMD_FAILURE Messages
on page 182.

The files for this lesson are located in the directories:

Windows:
%RTHOME%\java\tutorial\lesson4

UNIX:
$RTHOME/java/tutorial/lesson4
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

78 | Chapter 6 Lesson 4: Callbacks
Step 1 Copy the receive.java program

Copy the receive.java program into your working directory. This is an example
of the receive.java program:

//---
// receive.java -- output a NUMERIC_DATA with callback

1 import java.io.*;
2 import com.smartsockets.*;

3 public class receive {

4 public class receiveCb implements TipcProcessCb {

5 public void process(TipcMsg msg, Object arg) {
6 System.out.println("Received NUMERIC_DATA message.");

 // position the field ptr to the beginning of the message
 try {
7 msg.setCurrent(0);
8 } catch (TipcException e) {
9 Tut.fatal(e);
 } // catch

10 System.out.println("Contents of NUMERIC_DATA message:");

 // read the data part of the message
 try {
11 String var_name;
12 while (true) {
13 var_name = msg.nextStr();
14 double var_value;
15 var_value = msg.nextReal8();
16 System.out.println("Var name = " + var_name +
 ", value = " + var_value);
 } // while
17 } catch (TipcException e) {
 // catch end-of-message-data exception, do nothing.
 } // catch
 } // process
 } // receiveCb

18 public receive() {
19 TipcMsg msg = null;

 // set the project
 try {
20 Tut.setOption("ss.project", "smartsockets");
21 TipcSrv srv=TipcSvc.getSrv();

 // connect to RTserver
22 if (!srv.create()) {
 Tut.exitFailure("Couldn't connect to RTserver!");
 } // if
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Using Callbacks | 79
 // subscribe to the appropriate subject
23 srv.setSubjectSubscribe("/ss/tutorial/lesson4", true);

 // create a new receive callback and register it
24 receiveCb rcb = new receiveCb();
25 TipcCb rcbh = srv.addProcessCb(rcb, TipcMt.NUMERIC_DATA,
 srv);
 // check the 'handle' returned for validity
26 if (null == rcbh) {
27 Tut.exitFailure
 ("Couldn't register process listener!");
 } // if

 // read and process a message
28 msg = srv.next(TipcDefs.TIMEOUT_FOREVER);

 // all callbacks are triggered by TipcSrv's process()
 // method
29 srv.process(msg);

 // clean up and disconnect from RTserver
30 srv.removeProcessCb(rcbh);
31 srv.destroy();
32 } catch (TipcException e) {
33 Tut.fatal(e);
 } // catch
 } // receive (constructor)

34 public static void main(String[] argv) {
35 receive r = new receive();
 } // main
 } // receive

For this example, the bulk of the code has been moved to the constructor for the
receive class, and main simply instantiates a receive object to begin operation.
While examining the receive constructor, the first thing to notice is that the
processing of the NUMERIC_DATA message has been moved out of this section
of code and into the callback class, receiveCb, lines 4-17. A call to the method
TipcSrv.process() is also added on line 29 to invoke the callback when it is time to
process the message.

Step 2 Copy the send.java program and compile

Copy the send.java program into your working directory, and then compile the
receiving and sending programs:

$ javac receive.java
$ javac send.java
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

80 | Chapter 6 Lesson 4: Callbacks
Step 3 Ensure the RTserver is running

Make sure RTserver is running. If not, start it:

$ rtserver

Step 4 Start the receiving program

Run the receiving program using:

$ java receive

Step 5 Start the sending program

After a few moments, run the sending program in a second window:

$ java send

This output is displayed by the receiving program:

Received NUMERIC_DATA message.

Contents of NUMERIC_DATA message:

Var name = X, Value = 10.0
Var name = Y, Value = 20.0
Var name = Z, Value = 30.0

Writing a Default Callback
In the previous section, the example was set up to invoke a callback when a
NUMERIC_DATA message is processed. What happens if you send a message
that is not of type NUMERIC_DATA? Next you try it and find out.

Step 6 Copy the send2.java program

Copy the send2.java program into your working directory.

This program is the equivalent of modifying the original sending program by
adding these lines after connecting to RTserver and before creating the
NUMERIC_DATA message:

TipcMsg msgi = TipcSvc.createMsg(TipcMt.INFO);
msgi.setDest("/ss/tutorial/lesson4");
msgi.appendStr("Hello World!");
srv.send(msgi);
srv.flush();

This new code sends an INFO message to your receiving program, followed by a
NUMERIC_DATA message.

On platforms that support both 32- and 64-bit, use the rtserver64 command to
run the 64-bit version of the rtserver script.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Using Callbacks | 81
Note that in the next three steps, you run receive with send2 instead of the usual
pairing of receive with send or receive2 with send2.

Step 7 Compile the send2.java program

Compile the send2.java program using the command:

$ javac send2.java

Step 8 Start the receiving program

Start the original receiving program in one window of your display using the
command:

$ java receive

Step 9 Start the new sending program

After a few moments, run the new sending program (which sends an INFO
message) in another window using the command:

$ java send2

You do not see any output in the window where you ran the receiving program
because the INFO message was received before the NUMERIC_DATA message.
Because there was no callback created to process a message of type INFO, the
message was ignored. The second message was sent, but because the receiving
program is set up to read and process only one message, the NUMERIC_DATA
message was never read.

Step 10 Copy the receive2.java program

Copy the receive2.java program into your working directory.

The receive2.java program is simply receive.java, modified so that it can
read and process any number of messages. Copying this file is the equivalent of
replacing lines 28 and 29 of the receiving program with this piece of code:

// Read and process all incoming messages
while (null != (msg = srv.next(TipcDefs.TIMEOUT_FOREVER))) {
srv.process(msg);
} // while

This code creates a while loop that continues to read and process messages until
TipcSrv.next returns null.

Now you should create a default callback to process any non-NUMERIC_DATA
messages by adding this code to the receiving program after the callback for
NUMERIC_DATA messages has been registered:

// register receiveCallback again as a default callback
TipcCb dcbh = srv.addDefaultCb(rcb, srv);
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

82 | Chapter 6 Lesson 4: Callbacks
To complete the program, the default callback method handle should be added to
the receiveCb class. This method simply prints out the name and type of the
message. These changes have been made in the receive2.java program:

//---
// receive2.java -- output a NUMERIC_DATA message with a callback

1 import java.io.*;
2 import com.smartsockets.*;

3 public class receive2 {

4 public class receiveCb
5 implements TipcProcessCb, TipcDefaultCb {

6 public void process(TipcMsg msg, Object arg) {
7 System.out.println("Received NUMERIC_DATA message");

 // position the field ptr to the beginning of the message
 try {
8 msg.setCurrent(0);
9 } catch (TipcException e) {
10 Tut.fatal(e);
 } // catch

 // read the data part of the message
 try {
11 String var_name;
12 while (true) {
13 var_name = msg.nextStr();
14 double var_value;
15 var_value = msg.nextReal8();
16 System.out.println("Var name = " + var_name +
 ", value = " + var_value);
 } // while
17 } catch (TipcException e) { }
 // catch end-of-message-data exception, do nothing.
 } // process

 // handle() is for responding to default messages
18 public void handle(TipcMsg msg, Object arg) {
19 System.out.println("Receive: unexpected message type name" +
 " is <" + msg.getType().getName() + ">");
 } // handle
 } // receiveCb

20 public receive2() {
21 TipcMsg msg = null;
 // set the ss.project
 try {
22 Tut.setOption("ss.project", "smartsockets");
23 TipcSrv srv=TipcSvc.getSrv();
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Using Callbacks | 83
 // create a new receive listener and register it
24 receiveCb rcb = new receiveCb();
25 TipcCb rcbh = srv.addProcessCb(
 rcb, TipcSvc.lookupMt(TipcMt.NUMERIC_DATA), srv);
 // check the 'handle' returned for validity
26 if (null == rcbh) {
 Tut.exitFailure("Couldn't register process listener!");
 } // if

 // register receiveCb again as a default listener
27 TipcCb dcbh = srv.addDefaultCb(rcb, srv);
 // check the 'handle' returned for validity
28 if (null == dcbh) {
29 Tut.exitFailure("Couldn't register default listener!");
 } // if

 // connect to RTserver
30 if (!srv.create()) {
31 Tut.exitFailure("Couldn't connect to RTserver!");
 } // if

 // subscribe to the appropriate subject
32 srv.setSubjectSubscribe("/ss/tutorial/lesson4", true);

 // read and process all incoming messages
33 while (null != (msg = srv.next(TipcDefs.TIMEOUT_FOREVER))) {
34 srv.process(msg);
 } // while

 // disconnect from RTserver
35 srv.destroy();

 // unregister the listeners for completeness
36 srv.removeProcessCb(rcbh);
37 srv.removeDefaultCb(dcbh);
38 } catch (TipcException e) {
39 Tut.fatal(e);
 } // catch
 } // receive2 (constructor)

40 public static void main(String[] argv) {
41 receive2 r = new receive2();
 } // main
 } // receive2 class

Before running your updated receiving program, copy the send3.java program
to your working directory. The send3.java program is the send2.java program,
modified to send multiple messages.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

84 | Chapter 6 Lesson 4: Callbacks
This is the send3.java program:

//---
// send3.java -- write an INFO and then NUMERIC_DATA messages

1 import java.io.*;
2 import com.smartsockets.*;

3 public class send3 {

4 public static void main(String[] argv) {
 try {
5 Tut.setOption("ss.project", "smartsockets");

6 TipcSrv srv=TipcSvc.getSrv();
7 if (!srv.create()) {
8 Tut.exitFailure("Couldn't connect to RTserver!");
 } // if

 // send a message of type INFO
9 TipcMsg msgi = TipcSvc.createMsg(TipcMt.INFO);
10 msgi.setDest("/ss/tutorial/lesson4");
11 msgi.appendStr("Hello World!");
12 srv.send(msgi);
13 srv.flush();

 // create a message of type NUMERIC_DATA
14 TipcMsg msg = TipcSvc.createMsg(TipcMt.NUMERIC_DATA);

 // set the destination subject of the message
15 msg.setDest("/ss/tutorial/lesson4");

 // each time through the loop send a NUMERIC_DATA
 // message with three values
16 for (int i = 0; i < 30; i = i + 3) {
17 msg.setNumFields(0);
18 msg.appendStr("X");
19 msg.appendReal8(i);
20 msg.appendStr("Y");
21 msg.appendReal8(i+1.0);
22 msg.appendStr("Z");
23 msg.appendReal8(i+2.0);

 // send the message
24 srv.send(msg);
25 srv.flush();
 }

 // disconnect from RTserver
26 srv.destroy();
27 } catch (TipcException e) {
28 Tut.warning(e);
 } // catch
 } // main
 } // send3
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Using Callbacks | 85
Let’s examine the key lines in this program:

In the next few steps, you run receive2 with send3 instead of the usual pairing
of receive2 with send2 or receive3 with send3.

Step 11 Copy the send3.java program

Copy the send3.java program into your working directory, and compile it with
the command:

$ javac send3.java

Step 12 Compile the new receive2.java program

Compile your new receive2.java program using the command:

$ javac receive2.java

Step 13 Start the receiving program

Start the receiving program in one window of your display using the command:

$ java receive2

Step 14 Start the new sending program

In another window, to send a message to the receiving program, run the new
sending program using the command:

$ java send3

After running the sending program, this output is displayed in the receiving
program window:

Receive: unexpected message type name is <info>
Received NUMERIC_DATA message
Var name = X, value = 0.0
Var name = Y, value = 1.0
Var name = Z, value = 2.0
Received NUMERIC_DATA message
Var name = X, value = 3.0
Var name = Y, value = 4.0
Var name = Z, value = 5.0

Lines 16-25 This is a for loop that sends out a series of NUMERIC_DATA
messages.

Line 17 The same message is re-used each time; only the data part of the
message is changed. At the beginning of the loop,
TipcMsg.setNumFields resets the data part of the message to have
zero fields.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

86 | Chapter 6 Lesson 4: Callbacks
// ... Output omitted here ...
Received NUMERIC_DATA message
Var name = X, value = 27.0
Var name = Y, value = 28.0
Var name = Z, value = 29.0

When the send3 program has completed, notice that the receive2 program is
still hanging; it is waiting for more messages.

Step 15 Interrupt the receiving program

Type Ctrl-c to interrupt the receive2 program.

For each NUMERIC_DATA message received, the callback method
receiveCb.process() was invoked to print out the contents of the data part of
the message. The very first message received was an INFO message. Because
there were no process callbacks available for INFO messages, the default callback,
receiveCb’s handle method, was called and printed the type of unexpected
message received.

Writing a Subject Callback
Rather than processing a message based on its type, you can process a message
based on its destination using subject callbacks. With a subject callback, you can
specify a separate function for each subject or group of subjects you wish to
operate on. When a message arrives at the receiver for the specified subject and is
ready to be processed, the callback is executed.

To create a subject callback, you invoke one of TipcSrv’s addProcessCb method’s
overloaded forms that allow a String subject to be specified, as shown:

addProcessCb(callback, mt, subject, arg)
addProcessCb(callback, subject, arg)

where

You can specify a value of null for subject or mt to specify "any." (It may be
necessary to explicitly cast null as a String so the compiler can determine which
method implementation to use.) Subject callbacks are actually a superset of
process callbacks as they allow message type and subject callbacks to be mixed
(for example, execute this callback when a message of type T arrives on subject S).

Some examples of creating subject callbacks are shown:

TipcSrv srv = TipcSvc.getSrv();
TipcMt mt = TipcSvc.lookupMt(TipcMt.INFO);

subject is the destination you wish to specify the callback on and

mt is the message type the callback should be applied to.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Using Callbacks | 87
// Call subj_cb’s process() method upon receipt of any
// message that has a destination of "/tutorial"
srv.addProcessCb(subj_cb, "/tutorial", null);

// Execute subj_cb’s process() method upon receipt of any
// messages of type INFO, regardless of the destination
srv.addProcessCb(subj_cb, mt, (String)null, null);

// Execute the function subj_cb for any messages of type
// INFO, which have a destination of "/tutorial"
srv.addProcessCb(subj_cb, mt, "/tutorial", null);

In this section you modify the examples used for process callbacks to show how
easy it is to use subject callbacks. The next code example describes a specific
subject callback in detail. The callback object’s process method is invoked when
a message is received that has a destination of /ss/tutorial/lesson4. The
process method simply gets the type of the message and then prints the fields of
the message.

Step 16 Copy the subjcbs.java program

Copy the subject callback program, subjcbs.java, into your working directory.
The contents of the file subjcbs.java are:

//---
// subjcbs.java -- output messages through subject callbacks

1 import java.io.*;
2 import com.smartsockets.*;

3 public class subjcbs {

4 public class processLesson4 implements TipcProcessCb {

5 public void process(TipcMsg msg, Object arg) {
6 System.out.println("*** Received message of type <" +
 msg.getType().getName()+">");

 // position the field ptr to the beginning of the message
 try {
7 msg.setCurrent(0);
 }
8 catch (TipcException e) {
9 Tut.fatal(e);
10 }
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

88 | Chapter 6 Lesson 4: Callbacks
 // display message contents based on type
11 int mt = msg.getType().getNum();
12 switch (mt) {
13 case TipcMt.INFO:
 try {
14 System.out.println("Text from message = "+
 msg.nextStr());
15 } catch (TipcException e) { }
16 break;

17 case TipcMt.NUMERIC_DATA:
18 String var_name;
 try {
 // display the repeating part of NUMERIC_DATA message
19 while (true) {
20 var_name = msg.nextStr();
21 double var_value;
22 var_value = msg.nextReal8();
23 System.out.println("Var name = " + var_name +
 ", value = " + var_value);
 } // while
 // catch end-of-message-data exception, do nothing.
24 } catch (TipcException e) { }
25 break;

26 default:
 // handle messages of unknown type
27 System.out.println("Unable to process messages of this type!");
28 break;
 } // switch
 } // process
 } // processLesson4

29 public subjcbs() {
30 TipcMsg msg = null;

 // set the ss.project
 try {
31 Tut.setOption("ss.project", "smartsockets");
32 TipcSrv srv=TipcSvc.getSrv();

 // create a new receive SUBJECT callback and register it
33 processLesson4 pl = new processLesson4();
34 TipcCb rcbh = srv.addProcessCb(pl, "/ss/tutorial/lesson4", srv);
 // check the 'handle' returned for validity
35 if (null == rcbh) {
36 Tut.exitFailure("Couldn't register subject callback!");
 } // if

 // connect to RTserver
37 if (!srv.create()) {
38 Tut.exitFailure("Couldn't connect to RTserver!");
 } // if
 // subscribe to the appropriate subject
39 srv.setSubjectSubscribe("/ss/tutorial/lesson4", true);
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Using Callbacks | 89
 // read and process all incoming messages
40 while (srv.mainLoop(TipcDefs.TIMEOUT_FOREVER)) {
 } // while

 // unregister the callbacks
41 srv.removeProcessCb(rcbh);

 // disconnect from RTserver
42 srv.destroy();
43 } catch (TipcException e) {
44 Tut.fatal(e);
 } // catch
 } // subjcbs (constructor)

45 public static void main(String[] argv) {
46 new subjcbs();
 } // main
 } // subjcbs class

Some interesting things to learn from your new subjcbs program are:

You now execute the new program using subject callbacks to verify that it works
correctly.

Step 17 Copy the subjcbs.java program and compile

Copy the subjcbs.java program into your working directory, and compile it
with the command:

$ javac subjcbs.java

Lines 5-28 The processing of messages of all types is now in the callback object
ProcessLesson4 process method. The method first gets the type of
the message and then prints outs the contents based on the type. In
effect, you have a simple process (message type) callback within a
subject callback.

Lines 11-12 The received message’s type is extracted and acted upon with a
switch statement.

Lines 33-34 A subject callback object, pl, is created and registered for messages
arriving with a destination of /ss/tutorial/lesson4.

Line 39 Even though we have defined a subject callback on
/ss/tutorial/lesson4, we still need to make sure that the program
subscribes to the subject.

Line 40 TipcSrvMainLoop invokes the subject callback whenever a message
arrives with the given destination.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

90 | Chapter 6 Lesson 4: Callbacks
Step 18 Start the subject callback program

Start the subject callback program in one window of your display using the
command:

$ java subjcbs

Step 19 Start the sending program

In another window, run the sending program used earlier in this lesson with the
command to send a message to the subject callback program:

$ java send3

After running the sending program, this output is displayed in the window
where you ran the subject callback program:

Attempting connection to <tcp:_node:5101> RTserver.
Connected to <tcp:_node:5101> RTserver.
*** Received message of type <info>
Text from message = Hello World!
*** Received message of type <numeric_data>
Var name = X, value = 0.0
Var name = Y, value = 1.0
Var name = Z, value = 2.0
*** Received message of type <numeric_data>
Var name = X, value = 3.0
Var name = Y, value = 4.0
Var name = Z, value = 5.0

// more output omitted here...

*** Received message of type <numeric_data>
Var name = X, value = 27.0
Var name = Y, value = 28.0
Var name = Z, value = 29.0

When the sending program has completed, notice that the subject callback
program is still hanging. It is waiting for more messages.

Step 20 Interrupt the subject callback program

Type Ctrl-c to interrupt the subject callback program.

For each message received, the callback object ProcessLesson4’s process
method was invoked to print out the contents of the data part of the message,
regardless of the type of the message.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Using Callbacks | 91
Specifying a Callback Based on Subject and Message Type

The example in the previous section can be further modified to specify a different
subject callback for each of the different message types: INFO and
NUMERIC_DATA. This is done by creating two new callback objects:
ProcessInfo and ProcessNumData. In the main program, two calls are required
to TipcSrv.addProcessCb, one for each of the message types. The complete
example is shown:

//---
// subjcbs2.java -- output messages through subject/mt callbacks

import java.io.*;
import com.smartsockets.*;

public class subjcbs2 {

 public class processInfo implements TipcProcessCb {

 public void process(TipcMsg msg, Object arg) {
 System.out.println("*** Received INFO message");
 try {
 msg.setCurrent(0);
 System.out.println("Text from message = " + msg.nextStr());
 } catch (TipcException e) { }
 } // process
 } // processInfo

 public class processNumData implements TipcProcessCb {

 public void process(TipcMsg msg, Object arg) {
 System.out.println("*** Received NUMERIC_DATA message");
 String var_name;
 try {
 msg.setCurrent(0);
 // display the repeating part of NUMERIC_DATA message
 while (true) {
 var_name = msg.nextStr();
 double var_value;
 var_value = msg.nextReal8();
 System.out.println("Var name = " + var_name +
 ", value = " + var_value);
 } // while
 // catch end-of-message-data exception, do nothing.
 } catch (TipcException e) { }
 } // process
 } // processNumData

 public subjcbs2() {
 TipcMsg msg = null;

 // set the ss.project
 try {
 Tut.setOption("ss.project", "smartsockets");
 TipcSrv srv=TipcSvc.getSrv();
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

92 | Chapter 6 Lesson 4: Callbacks
 // create a new info mt/subject callback and register it
 processInfo pi = new processInfo();
 TipcCb rcbh1 = srv.addProcessCb(pi,
 TipcSvc.lookupMt(TipcMt.INFO),
 "/ss/tutorial/lesson4", null);
 // check the 'handle' returned for validity
 if (null == rcbh1) {
 Tut.exitFailure("Couldn't register subject callback!");
 } // if

 // create a new info mt/subject callback and register it
 processNumData pnd = new processNumData();
 TipcCb rcbh2 = srv.addProcessCb(pnd,
 TipcSvc.lookupMt(TipcMt.NUMERIC_DATA),
 "/ss/tutorial/lesson4", null);
 // check the 'handle' returned for validity
 if (null == rcbh2) {
 Tut.exitFailure("Couldn't register subject callback!");
 } // if

 // connect to RTserver
 if (!srv.create()) {
 Tut.exitFailure("Couldn't connect to RTserver!");
 } // if
 // subscribe to the appropriate subject
 srv.setSubjectSubscribe("/ss/tutorial/lesson4", true);

 // read and process all incoming messages
 while (srv.mainLoop(TipcDefs.TIMEOUT_FOREVER)) {
 } // while

 // unregister the callbacks
 srv.removeProcessCb(rcbh1);
 srv.removeProcessCb(rcbh2);

 // disconnect from RTserver
 srv.destroy();
 } catch (TipcException e) {
 Tut.fatal(e);
 } // catch
 } // subjcbs2 (constructor)

 public static void main(String[] argv) {
 new subjcbs2();
 } // main

 } // subjcbs2 class

For more details on subject and message type callbacks, see the TIBCO
SmartSockets User’s Guide.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Using Callbacks | 93
Using the TipSrv.mainLoop Convenience Method
In the receive2 program, this while loop is added to read and process all
incoming messages:

// read and process all incoming messages
while (null != (msg = srv.next(TipcDefs.TIMEOUT_FOREVER))) {
 srv.process(msg);
 } // while

This entire loop can be replaced by this single call:

srv.mainLoop(TipcDefs.TIMEOUT_FOREVER);

The TipcSrv.mainLoop() convenience method receives and processes messages
from RTserver by calling TipcSrv.next and TipcSrv.process over and over.
TipcSrv.mainLoop is a convenience method that keeps calling TipcSrv.next with
the time remaining from timeout until TipcSrv.next returns false. For each
message that TipcSrv.mainLoop gets, it processes the message with
TipcSrv.process. Use 0.0 for timeout to poll the RTserver connection and catch up
on all pending messages that have accumulated or to return immediately if no
messages are pending. Use TipcDefs.TIMEOUT_FOREVER for timeout to read and
process messages indefinitely. See the online documentation on
TipcSrv.mainLoop for more details.

A modified receive2 program, which uses TipcSrv.mainLoop, is located in the
file receive3.java. You can compile and run it with send3 if you want to verify
that it produces the same output as before.

Using Server Create and Destroy Callbacks
Earlier in this lesson, you saw example programs that used process and default
callbacks to work with messages. In this section two new callback types are
shown: server create and server destroy. A server create callback’s create method
is executed when an RTclient connects to RTserver, and a server destroy callback’s
destroy method is executed when an RTclient disconnects from RTserver.

In this lesson, you trigger these callbacks with a simple example. The program,
srvcbs, prompts you for a password each time it tries to connect to RTserver. If
the password is incorrect, the program is disconnected from RTserver and
terminated.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

94 | Chapter 6 Lesson 4: Callbacks
Step 21 Copy the svrcbs.java file

Copy the create callback program, svrcbs.java, into your working directory.

This is the svrcbs.java program:

//---
// svrcbs.java -- server create/destroy callbacks

1 import java.io.*;
2 import com.smartsockets.*;

3 public class svrcbs {
4 String password_correct = "ssjava";

5 public class serverConnect implements TipcCreateCb {

6 public void create(Object srv_obj) {
7 TipcSrv srv = (TipcSrv)srv_obj;
8 System.out.println("Connecting to RTserver...");
9 System.out.print("Please enter password: ");
10 BufferedReader in = new BufferedReader(
 new InputStreamReader(System.in));
11 String password_entered = null;
 try {
12 password_entered = in.readLine();
13 } catch (IOException e) {
14 System.out.println("Error! "+e.getMessage());
 } // catch
15 if (password_entered.equals(password_correct)) {
16 System.out.println("Password accepted!");
 }
 else {
17 System.out.println("Password is not correct! " +
 "You are being disconnected from RTserver");
 try {
18 srv.destroy();
19 Tut.exitSuccess();
20 } catch (TipcException e) {
21 Tut.warning("Can't destroy server connection: " +
 e.getMessage());
 } // catch
 } // else
 } // create
 } // serverConnect
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Using Callbacks | 95
22 public class serverDisconnect implements TipcDestroyCb {
23 public void destroy(Object obj) {
24 System.out.println("...Disconnecting from RTserver");
 } // destroy
 } // serverDisconnect

25 public svrcbs() {
26 TipcMsg msg = null;

 try {
27 TipcSrv srv = TipcSvc.getSrv();

 // create a new connect callback and register it
28 serverConnect sc = new serverConnect();
29 TipcCb sch = srv.addCreateCb(sc, srv);
 // check the 'handle' returned for validity
30 if (null == sch) {
31 Tut.exitFailure("Couldn't register create callback!");
 } // if
 // and a destroy callback
32 serverDisconnect sd = new serverDisconnect();
33 TipcCb sdh = srv.addDestroyCb(sd, srv);
 // check the 'handle' returned for validity
34 if (null == sdh) {
35 Tut.exitFailure("Couldn't register destroy callback!");
 } // if

 // connect to RTserver
36 srv.create();

 // read and process all incoming messages
37 while (true) {
38 srv.mainLoop(2.0);
 } // while

39 } catch (TipcException e) {
40 Tut.fatal(e);
 } // catch
 // svrcbs (constructor)

41 public static void main(String[] argv) {
42 new svrcbs();
 } // main
 } // svrcbs

Let’s examine the key lines in this program:
Line 29 The server create callback (serverConnect) is registered with the call

to TipcSrv.addCreateCb.

Line 33 The server destroy callback (serverDisconnect) is registered with
the call to TipcSrv.addDestroyCb.

Line 36 Notice that both the server create and server destroy callbacks are
registered before the initial connection to RTserver is made through a
call to TipcSrv.create.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

96 | Chapter 6 Lesson 4: Callbacks
Let’s see how these programs use callbacks, and how RTserver affects their
operation.

Step 22 Compile the svrcbs.java program

Compile the svrcbs.java program using the command:

$ javac svrcbs.java

Step 23 Start the create callback program

Start the create callback program in one window of your display using the
command:

$ java svrcbs

This output is displayed:

Attempting connection to <_node>.
Connecting to RTserver...
Please enter password:

The last two lines of output are from the server create callback. This was executed
when the process tried to connect to RTserver for the first time. You are prompted
for a password.

Step 24 Enter a password

Enter this password and press the return key:

Please enter password: ssjava

When the correct password is entered, this text is displayed:

Password accepted!

The program is now successfully connected to RTserver. Let’s manually break the
connection to RTserver and see what happens.

Lines 17-21 The server create callback disconnects the program from RTserver
with the TipcSrv.destroy method if an incorrect password is given.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Using Callbacks | 97
Step 25 Stop the RTserver

In another window, stop RTserver using a command line argument to the
rtserver command:

$ rtserver -stop

This new output is displayed in the window where you ran the create callback
program:

WARNING: lost connection: reader: in: connection dropped Connection
reset
...Disconnecting from RTserver
Waiting before reconnecting.
Attempting connection to <_node> RTserver.
WARNING: lost connection: Connection refused: connect
Attempting connection to <_node> RTserver.
WARNING: lost connection: Connection refused: connect
Attempting connection to <_node> RTserver.
WARNING: lost connection: Connection refused: connect
Attempting connection to <_node> RTserver.

This output continues until another RTserver is found. Stopping RTserver resulted
in a sequence of events happening:

1. The server destroy callback was executed and output:

...Disconnecting from RTserver

2. The create callback program then attempted to re-connect with RTserver. This
is a fault-tolerant feature of SmartSockets.

Step 26 Start a new RTserver

In the other window (where you stopped RTserver), start a new RTserver:

$ rtserver

When the connection is re-established, the server create callback is executed and
you are again prompted for the password:

Connecting to RTserver...
Please enter password:

On platforms that support both 32- and 64-bit, use the rtserver64 command to
run the 64-bit version of the rtserver script.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

98 | Chapter 6 Lesson 4: Callbacks
Step 27 Enter an incorrect password

This time, enter an incorrect password:

Please enter password: foo

This output is displayed:

Password is not correct!
You are being disconnected from RTserver
...Disconnecting from RTserver

In this case, the server create callback disconnected from RTserver and terminated
the program. When disconnecting from RTserver, the server destroy callback was
executed. This demonstrates how callbacks can trigger events to which other
callbacks then respond.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Creating Your Own Message Types | 99
Creating Your Own Message Types

SmartSockets comes with many predefined standard message types, such as
NUMERIC_DATA. These standard message types are described in detail the
TIBCO SmartSockets User’s Guide.

When there is no standard message type to satisfy a requirement of your
application, you can create your own (called a user-defined message type). Once
you create it, the user-defined message type is handled in the same manner as a
standard message type. To create a user-defined message type, use the
TipcSvc.createMt method. This example creates a message type named
XYZ_COORD_DATA with fields (X, Y, and Z coordinates) that are 4-byte integers:

// type number must be greater than zero
static final int XYZ_COORD_DATA = 1001;
try {
 TipcMt xyzMt = TipcSvc.createMt("xyz_coord_data",
 XYZ_COORD_DATA, "int4 int4 int4");
 if (null == xyzMt) {
 // error
 } catch (TipcException e) {
 // message type already exists or other error
 }

A message type is a template for a specific kind of message. Once the message
type is created, any number of messages of that type can be created. The first
argument to TipcSrv.createMt is the message type name, which should be an
identifier (String). The second argument is the message type number, which is a
signed four-byte integer (int). Message type numbers less than one are reserved
for SmartSockets standard message types. The standard SmartSockets message
types use similar names and numbers (for example, the message type with the
name numeric_data has a defined number TipcMt.NUMERIC_DATA). The third
argument to TipcMtCreate is the message type grammar, used to identify the layout
of fields in messages that use this message type.

The message grammar consists of a list of field types. Each field type in the
grammar corresponds to one field in the message. For example, the standard
message type TIME has a grammar of real8, which defines the first and only
field as being an eight-byte real number. The table lists the primitive types that
can appear as a field in the grammar of a standard or user-defined message type.
Comments (delimited by /* */ or (* *)) are also allowed in the grammar.

Field Type Meaning

binary non restrictive array of characters (such as an entire data
structure or the entire contents of a file)

char 1-byte integer
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

100 | Chapter 6 Lesson 4: Callbacks
Occasionally, message types use a repetitive group of fields. For example, the
NUMERIC_DATA message type allows zero or more name-value pairs. Curly
braces ({}) can be used in the message type grammar to indicate such a group. The
grammar for the NUMERIC_DATA message type is "{ id real8 }" and the
grammar for HISTORY_STRING_DATA is "real8 { id str }". Groups must be
at the end of the message type grammar and only one group is allowed per
grammar.

int2 2-byte integer

int2_array array of int2

int4 4-byte integer

int4_array array of int4

int8 8-byte integer

int8_array array of int8

msg a message

msg_array array of msg

real4 4-byte real number

real4_array array of real4

real8 8-byte real number

real8_array array of real8

str a C string (’\0’-terminated array of characters)

str_array array of str

xml xml object

Field Type Meaning
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Creating Your Own Message Types | 101
Sample Programs
This section contains complete sample programs for creating, sending, reading,
and processing a user-defined message type called XYZ_COORD_DATA.

Step 28 Copy the snd_umsg.java and rcv_umsg.java programs

Copy snd_umsg.java and rcv_umsg.java into your working directory.

This program creates and sends messages of user-defined type XYZ_COORD_DATA:

//--
// snd_umsg.java - create and send a series of messages of
// user-defined type XYZ_COORD_DATA

1 import java.io.*;
2 import com.smartsockets.*;

3 public class snd_umsg {
4 private static final int XYZ_COORD_DATA = 1001;

5 public static void main(String[] argv) {
 try {
 // set the ss.project
6 Tut.setOption("ss.project", "smartsockets");

 // get handle to the RTserver
7 TipcSrv srv = TipcSvc.getSrv();

8 if (!srv.create()) {
9 Tut.exitFailure("Couldn't connect to RTserver!");
 } // if

 // define new message type
10 TipcMt mt = null;
 try {
11 mt = TipcSvc.createMt("xyz_coord_data", XYZ_COORD_DATA,
 "int4 int4 int4");
12 } catch (TipcException e) {
13 Tut.exitFailure("Message type already exists!");
14 } // catch

 // create a nessage of type XYZ_COORD_DATA
15 TipcMsg msg = TipcSvc.createMsg(mt);

 // set message destination
16 msg.setDest("/ss/tutorial/lesson4");

17 for (int i = 0; i < 30; i += 3) {
 // in order to re-use message, reset number of fields to 0
18 msg.setNumFields(0);
19 msg.appendInt4(i);
20 msg.appendInt4(i + 1);
21 msg.appendInt4(i + 2);
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

102 | Chapter 6 Lesson 4: Callbacks
 // send and flush the message
22 srv.send(msg);
23 srv.flush();
 } // for

 // disconnect from RTserver
24 srv.destroy();
 } catch (TipcException e) {
25 Tut.fatal(e);
 } // catch
 } // main
} // snd_umsg

Let’s examine some of the key lines in this program:

This program publishes a series of ten XYZ_COORD_DATA messages.

Step 29 Compile the snd_umsg.java program

Compile the sending user-message program, snd_umsg.java, program using the
command:

$ javac snd_umsg.java

You now need a program to read and process the messages of the new
XYZ_COORD_DATA type. This program also needs to create the message type. It also
needs to define a process callback for the new message type. This is an example of
the receiving user-message program, rcv_umsg.java program:

//---
// rcv_umsg.java -- display contents of received user-defined
// messages (type XYZ_COORD_DATA)

1 import java.io.*;
2 import com.smartsockets.*;

3 public class rcv_umsg {
4 static final int XYZ_COORD_DATA = 1001;

5 public class processXYZ implements TipcProcessCb {

6 public void process(TipcMsg msg, Object arg) {
7 System.out.println("Received XYZ_COORD_DATA message");

Line 4 Defines the unique number that identifies the new message type. This
number must be used consistently in all programs that reference the
user-defined message type.

Line 11 Creates the new message type. This call to TipcMtCreate must be
included in all programs that refer to the new message type.

Line 15 Creates a message of type XYZ_COORD_DATA.

Lines 17-21 Build the data part of the new message.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Creating Your Own Message Types | 103
 // position the field ptr to the beginning of the message
 try {
8 msg.setCurrent(0);
9 } catch (TipcException e) {
10 Tut.fatal(e);
 } // catch

 // traverse message; print value from each field
 try {
11 int field_value = msg.nextInt4();
12 System.out.println("Field 1 Value = " + field_value);
13 field_value = msg.nextInt4();
14 System.out.println("Field 2 Value = " + field_value);
15 field_value = msg.nextInt4();
16 System.out.println("Field 3 Value = " + field_value);
17 } catch (TipcException e) {
18 Tut.warning("Expected 3 fields--bad XYZ_COORD_DATA!\n");
 } // catch
 } // process
 } // processXYZ

19 public class processDefault implements TipcDefaultCb {

20 public void handle(TipcMsg msg, Object arg) {
21 System.out.println("Receive: unexpected message type name" +
 " is <" + msg.getType().getName() + ">");
 } // handle
 } // processDefault

22 public rcv_umsg() {
23 TipcMsg msg = null;

 try {
 // set the ss.project
24 Tut.setOption("ss.project", "smartsockets");

 // get handle to the RTserver
25 TipcSrv srv=TipcSvc.getSrv();

 // define new message type
26 TipcMt mt = null;
 try {
27 mt = TipcSvc.createMt("xyz_coord_data", XYZ_COORD_DATA,
 "int4 int4 int4");
28 } catch (TipcAlreadyExistsException e) {
29 Tut.exitFailure("Message type already exists!");
 } // catch

 // create a new receive listener and register it
30 processXYZ pcb = new processXYZ();
31 TipcCb ph = srv.addProcessCb(pcb, mt, srv);
 // check the 'handle' returned for validity
32 if (null == ph) {
33 Tut.exitFailure("Couldn't register processXYZ listener!");
 } // if
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

104 | Chapter 6 Lesson 4: Callbacks
 // create and register default listener
34 processDefault dcb = new processDefault();
35 TipcCb dh = srv.addDefaultCb(dcb, srv);

 // check the 'handle' returned for validity
36 if (null == dh) {
37 Tut.exitFailure("Couldn't register default listener!");
 } // if

 // connect to RTserver
38 if (!srv.create()) {
39 Tut.exitFailure("Couldn't connect to RTserver!");
 } // if

 // subscribe to the appropriate subject
40 srv.setSubjectSubscribe("/ss/tutorial/lesson4", true);

 // read and process all incoming messages
41 while (srv.mainLoop(TipcDefs.TIMEOUT_FOREVER)) {
 } // while

 // unregister the listeners for completeness
42 srv.removeProcessCb(ph);
43 srv.removeDefaultCb(dh);

 // disconnect from RTserver
44 srv.destroy();
45 } catch (TipcException e) {
46 Tut.fatal(e);
 } // catch
 } // rcv_umsg (constructor)

47 public static void main(String[] argv) {
48 new rcv_umsg();
 } // main
 } // rcv_umsg class

Let’s examine the key lines of this program:
Line 4 Defines the unique number that identifies the new message type. This

number must be used consistently in all programs that use the
user-defined message type.

Line 27 Creates the new message type. This call to TipcMtCreate must be
included in all programs that refer to the new message type.

Line 31 Registers the process callback to be used for messages of type
XYZ_COORD_DATA.

Lines 6-18 This method is invoked when a message of type XYZ_COORD_DATA
needs to be processed. It prints out the three numbers in the data part
of the message.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Creating Your Own Message Types | 105
Step 30 Compile the rcv_umsg.java program

Compile the rcv_umsg.java program using the command:

$ javac rcv_umsg.java

Step 31 Start the receiving user-message program

Start the receiving user-message program in one window of your display using
the command:

$ java rcv_umsg

Step 32 Use the new sending user-message program to send messages

In another window, send a series of XYZ_COORD_DATA messages to the receiving
user-message program, using the sending user-message program with the
command:

$ java snd_umsg

When you start the sending user-message program, this output is displayed in the
window where the receiving user-message program is being run:

Received XYZ_COORD_DATA message
Field 1 Value = 0
Field 2 Value = 1
Field 3 Value = 2
Received XYZ_COORD_DATA message
Field 1 Value = 3
Field 2 Value = 4
Field 3 Value = 5
Received XYZ_COORD_DATA message
Field 1 Value = 6
Field 2 Value = 7
Field 3 Value = 8
.
.
.
Received XYZ_COORD_DATA message
Field 1 Value = 27
Field 2 Value = 28
Field 3 Value = 29

When the sending user-message program has completed, notice that the receiving
user-message program is still hanging. It is waiting for more messages.

Step 33 Interrupt the receiving user-message program

Type Ctrl-c to interrupt the receiving user-message program.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

106 | Chapter 6 Lesson 4: Callbacks
Summary

The key concepts covered in this lesson are:

• Callbacks are interfaces specifying methods to be executed when certain
events occur.

• Callbacks give you an object-oriented approach to the advanced features of
SmartSockets.

• SmartSockets provides a number of different types of callbacks including:
subject, process, default, read, write, server create, server destroy, and error.

• The two most common types of callbacks used in a SmartSockets application
are:

— process callbacks, specifying a process method that is invoked when a
message of a given type is to be processed. In the Java library, this includes
the functionality of subject callbacks in the C library.

— subject callbacks, specifying a process method that is invoked when a
message addressed to a given subject is to be processed.

— default callbacks, specifying a handle method which is invoked when
there is no subject callback available for the given message type.

• Subject, process, and default callbacks are invoked by a call to
TipcSrv.process().

• Server create callbacks are executed whenever an RTclient connects or
reconnects to RTserver. Server destroy callbacks are executed when an
RTclient loses its connection to RTserver.

• The convenience method TipcSrv.mainLoop can be used to read and process
incoming messages from RTserver. It replaces repeated calls to TipcSrv.next
and TipcSrv.process.

• TipcMsg.setNumFields can be used to reset the data part of a message. This is
useful if you want to re-use the message.

• In situations where there are no SmartSockets standard message types to meet
your requirements, you can create user-defined message types.

• User-defined message types are created with a call to TipcSrv.createMt. This
takes three arguments

— a name, which is an identifier

— a unique number (greater than zero)

— a grammar, which defines what the data part of the message looks like
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Summary | 107
• A user-defined message type must be defined consistently, with
TipcSrv.createMt, in all programs that use the message type. Once defined, it
is treated no differently from a SmartSockets standard message type.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

108 | Chapter 6 Lesson 4: Callbacks
TIBCO SmartSockets Java Library User’s Guide and Tutorial

| 109
Chapter 7 Lesson 5: TIBCO SmartSockets Options

In this lesson you learn about:

• how Java SmartSockets options are stored in a properties database

• how to set options, directly and from an options database

• how to load options from local storage and remote locations using a URL

Topics

• Lesson 5 Overview, page 110

• Summary, page 118
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

110 | Chapter 7 Lesson 5: TIBCO SmartSockets Options
Lesson 5 Overview

The files for this lesson are located in the directories:

Windows
%RTHOME%\java\tutorial\lesson5

UNIX
$RTHOME/java/tutorial/lesson5

This lesson describes RTclient option databases, as well as techniques for loading
and manipulating options programmatically. SmartSockets uses these options
extensively for configuring a Java RTclient’s behavior. While many of the options
an RTclient may care to set can easily be "hard-coded," the use of option databases
allows a more flexible, dynamic method of program setup and control.

The options available to Java RTclients are described in Setting RTclient Options
on page 137. Remember that these options and their values are case sensitive.

Option (Property) Databases
SmartSockets options are retrieved from Java Properties databases. These
databases take the form of text files containing key-value pairs, one entry per line.
The "key" string may contain periods (.) to indicate property hierarchies, and all
SmartSockets options reside in the "ss." hierarchy. For example, two of the
standard SmartSockets option properties are defined in the property database like
this:

ss.server_auto_connect: false
ss.project: foo

Note that option names and values are case sensitive and can be presented in any
order. Option properties should appear only once in the property database; if
multiple instances of an option appear with conflicting properties, the last
key-value pair in the database is used, overriding any earlier settings. Option
databases can contain values for the standard RTclient options, as well as for
user-defined settings.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Lesson 5 Overview | 111
Utility Methods for Handling Options
The basic option-handling methods are contained in the Tut utility class.
Individual options are also often represented by instances of the TipcOption class.

When using multiple RTserver connections created by the TipcSvc.createSrv
factory method, use the TipcSrv option-handling methods to change the option
setting for a TipcSrv object. If an option is not set for a TipcSrv object, the option’s
default value is used or the value set by the Tut option-handling methods is used.

This table summarizes the relevant Tut and TipcSrv methods:

See the online documentation for the Tut, TipcOption, TipcConnClient, and
TipcSrv classes for full usage details.

Tut Method TipcSrv Method Purpose

createOption Not available Creates a custom option.

getOption getOption Returns a TipcOption object representing the
requested option.

getOptionBool getOptionBool Returns the value of a boolean option.

getOptionDouble getOptionDouble Returns the value of a double option.

getOptionInt getOptionInt Returns the value of a int option.

getOptionStr getOptionStr Returns the value of a string option.

loadOptionsFile loadOptionsFile Loads the values of all options contained in the
specified options database file.

loadOptionsStream loadOptionsStream Loads the values of all options contained in the
specified InputStream.

loadOptionsURL loadOptionsURL Loads the values of all options contained in the
options database located at the remote URL
specified.

removeOption Not available Removes (and returns) a custom option.

setOption setOption Sets the value of an option, using the TipcOption
helper class.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

112 | Chapter 7 Lesson 5: TIBCO SmartSockets Options
Setting Simple RTclient Options
RTclient options can be set to specific values by defining them in an option
database and loading them, or by explicitly setting them. To set common options
(that can be represented by a string) use the Tut.setOption convenience method or
get the option and manipulate it with TipcOption’s methods. An example of
setting an option, in this case, ss.project, with the convenience method is:

Tut.setOption("ss.project", "myProject");

To accomplish this more formally with the TipcOption class, use this code:

TipcOption proj = Tut.getOption("ss.project");
proj.setValue("myProject");

Note that TipcOption objects are not to be directly instantiated by your code; they
are created as necessary by Tut’s createOption, getOption, and removeOption and
returned to your application at that time.

See the online documentation for detailed information about the specific standard
options recognized by the SmartSockets Java Class Library, as well as for valid
values for all options.

Working with Enumerated Options
Often it is useful to have enumerated options, where the allowed values for an
option are specified as a set of strings. The TipcOption class provides for
enumerated options with automatic legal-value checking, as well as allowing the
enumerated string values to be mapped onto integers. Individual enumerations
may support integer mapping or simply strings, but not both. Mapped
enumerations must have corresponding integer values provided for each of its
string values; unmapped enumerations do not allow any corresponding integers
to be specified.

This example creates an unmapped (simple) enumerated option, sets the legal
values, and then sets and gets the option. Note that the second time
getValueEnum() is called, an exception is thrown, because the value "orange" is
not a legal enumeration value.

TipcOption enum = Tut.createOption("ss.col", "red");
enum.addEnumLegalValue("green");
enum.addEnumLegalValue("blue");
enum.setValue("green");
try {
 System.out.println("ss.col = " + enum.getValueEnum());
 enum.setValue("orange");
 System.out.println("ss.col = " + enum.getValueEnum())
}catch (TipcException te) {
 Tut.warning(te);
}

TIBCO SmartSockets Java Library User’s Guide and Tutorial

Lesson 5 Overview | 113
If you want to use a mapped enumeration, the code would look like:

TipcOption enum = Tut.createOption("ss.col", "red");
enum.addEnumMapLegalValue("red", 0);
enum.addEnumMapLegalValue("green", 1);
enum.addEnumMapLegalValue("blue", 2);
enum.setValue("green");
try {
 System.out.println("ss.col = " + enum.getValueEnumMap());
 enum.setValue("orange");
 System.out.println("ss.col = " + enum.getValueEnumMap());
}catch (TipcException te) {
 Tut.warning(te);
}

Loading RTclient Options from a File or URL
Option settings may be loaded from a local file or a URL, depending on security
restrictions. Applets are generally not allowed access to the local file system, and
typically retrieve options from a URL on the same web server from which the
applet was downloaded.

To load options from a local file, use Tut.loadOptionsFile. Use
Tut.loadOptionsURL to load options from a remote file using a URL. If your
program has a different source for options that implements the InputStream
interface, you can also use the Tut.loadOptionsStream method. All of these
methods load all of the options immediately, overriding any existing settings for
all of the options that appear in the file.

Options are also loaded from the System property table (the table returned by the
standard Java library call System.getProperties). Option settings loaded from a
file take precedence over settings that appear in the System table. All of the
standard options have a default setting that is used if a setting does not appear in
either the System table or a loaded file.

For example, examine this options file, local.opt:

ss.booleanValue1: true
ss.booleanValue2: false

ss.doubleValue1: 1.23456
ss.doubleValue2: 65432.1
ss.doubleValue3: -1.0
ss.doubleValue4: 100.0

ss.intValue1: 1
ss.intValue2: -16384
ss.intValue3: 2
ss.intValue4: -2
ss.intValue5: 32767
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

114 | Chapter 7 Lesson 5: TIBCO SmartSockets Options
ss.bulb: on
ss.stringValue1: The quick red fox jumped over the lazy dog.
ss.stringValue2: Value1, value_2, VALUE-3, Value4, etc.
ss.charA: A
ss.charB: B
ss.charC: C
ss.charZ: Z

ss.project: foo_project
ss.server_names: _node, rocky, bullwinkle
ss.user_name: javauser

As you can see, the format is simply that of a Java property database, key-value
pairs in ASCII, one pair to a line.

The following program, getOptions.java (see the "examples" directory on the
distribution media) will load and interpret some of the values from such a file.
Specifying a URL on the command line to getOptions allows loading of a file like
the above from a remote location such as a web server.

The files for this lesson are located in the directories:

Windows
%RTHOME%\java\tutorial\lesson5

UNIX
$RTHOME/java/tutorial/lesson5

// getOptions.java
// Example of retrieving SmartSockets and user-defined options
// settings from a file, URL, or InputStream

1 import java.io.*;
2 import java.util.*;
3 import com.smartsockets.*;

4 public class getOptions {

5 static public void main(String[] argv) {
6 final String optionFile = "local.opt";

 // must create enumerated map option BEFORE loading!
7 TipcOption bulb = null;
 try {
8 bulb = Tut.createOption("ss.bulb", "off");
 }
9 catch (TipcException te) {
 Tut.fatal(te);
 } // catch
10 bulb.addEnumMapLegalValue("on", 1);
11 bulb.addEnumMapLegalValue("off", 0);
12 bulb.addEnumMapLegalValue("broken", -1);
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Lesson 5 Overview | 115
13 System.out.print("Getting options from ");

 // if argument was supplied, assume it's a URL to properties
14 if (0 < argv.length) {
15 System.out.println("URL " + argv[0]);
16 Tut.loadOptionsURL(argv[0]);
 }
 else {
 // no argument, so use local options file
17 System.out.println("local file " + optionFile);
18 Tut.loadOptionsFile(optionFile);
 } // else

 try {
19 String project = Tut.getOptionStr("ss.project");
20 System.out.println("ss.project = " + project);

21 String server_names = Tut.getOptionStr("ss.server_names");
22 System.out.println("ss.server_names = " + server_names);

23 String user_name = Tut.getOptionStr("ss.user_name");
24 System.out.println("ss.user_name = " + user_name);

 // get some user-defined options
 // these would be meaningful to this particular program
25 boolean bv = Tut.getOptionBool("ss.booleanValue1");
26 System.out.println("ss.booleanValue1 = " + bv);

27 double dv = Tut.getOptionDouble("ss.doubleValue1");
28 System.out.println("ss.doubleValue1 = " + dv);

29 int iv = Tut.getOptionInt("ss.intValue1");
30 System.out.println("ss.intValue1 = " + iv);

31 String sv = Tut.getOptionStr("ss.stringValue1");
32 System.out.println("ss.stringValue1 = " + sv);

33 TipcOption so = Tut.getOption("ss.stringValue2");
34 Vector ov = so.getValueList();
35 if (null == ov) {
36 System.out.println("Can't parse stringValue2!");
 }
 else {
 // use an Enumeration object to move through parsed list
37 Enumeration en = ov.elements();
38 for (int i=0; en.hasMoreElements(); i++) {
39 String el = (String)en.nextElement();
40 System.out.println("ss.stringValue2[" + i + "] = " + el);
 } // for
 } // else

41 TipcOption sw = Tut.getOption("ss.bulb");
42 System.out.println("ss.bulb(string) = " + sw.getValueEnum());
43 int ev = sw.getValueEnumMap();
44 System.out.println("ss.bulb(mapped) = " + ev);
 }
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

116 | Chapter 7 Lesson 5: TIBCO SmartSockets Options
45 catch (TipcException te) {
46 Tut.warning(te);
 } // catch
 } // main
 } // getOptions

Let’s examine the key lines of this program:

Step 1 Compile the getOptions.java program

Compile the options program, getOptions.java, program using the command:

$ javac getOptions.java

Step 2 Start the options program

Make sure the local.opt file is present in the working directory, and start the
options program using the command:

$ java getOptions

When you start the options program, this output is displayed:

Getting options from local file local.opt

ss.project = foo_project
ss.server_names = _node, rocky, bullwinkle
ss.user_name = javauser
ss.booleanValue1 = true
ss.doubleValue1 = 1.23456
ss.intValue1 = 1
ss.stringValue1 = The quick red fox jumped over the lazy dog.
ss.stringValue2[0] = Value1
ss.stringValue2[1] = value_2
ss.stringValue2[2] = VALUE-3
ss.stringValue2[3] = Value4
ss.stringValue2[4] = etc.
ss.bulb(string) = on
ss.bulb(mapped) = 1

Lines 7-9 Create the mapped, enumerated option bulb; this should be done
before options are loaded.

Lines 10-12 Enumerate the legal values and their mappings for the bulb option.

Lines 14-18 Load the options from a local file or the command-line specified URL.

Lines 19-32 Retrieve and display the values of various types of options.

Line 34 Gives an example of using getValueList to return a Vector of values
(that were comma-separated in the property database file.)

Lines 41-44 Retrieve the bulb mapped enumerated option and display the string
and mapped integer value.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Lesson 5 Overview | 117
Included with this example on the SmartSockets distribution media is an applet
version, named getOptionsApplet.java. The applet version loads its options
from the same web server (or applet viewer) it was downloaded from, but from
the file remote.opt.

Making Custom Options Read-Only
For the custom options that you add, it is also possible to set the optional flag
read-only. This will prevent the option from being reset during another
loadOptions method or as part of your program. For example:

try {
 TipcOption ro = Tut.createOption("read-only", "false");
 ro.setValue("true");
 ro.setReadOnly(true);
 ro.setValue("changed");
}
catch (TipcException te) {
 Tut.warning(te);
}

The above code creates a new option, sets its value while it is still read-write, and
then changes it to be a read-only value. When the code attempts to set the value a
second time, an exception is thrown.

Java-Specific Options
There are several options only for Java RTclients. In Java, messages are read into
the message queue by a reader thread. If the Java RTclient receives many large
messages rapidly, it is possible for the Java Virtual Machine (JVM) to run out of
memory. An alternative to increasing the Java heap size, the
ss.max_read_queue_length or ss.max_read_queue_size can be modified to limit
the number of messages read into the message queue at one time. The
ss.max_read_queue_length limits the number of individual messages in the
message queue and the ss.max_read_queue_size limits the total number of bytes
in the message queue. A value of 0 indicates unlimited length or size. The
ss.min_read_queue_percentage indicates to what point the message queue
threshold must fall before messages are read into the message queue again. These
values are changed only under unusual circumstances.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

118 | Chapter 7 Lesson 5: TIBCO SmartSockets Options
Summary

The key concepts covered in this lesson are:

• SmartSockets Java options are simply Java property database files containing
keys that begin with ss. Option names and values are case sensitive.

• Many different options are recognized by the SmartSockets Java Class Library
for controlling an RTclient’s behavior, and you can add and destroy your own
options with Tut.createOption and Tut.removeOption as well.

• Option (property) databases can be loaded from a file, a URL, or a currently
open InputStream.

• When an option file is loaded, all values are loaded, overwriting any previous
values in memory (except values marked "read-only").

• The Tut and TipcOption classes are used to manipulate SmartSockets Java
options. TipcOption objects are not created by your code; they are created and
returned to you as necessary by Tut methods.

• Simple option values can be set with the Tut.setOption convenience method
and retrieved with the set of convenience methods in Tut, such as
getOptionBool, getOptionInt, and so on.

• More complicated handling of options, such as setting the required or
read-only flag or working with enumerated options, requires use of the
TipcOption class.

• Enumerated options can have a set of legal values only or legal values and
mapped integers, but the two types cannot be mixed within a single option.

• Legal values for enumerated options must be set before retrieving the option’s
value, or else an exception will be thrown.

• Values that contain comma-separated strings can be returned as a vector of
strings with the TipcOption.getValueList method.

• Custom options can be made read-only with the TipcOption.setReadOnly
method.

• The ss.max_read_queue_length limits the number of individual messages in
the message queue and the ss.max_read_queue_size limits the total number of
bytes in the message queue. The ss.min_read_queue_percentage indicates to
what point the message queue threshold must fall before messages will begin
to be read into the message queue again.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

| 119
Chapter 8 Lesson 6: Java Applets

In this lesson you learn about:

• how to use SmartSockets from Java applets

• techniques for packaging SmartSockets with your applet for use over the web

Topics

• Lesson 6 Overview, page 120

• Applets and the Security Model, page 120

• Applet Life Cycle, page 122

• Using Messaging Threads, page 122

• Example Applet: ChatApplet, page 124

• Summary, page 134

• Congratulations!, page 134
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

120 | Chapter 8 Lesson 6: Java Applets
Lesson 6 Overview

The files for this lesson are located in the directories:

Windows:
%RTHOME%\java\tutorial\lesson6

UNIX:
$RTHOME/java/tutorial/lesson6

This lesson illustrates techniques for using SmartSockets with Java applets,
allowing publish-subscribe programs to be transferred over the web and executed
in a client’s web browser.

Applets and the Security Model

When developing applets that use SmartSockets (or any other type of
networking) keep in mind the restrictions placed on applets by the Java Security
Manager. Applets are only allowed to perform a subset of the tasks that a
standalone Java application can, for reasons of security.

These restrictions may be configurable, based on the Java Virtual Machine (JVM)
being used to execute your applet, but by default several key security restrictions
are imposed that you should be aware of.

• Applets can only make network connections back to the machine from which
they were downloaded

• Applets typically are not allowed to look up the name of the machine they are
running on or its IP address

• Local file systems are usually completely off-limits to applets

These restrictions can have a significant impact on the design of your applet’s use
of SmartSockets.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Applets and the Security Model | 121
Network Connections
Because a downloaded applet can only make connections back to the machine
from which it was retrieved, use of the ss.server_names option is a must. Use
ss.server_names to specify the machine (typically a web server) from which the
applet was downloaded. This machine must be running RTserver or no
connection is possible.

Because your applet is derived from the Applet class, there are useful methods
that can be used to help facilitate the correct setting of ss.server_names. For
example:

Tut.setOption "ss.server_names",this.getDocumentBase().getHost());

You might want to make a connection through a firewall, called tunneling
through a firewall. Usually, this involves connecting to a proxy server. To do this,
you need to use the HTTP_CONNECT proxy extension with your logical
connection name. For example:

Tut.setOption ("ss.server_names",
"http_connect:www.company_name.com@tcp:server:5101)

See the TIBCO SmartSockets User’s Guide for more information on tunneling
through firewalls.

Local Machine Lookup
Typically, applets cannot determine the machine name nor IP address of the local
machine. This type of information cannot be relied upon for RTclient applet
identification purposes, such as setting unique subject name. Keep this in mind
when designing SmartSockets applets.

Local File System Access
Do not design applets that require access to the local file system, for temporary
storage or any other purpose, including file-based guaranteed message delivery
(GMD). If you need to use GMD, use memory-based GMD. For more information,
see Chapter 11, Guaranteed Message Delivery.

Remember, local files may not even be checked for existence.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

122 | Chapter 8 Lesson 6: Java Applets
Applet Life Cycle

Keep in mind that an applet’s init method is usually invoked when the user
presses the browser "reload" button; more fine-grained exception handling than
usual may be necessary inside your init to ensure correct operation. Always test
the various "start," "stop," "clone," and "reload" options in appletviewer to verify
that your applet is working properly under all circumstances.

A good guideline is to register your callbacks in init and remove them in
destroy. If you create message types in init, a "reload" will cause
TipcSvc.createMt to throw an exception the second time through init, so be sure
to plan for that appropriately.

Using Messaging Threads

To create effective SmartSockets applets, it is usually necessary to spin off a new
messaging thread. This is simply a run method in some class that operates while
the applet is allowed to execute. This thread loops, doing a TipcSrv.mainLoop call,
allowing SmartSockets message processing to occur.

For example, the typical messaging thread infrastructure looks something like:

public class MyApplet extends Applet
implements Runnable, ... {

Thread reader = null;

// messaging thread
public void run() {

Thread me = Thread.currentThread();
me.setPriority(Thread.MIN_PRIORITY);

while (reader == me) {
try {

TipcSrv srv = TipcSvc.getSrv();
srv.mainLoop(1.0);

} catch (TipcException te) { }
try {

Thread.sleep(100);
} catch (InterruptedException ie) {

break;
} // catch

} // messaging (reader) thread
} // run
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Using Messaging Threads | 123
public void stop() {
reader = null;

} // stop

public void start() {
reader = new Thread(this);
reader.start();

} // start

.

.

.
} // class

The files for this lesson are located in the directories:

Windows:
%RTHOME%\java\tutorial\lesson6

UNIX:
$RTHOME/java/tutorial/lesson6

These files all contain code similar to the above. Note that changing the priority of
the messaging thread is not necessary, but may help in some situations. Due to the
scheduler inconsistencies between "green threads" and native threads, and native
threads on differing platforms (Solaris versus Windows NT specifically), some
experimentation may occasionally be necessary to achieve balanced messaging
and CPU utilization.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

124 | Chapter 8 Lesson 6: Java Applets
Example Applet: ChatApplet

Presented below is an example SmartSockets applet. It implements a simple
multi-user, real-time chat system using RTserver running on the machine from
which the applet was downloaded. When first run, the applet prompts the user
for a name. Once the name has been entered, the chat screen is displayed (a large
text area for received messages and a small text field for entering messages). The
source code is:

// ChatApplet.java
// Example applet: multiuser real-time chat

1 import java.util.Vector;
2 import java.applet.Applet;
3 import java.awt.*;
4 import java.awt.event.*;
5 import com.smartsockets.*;

6 public class ChatApplet extends Applet
7 implements TipcProcessCb, Runnable, ActionListener {

8 static final String info = "Multiuser real-time chat applet
 demo.";
9 static final int JAVA_CHAT_MT = 8081;
10 static final String chat_subject = "/java_chat";

11 TipcSrv srv;
12 Thread reader = null;

13 CardLayout cl = new CardLayout();
14 TextArea out;
15 TextField in, name;
16 Button go_btn;
17 Panel c1, c2;

18 TipcMt chat_mt; // message type
19 TipcMsg chat_msg; // message (will always be reused)
20 TipcCb the_cb;

21 Font my_font = new Font("Serif", Font.PLAIN, 11);
22 String my_name;
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Example Applet: ChatApplet | 125
23 public void run() {
24 Thread me = Thread.currentThread();
25 me.setPriority(Thread.MIN_PRIORITY);
26 while (reader == me) {
 try {
27 TipcSrv srv = TipcSvc.getSrv();
28 srv.mainLoop(1.0);
29 } catch (TipcException te) { }
 try {
30 Thread.sleep(100);
31 } catch (InterruptedException ie) {
32 break;
 } // catch
 } // reader
 } // run

33 public void init() {
34 String host = getDocumentBase().getHost();
35 try {
36 if (!host.equals("")) {
37 Tut.setOption("ss.server_names", host);
 } // if
38 } catch (TipcException e) {}

 try {
39 srv = TipcSvc.getSrv();
40 srv.create();
41 } catch (TipcException e) {}

 try {
42 chat_mt = TipcSvc.createMt("java_chat", JAVA_CHAT_MT,
 "str str");
43 } catch (TipcException e) {
 // after a reload, the create will throw an exception. since
 // we want a handle to the mt, must look it up...
44 chat_mt = TipcSvc.lookupMt(JAVA_CHAT_MT);
 } // catch

45 chat_msg = TipcSvc.createMsg(chat_mt);
46 chat_msg.setDest(chat_subject);

 try {
47 srv.setSubjectSubscribe(chat_subject, true);
48 } catch (TipcException e) {}

49 the_cb = srv.addProcessCb(this, chat_mt, null);

50 setupGUI();
 } // init
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

126 | Chapter 8 Lesson 6: Java Applets
51 public void destroy() {
 try {
52 srv.removeProcessCb(the_cb);
 // user prop=-1 means to announce we’ve left the chat
53 chat_msg.setUserProp(-1);
54 announce(my_name, chat_subject);
55 } catch (TipcException e) {}
 } // destroy

56 void setupGUI() {
57 setLayout(cl);
58 c1 = new Panel();
59 c1.add(new Label("Enter your name: "));
60 name = new TextField("", 16);
61 c1.add(name);
62 go_btn = new Button("Go");
63 go_btn.addActionListener(this);
64 c1.add(go_btn);
65 add("name", c1);

66 c2 = new Panel(new BorderLayout());
67 out = new TextArea("", 10, 60,
 out.SCROLLBARS_VERTICAL_ONLY);
68 out.setFont(my_font);
69 out.setEditable(false);
70 c2.add(new Label("Message Window"), "North");
71 c2.add(out, "Center");
72 Panel p = new Panel();
73 p.add(new Label("Text to send:"));
74 in = new TextField("", 60);
75 in.setFont(my_font);
76 p.add(in);
77 Button do_chat = new Button("Send");
78 do_chat.addActionListener(this);
79 p.add(do_chat);
80 c2.add(p, "South");
81 add("chat", c2);

82 cl.show(this, "name");
83 name.requestFocus();
 } // setupGUI
84 public void actionPerformed(ActionEvent ae) {
85 if (ae.getActionCommand().equals("Go") &&
86 name.getText().length()>0) {
87 my_name = name.getText();
88 cl.show(this, "chat");
89 in.requestFocus();
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Example Applet: ChatApplet | 127
 // request replies to our announcement with user prop=1
90 chat_msg.setUserProp(1);
91 announce(my_name, chat_subject);
 } // if it's the go button
92 if (ae.getActionCommand().equals("Send") &&
 in.getText().length()>0) {
 try {
93 chat_msg.setNumFields(0);
94 chat_msg.appendStr(my_name);
95 chat_msg.appendStr(in.getText());
96 srv.send(chat_msg);
97 srv.flush();
 }
98 catch (TipcException te) {
99 Tut.warning(te);
 } // catch
100 in.setText("");
101 in.requestFocus();
 } // if it's the send button
 } // actionPerformed

102 public String getAppletInfo() {
103 return info;
 } // getAppletInfo

104 public void stop() {
105 reader = null;
 } // stop

106 public void start() {
107 reader = new Thread(this);
108 reader.start();
109 repaint();
 } // start

110 void announce(String name, String dest) {
 // let the new person know we're here or announce ourselves
 try {
111 chat_msg.setDest(dest);
112 chat_msg.setNumFields(0);
113 chat_msg.appendStr(my_name);
114 chat_msg.appendStr("");
115 srv.send(chat_msg);
116 srv.flush();
117 chat_msg.setDest(chat_subject);
 }
118 catch (TipcException e) {
119 Tut.warning(e);
 } // catch
 } // announce

120 public void process(TipcMsg msg, Object o) {
 try {
121 msg.setCurrent(0);
122 String who = msg.nextStr();
123 String text = msg.nextStr();
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

128 | Chapter 8 Lesson 6: Java Applets

 // see if it's an announcement
124 if (text.equals("")) {
125 if (msg.getUserProp() == -1) {
126 out.append("* Leaving chat: " + who + " *");
 else {
127 out.append("* Joining chat: " + who + " *");
 }
128 if (!who.equals(my_name) && msg.getUserProp() == 1) {
129 chat_msg.setUserProp(0);
130 announce(who, msg.getSender());
 } // if "wants replies" flag is set and not our message
 } // if an announcement
 else {
 // a 'regular' message; display it
131 out.append("[" + who + "] " + text);
 } // if
132 } catch (TipcException e) {
133 Tut.warning(e);
 } // catch
 } // process

 } // main class

Let’s examine some of the key parts of the applet:
Line 12 Declares the class-level variable reader, which will be used to

control the messaging thread.

Lines 23-32 Implement the messaging thread. Notice that the thread processes
messages for one second (line 28) and then sleeps for 0.1 second
(line 30) repeatedly.

Lines 33-38 Sets the ss.server_names option to point back to the server we
downloaded from, because the default applet security does not
allow us to connect to a local RTserver. In many applet situations
it’s very likely there is no RTserver available except on the machine
from which the applet was downloaded.

Lines 45-46 Creates the template message for chatting that will be reused
during the life of this process.

Lines 51-55 Provides the destroy method, called when the applet is reloaded
or shut down. Unregisters our message processing callback and
sends out a final "leaving chat" message, via announce. The
receiving chat clients will know this is a parting announcement by
checking the message’s user property, which is set here to -1.

Lines 56-83 Build the applet’s GUI. Two panels are used, one containing the
login screen, the other for the chat and input window. They are
arranged with a CardLayout, the login screen displayed "on top"
first.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Example Applet: ChatApplet | 129
Lines 84-91 If the button on the login screen is pressed, the user name is
recorded for inclusion in future outgoing messages (variable
my_name), and an announce message is sent with the user property
set to 1. The user property is used in this instance to request that
other chat clients reply directly back to this client after the
announcement, announcing themselves. In this way a new addition
to the chat "room" will receive an initial round of announcements
from all other clients currently present.

Lines 92-101 When the "send message" button is pressed, this code first clears
the message’s old contents (line 93). It then builds the SmartSockets
message to be published, publishes it, and flushes the server
connection to ensure timely delivery.

Line 105 When an applet’s stop method is called, it is desirable to disable
the messaging thread, so the reader variable is invalidated.

Lines 107-108 Upon starting an applet, the messaging thread is created and
started.

Lines 110-119 The announce method is used to send a SmartSockets chatting
message announcing one of three events: a client joining the
conversation, a client leaving the conversation, or this client’s
presence in response to a new client’s entry. Each type of
announcement contains our name as the first string field and a
blank string as the second field.

Line 121 Sets the message’s current field pointer to 0, the first field, to
prepare the message for field extraction.

Lines 125-127 Display the appropriate message for clients joining/departing the
discussion.

Lines 128-130 If the announcement was to declare a client joining the
conversation, requesting a reply from others in the "room" (and it
wasn’t generated by this client), send a reply announcement
directly to the requesting client.

Line 131 Displays the contents of a general chat message sent by a client
(including this client).
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

130 | Chapter 8 Lesson 6: Java Applets
As with all applets, we need to create an HTML file to facilitate its download and
launch. This is a listing of ChatApplet.html (note that the listing is a "standard"
applet invocation; for use with the Java Plug-In, additional tags are required):

1 <html>
2 <head><title>SmartSockets Chat Applet</title></head>
3 <body>
4 <h1>SmartSockets Chat Applet</h1><hr>
5 <applet
6 code="ChatApplet.class"
7 width=600 height=400
8 archive="ss.jar">
9 (SmartSockets Applet)
10 </applet>
11 </body>
12 </html>

Items to note about the above HTML are:

To see the applet in action, use this procedure:

Step 1 Ensure RTserver is running

Make sure RTserver is running. If not, start it:

$ rtserver

Step 2 Compile the ChatApplet.java program

Compile the ChatApplet.java program:

$ javac ChatApplet.java

Line 5 Begins the <applet> tag.

Line 6 Specifies the class that will be run by this applet.

Line 7 Specifies the on-screen size of the applet.

Line 8 Indicates that the ss.jar SmartSockets archive is to be "preloaded". Note
that this file must be in the same directory as the compiled .class file,
whether using appletviewer or viewing via a web browser.

If you do not wish to copy the ss.jar file during testing with appletviewer,
simply leave off the archive modifier until these files are placed on a web
server.

Your CLASSPATH setting should allow appletviewer to locate the
SmartSockets archive.

Line 9 Alternate text, to be displayed in browsers that do not support Java, but do
understand the <applet> tag.

On platforms that support both 32- and 64-bit, use the rtserver64 command to
run the 64-bit version of the rtserver script.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Example Applet: ChatApplet | 131
Step 3 Start the chat applet program

Start the chat applet:

$ appletviewer ChatApplet.html

The applet’s window should first display the log-in screen as shown in Figure 7.

Figure 7 Applet Viewer display of ChatApplet (login phase)

Once the user is logged in and a conversation is started, the view from
appletviewer might look like Figure 8 below:
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

132 | Chapter 8 Lesson 6: Java Applets
Figure 8 Applet Viewer display of ChatApplet (chat phase)

The other side of the conversation (in this case there are only two chatters, but
there could be very many) might look like Figure 9 if the user were using a web
browser instead of an appletviewer.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Example Applet: ChatApplet | 133
Figure 9 Browser display of ChatApplet

As you can see, the two users are carrying on a conversation using SmartSockets
messaging. The web server at which the browser is pointed, trojan, happens to
be the same machine on which appletviewer is running. This does not need to be
the case, however; as long as trojan has RTserver running (for the applet to
connect back to) and the appletviewer instance connects to an RTserver process in
the same server cloud as trojan’s, messages will be successfully delivered.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

134 | Chapter 8 Lesson 6: Java Applets
Summary

The key concepts covered in this lesson are:

• When building applets with the SmartSockets Java Class Library (and
networking applets in general), keep in mind the security restrictions placed
on applets, such as limited host connectivity and lookup and little or no local
file access.

• When deploying SmartSockets applets with typical security restrictions,
RTserver must be running on the same host as the web server for downloaded
applets to connect back to.

• Applets can have very different life cycles from applications; care must be
taken to ensure that your program will respond and survive "reloads" and
other actions. Sun’s appletviewer is a very good tool for testing these cases.

• SmartSockets applets should utilize a messaging thread, spun off by your
applet’s start method. Performing a TipcSrv.mainLoop to ensure message
delivery should be this thread’s sole responsibility.

• Not all Java Virtual Machines (JVMs) especially those in web browsers,
necessarily behave identically. We recommend testing applets with Sun
Microsystems JSDK and the appletviewer utility or with the HotJava browser.

Congratulations!

You have successfully completed the SmartSockets Java class library tutorial! For
more information on the Java class library, see the online SmartSockets Java class
reference information in Javadoc format in the c:install_dir\ss68\doc directory.

For more information on the RTclient options available in Java, see Chapter 9,
RTclient Options.

For more information on using GMD with Java, see Chapter 11, Guaranteed
Message Delivery.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

| 135
Chapter 9 RTclient Options

This chapter describes RTclient option databases and the options available in
those database files.

All of the option handling methods are in the Tut utility class. See the
SmartSockets online Java class reference information, provided in Javadoc format,
for the Tut class for details about specific methods. This chapter provides an
introduction to the SmartSockets option system, demonstrates the basics of
setting and retrieving options, and defines the available standard options.

Topics

• Option (Property) Databases, page 136

• Loading RTclient Options, page 136

• Setting RTclient Options, page 137
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

136 | Chapter 9 RTclient Options
Option (Property) Databases

SmartSockets options are retrieved from Java Properties databases. These
databases take the form of text files containing key-value pairs, one entry per line.
The "key" string may contain periods (.) to indicate property hierarchies, and all
SmartSockets options reside in the "ss." hierarchy. For example, two of the
standard SmartSockets options properties are defined in the property database:

ss.server_auto_connect=false
ss.project=foo

Note that option names and values are case-sensitive and can be presented in any
order. Options properties should appear only once in the property database. If
multiple instances of an option appear with conflicting properties, the last
key-value pair in the database is used, overriding any earlier settings. Option
databases can contain values for the standard RTclient options, and user-defined
settings.

The options follow standard Java property conventions. For example, you can use
a pound sign (#) to comment out a line in a file.

Loading RTclient Options

Option settings may be loaded from a local file or a URL, depending on security
restrictions. Applets are generally not allowed access to the local file system and
typically retrieve options from a URL on the same web server from which the
options were downloaded.

To load options from a local file, use Tut.loadOptionsFile. Use
Tut.loadOptionsURL to load options from a remote file using a URL. Both
methods load the options immediately, overriding any existing settings for the
options that appear in the file.

Options are also loaded from the System property table (the table returned by the
standard Java library call System.getProperties). Option settings loaded from a
file take precedence over settings that appear in the System table. All of the
standard options have a default setting that will be used if a setting does not
appear in either the System table or a loaded file.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Setting RTclient Options | 137
Setting RTclient Options

RTclient options can be set to specific values by defining them in an option
database and loading them or by using the Tut.setOption method.

When entering multiple values for list options, the values must be separated by
commas. Options are case sensitive in Java.

Table 3 lists and briefly describes the relevant options available for Java RTclients.
For complete descriptions of these options, see TIBCO SmartSockets User’s Guide.

Table 3 Java RTclient Options

Option Name Type Default

ss.backup_name string ~

ss.compression boolean false

ss.compression_args integer 6

ss.compression_name string none

ss.compression_stats boolean false

ss.default_msg_priority numeric 0 (zero)

ss.default_protocols string list tcp

ss.default_subject_prefix string none

ss.enable_control_msgs string list quit

ss.group_names string rtworks

ss.ipc_gmd_directory string the directory name where Java
is installed as defined by the
Java property java.home or "."
if java.home is not set

ss.ipc_gmd_type string default

ss.log_in_data string none

ss.log_in_internal string none

ss.log_in_status string none
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

138 | Chapter 9 RTclient Options
ss.log_out_data string none

ss.log_out_internal string none

ss.log_out_status string none

ss.max_read_queue_length numeric 0 messages

ss.max_read_queue_size numeric 500000 bytes

ss.mcast_cm_file string none

ss.min_read_queue_percentage numeric 50 percent

ss.monitor_ident string RTclient

ss.monitor_level standard RTclient

ss.monitor_scope string /*

ss.project identifier rtworks

ss.proxy.password string none

ss.proxy.username string none

ss.server_auto_connect boolean true

ss.server_auto_flush_size numeric 32768

ss.server_delivery_timeout numeric 30.0 seconds

ss.server_disconnect_mode identifier gmd_failure

ss.server_keep_alive_timeout numeric 15.0 seconds

ss.server_max_reconnect_delay numeric 30.0

ss.server_msg_send boolean true

ss.server_names string list _node

ss.server_read_timeout numeric 30.0 seconds

ss.server_start_delay numeric 1.0 seconds

Table 3 Java RTclient Options

Option Name Type Default
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Setting RTclient Options | 139
ss.server_start_max_tries numeric 1

ss.server_write_timeout numeric 30.0 seconds

ss.socket_connect_timeout numeric 5.0

ss.subjects string list none

ss.time_format identifier unknown

ss.trace_file string unknown

ss.trace_file_size numeric 0

ss.trace_flags string list prefix

ss.trace_level string unknown

ss.unique_subject string _node_start-time

ss.user_name string username if available; rtworks
otherwise

Table 3 Java RTclient Options

Option Name Type Default
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

140 | Chapter 9 RTclient Options
ss.backup_name

The ss.backup_name option specifies the extension given to a backup file created
when a file is opened in write mode. This includes all files created in the RT
process (RTclient, RTserver, or RTmon) except for those created in RTsdb and view
files.

The backup file has the same name as the existing file, with the addition of the
extension specified in this option. For example, if the default value of
ss.backup_name is used on a UNIX system, a file named satellite1 would
have a backup file named satellite1~. To turn off the creation of backup files,
set the option to UNKNOWN. If, while running RTclient, a file becomes
corrupted, the backup file can be renamed (by dropping the extension) to recover
the earlier version.

This option must precede any other file options (including Trace_File) within the
command file.

ss.compression

The ss.compression option specifies whether connection-level compression is
enabled. If set to true then all data sent on all connections is compressed. The
actual compression algorithm used is specified by the ss.compression_name.

Type: String

Default Value: UNIX and Windows: ~

OpenVMS: None

Valid Values: Any valid filename characters

Type: Boolean

Default Value: false

Valid Values: true or false
TIBCO SmartSockets Java Library User’s Guide and Tutorial

ss.compression_args | 141
ss.compression_args

The ss.compression_args option allows arguments specific to the compression
library specified by the ss.compression_name option to be passed to it. Currently,
the only available compression library is ZLIB. The valid argument for the ZLIB
library is an integer value from 1 to 9, which specifies the compression level. 1
gives the best speed, 9 gives the best compression.

ss.compression_name

The ss.compression_name option specifies what SmartSockets compression
library is used to perform connection-level compression and message
compression. Currently, the only available compression library is ZLIB.

ss.compression_stats

The ss.compression_stats option specifies whether compression statistics are
printed. When set to true, compression statistics are printed approximately every
30 seconds.

Type: Integer

Default Value: 6

Valid Values: Valid arguments for the library specified by ss.compression_name.

Type: String

Default Value: none

Valid Values: Any valid SmartSockets compression Library.

Type: Boolean

Default Value: false

Valid Values: true or false

Enabling compression statistics is intended for debugging purposes only because
it lowers performance.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

142 | Chapter 9 RTclient Options
ss.default_msg_priority

The ss.default_msg_priority option specifies the default priority for newly
created messages. The message priority property controls where an incoming
message is inserted into a connection’s message queue. When a message is
created, its priority is initialized to the message type priority (if set) or to the value
you specify for ss.default_msg_priority (if the message type priority is unknown).

ss.default_protocols

The ss.default_protocols option specifies a list of IPC protocols to try if no
protocol is listed in a logical connection name in the ss.server_names option.

ss.default_subject_prefix

The ss.default_subject_prefix option specifies the qualifier to prepend to message
subject names that do not start with a slash (/). Subject names are organized in a
hierarchical namespace where the components are delimited by a slash. A subject
name that starts with a slash is called an absolute subject name. All subject names
that do not begin with a slash have the value you specify for
ss.default_subject_prefix prepended to them to create a fully qualified name for
the hierarchical subject namespace.

If the option is unset (unknown), RTclient uses the RTserver Default_Subject_Prefix
value. For more information, see the TIBCO SmartSockets User’s Guide.

Type: Integer

Default Value: 0

Valid Values: Any integer between -32768 and 32767, inclusive

Type: String List

Default Value: tcp

Valid Values: Any valid Java protocol

Type: String

Default Value: unknown

Valid Values: Any string beginning with a backslash (/)
TIBCO SmartSockets Java Library User’s Guide and Tutorial

ss.enable_control_msgs | 143
ss.enable_control_msgs

The ss.enable_control_msgs option is a list specifying the commands allowed in a
CONTROL message. The default allows the inclusion of the quit command using
a CONTROL message. When this option is set to unknown, all commands
(including quit) are disabled. Setting this option to _all allows the inclusion of
all valid commands in a CONTROL message. quit is the only valid command for
Java.

ss.group_names

The ss.group_names option specifies a list of multicast groups. This is the list of
groups to which this RTclient belongs, and indicates to the RTgms for that
RTclient how to route multicast messages for this RTclient.

This option is optional, and is only used if you have a license for the SmartSockets
Multicast option.

Type: String List

Default Value: quit

Valid Values: quit or _all or unknown

Type: String List

Default Value: rtworks

Valid Values: Any valid multicast group name
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

144 | Chapter 9 RTclient Options
ss.ipc_gmd_directory

The ss.ipc_gmd_directory option is only for use with guaranteed message
delivery (GMD).

This option specifies the location for the GMD files. The default location for GMD
files is the directory where Java is installed, as obtained using
System.getProperty ("java.home"). You can specify a different directory if you
like.

The GMD directory is the base directory under which a directory named gmd is
created. Under that, a directory containing the unique subject is created. If these
subdirectories do not already exist, SmartSockets Java creates them.

ss.ipc_gmd_type

The ss.ipc_gmd_type option is only for use with GMD (guaranteed message
delivery).

This option specifies whether file-based or memory-based GMD is to be used. If
left to its default value of default, file-based GMD is attempted, and if that is
unsuccessful, memory-based GMD is used.

If the value is set to memory, memory-based GMD is used, even if
ss.unique_subject is set.

Type: String

Default Value: The directory name where Java is installed as defined by the Java
property java.home or "." if java.home is not set

Valid Values: Any valid directory name

Type: String

Default Value: default

Valid Values: default or memory
TIBCO SmartSockets Java Library User’s Guide and Tutorial

ss.log_in_data | 145
ss.log_in_data

The ss.log_in_data option specifies the name of the file that RTclient uses to log
incoming data messages, such as TIME or NUMERIC_DATA, that are received
from RTserver. If this option is not set, incoming data messages are not logged.
Data messages are listed in the TIBCO SmartSockets User’s Guide.

ss.log_in_internal

The ss.log_in_internal option specifies the name of a file that RTclient uses to log
incoming internal messages, such as MON_SUBJECT_SUBSCRIBE_SET_WATCH
or CONNECT_CALL, that are received from RTserver. If this option is not set,
incoming internal messages are not logged. Internal messages are listed in the
TIBCO SmartSockets User’s Guide.

ss.log_in_status

The ss.log_in_status option specifies the name of a file that RTclient uses to log
incoming status messages, such as ALERT or INFO, that are received from
RTserver. If this option is not set, incoming status messages are not logged. Status
messages are listed in the TIBCO SmartSockets User’s Guide.

Type: String

Default Value: None

Valid Values: Any valid file name

Type: String

Default Value: None

Valid Values: Any valid file name

Type: String

Default Value: None

Valid Values: Any valid file name
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

146 | Chapter 9 RTclient Options
ss.log_out_data

The ss.log_out_data option specifies the name of a file that RTclient uses to log
outgoing data messages, such as TIME or NUMERIC_DATA, that are sent to
RTserver. If this option is not set, outgoing data messages are not logged. Data
messages are listed in the TIBCO SmartSockets User’s Guide.

ss.log_out_internal

The ss.log_out_internal option specifies the name of a file that RTclient uses to log
outgoing internal messages, such as MON_SUBJECT_SUBSCRIBE_SET_WATCH
or CONNECT_CALL, that are sent to RTserver. If this option is not set, outgoing
internal messages are not logged. Internal messages are listed in the TIBCO
SmartSockets User’s Guide.

ss.log_out_status

The ss.log_out_status option specifies the name of a file that RTclient uses to log
outgoing status messages, such as ALERT or INFO, that are sent to RTserver. If
this option is not set, outgoing status messages are not logged. Status messages
are listed in the TIBCO SmartSockets User’s Guide.

Type: String

Default Value: None

Valid Values: Any valid file name

Type: String

Default Value: None

Valid Values: Any valid file name

Type: String

Default Value: None

Valid Values: Any valid file name
TIBCO SmartSockets Java Library User’s Guide and Tutorial

ss.max_read_queue_length | 147
ss.max_read_queue_length

The ss.max_read_queue_length option specifies the number of individual
messages allowed in the message queue. After the value is reached, subsequent
messages are buffered in the RTserver until the queue length falls below a
message queue threshold. This threshold is calculated as: (the value of
ss.max_read_queue_length) multiplied by (the value of
ss.min_read_queue_percentage).

The default setting, 0, allows an unlimited or infinite number of messages in the
queue. This is the recommended setting. However, it is possible that if your Java
RTclient receives many large messages rapidly, the JVM can run out of memory.
Instead of increasing the Java heap size, you can limit the number of messages
allowed in the queue by changing this option from 0 to another number. Related
options are ss.max_read_queue_size and ss.min_read_queue_percentage. For
additional information, see Java-Specific Options on page 117.

ss.max_read_queue_size

The ss.max_read_queue_size option specifies the limit for the total number of
bytes allowed in the message queue. After the value is reached, subsequent
messages are buffered in the RTserver until the queue size falls below a message
queue threshold. This threshold is calculated as: (the value of
ss.max_read_queue_length) multiplied by (the value of
ss.min_read_queue_percentage). The default setting, 500000, is the
recommended setting. However, it is possible that if your Java RTclient receives
many large messages rapidly, the JVM can run out of memory. Instead of
increasing the Java heap size, you can limit the size of the message queue by
changing this option.

Type: Integer

Default Value: 0

Valid Values: Any integer 0 or greater

Type: Integer

Default Value: 500000

Valid Values: Any integer 0 or greater
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

148 | Chapter 9 RTclient Options
Setting this option to a value of 0 disables the option, allowing an unlimited
(infinite) queue size and no limit to the number of messages in the queue.

Related options are ss.max_read_queue_length and
ss.min_read_queue_percentage.

ss.mcast_cm_file

The ss.mcast_cm_file option specifies the fully qualified pathname to the
mcast.cm file the RTclient process should use. For more information on the
mcast.cm file and it's use see the section on PGM options in the TIBCO
SmartSockets User’s Guide.

Under Windows, if you specify an environment variable in the path, use a $ and
not % characters in the name. For example, use $RTHOME. Do not use %RTHOME%.

ss.min_read_queue_percentage

The ss.min_read_queue_percentage option specifies the percentage to which the
message queue threshold must fall before any additional messages are read into
the queue. The default value, .5, is the recommended setting. Changing this
setting is only recommended if you are having problems with your JVM running
out of memory. Related options are ss.max_read_queue_length and
ss.max_read_queue_size.

Type: String

Default Value: None

Valid Values: Any valid pathname, specified without % characters

Type: Integer

Default Value: .5

Valid Values: Any integer from 0 to 1.0, inclusive
TIBCO SmartSockets Java Library User’s Guide and Tutorial

ss.monitor_ident | 149
ss.monitor_ident

The ss.monitor_ident option specifies an identifying string for an RTclient. This
identifier is used as a descriptive name for the RTclient when it is being monitored
by SmartSockets or by another RTclient that is monitoring RTclient extension data.
See the TIBCO SmartSockets User’s Guide for information on monitoring.

The string is sent to the RTserver when the RTclient connects to the RTserver. An
RTclient that sets this option after connecting to an RTserver is not identified
properly for monitoring purposes.

ss.monitor_ident is required when monitoring an RTclient. It cannot be unset after
it is set.

ss.monitor_level

The ss.monitor_level option sets the level of monitoring information that is
maintained for this process. The monitoring level controls whether or not certain
types of monitoring information that may be CPU or memory intensive are
collected. This option must be set before a connection is created in order to have
an effect. Unless ss.monitor_level is set to all, the RTclient will not respond to
poll calls by other RTclients.

This option is required and cannot be unset.

Type: String

Default Value: RTclient

Valid Values: Any valid string

Used for: RTclient, RTmon, and RTgms processes

Type: String

Default Value: standard

Valid Values: • none -- not implemented in this release

• standard -- all monitoring except traffic monitoring

• all -- all monitoring, including traffic monitoring and memory or cpu
intensive monitoring
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

150 | Chapter 9 RTclient Options
ss.monitor_scope

The ss.monitor_scope option specifies the level of interest for SmartSockets
monitoring in those monitoring categories with no parameters, such as RTclient
names poll or a parameter of "@", such as RTclient time watch.

ss.monitor_scope acts as a filter that can be used to prevent a large project from
overloading a monitoring program. The default is "/*", which matches all subject
names at the first level of the hierarchical subject namespace. When
ss.monitor_scope is set to "/...", which matches all names, all monitoring
information is enabled, so all filtering is disabled. Monitoring scope is described
in more detail in TIBCO SmartSockets User’s Guide.

ss.project

The ss.project option specifies the name of the SmartSockets project to which the
RTclient is connected. The RTclient only communicates with other SmartSockets
processes that have the same project name.

Type: String

Default Value: /*

Valid Values: Any valid subject name character or characters

Type: String

Default Value: rtworks

Valid Values: Any valid project name
TIBCO SmartSockets Java Library User’s Guide and Tutorial

ss.proxy.password | 151
ss.proxy.password

The ss.proxy.password option is a string that specifies the user password that the
RTclient provides to a proxy server for authentication. This option is only used
when connecting to a proxy server that requires authorization. If both
ss.proxy.username and ss.proxy.password are set, they are sent to the proxy
server as part of authentication.

ss.proxy.username

The ss.proxy.username option is a string that specifies the username that the
RTclient provides to a proxy server for authentication. This option is only used
when connecting to a proxy server that requires authorization. If both
ss.proxy.username and ss.proxy.password are set, they are sent to the proxy
server as part of authentication.

ss.server_auto_connect

The ss.server_auto_connect option specifies whether or not the RTclient should
automatically create a connection to RTserver if one is needed, such as when a
read or write operation is attempted before a connection is established. If
ss.server_auto_connect is set to false, then the RTclient does not attempt to
recreate a connection to the RTserver automatically, and outgoing messages are
simply buffered.

Type: String

Default Value: None

Valid Values: Any valid password

Type: String

Default Value: None

Valid Values: Any valid username

Type: Boolean

Default Value: true

Valid Values: true or false
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

152 | Chapter 9 RTclient Options
ss.server_auto_flush_size

The ss.server_auto_flush_size option specifies the size, in bytes, that the
outbound buffer can reach before the data is automatically flushed (that is,
written to the connection). If ss.server_auto_flush_size is set to 0, all outgoing
messages are automatically flushed immediately. If the RTclient is sending many
messages in a short period of time, setting ss.server_auto_flush_size to a larger
value can lessen the amount of CPU time that the RTclient uses.

ss.server_delivery_timeout

The ss.server_delivery_timeout option specifies the maximum amount of time, in
seconds, to allow all receiving processes to acknowledge delivery of a guaranteed
message. This default can be overridden by explicitly setting the delivery timeout
of the message. The sending process does not synchronously wait for delivery to
complete, but instead checks periodically. When this option is set to 0.0, then this
option is disabled, and the sending process never times out.

When a guaranteed message is sent to RTserver but is not acknowledged within
the specified period of time, then an error has occurred, and a GMD_FAILURE
message is processed.

Type: Integer

Default Value: 32768

Valid Values: Any integer 0 or greater

Type: Real Number

Default Value: 30.0

Valid Values: Any real number 0.0 or greater
TIBCO SmartSockets Java Library User’s Guide and Tutorial

ss.server_disconnect_mode | 153
ss.server_disconnect_mode

The ss.server_disconnect_mode option specifies what the RTserver should do, if
anything, if and when an RTclient disconnects from RTserver. The three possible
values are:

Setting the option to warm is useful when an RTclient must run continuously and
not lose any messages even if the RTclient crashes or the connection is accidentally
terminated. In this mode, RTserver remembers the subjects being subscribed to by
the disconnecting RTclient and buffers guaranteed messages. When an RTclient
with the same subject name (specified using the ss.unique_subject option)
reconnects to RTserver, it resends the guaranteed messages (that were saved in the
buffer) to that RTclient. The RTserver option Client_Reconnect_Timeout controls
the maximum amount of time, in seconds, that RTserver waits (and saves the
information) for a disconnected RTclient to reconnect. If the RTclient does not
reconnect to RTserver within the specified period of time, then RTserver clears the
unacknowledged messages and sends a GMD_NACK message back to the sender
of those messages.

Setting the option to gmd_failure is useful for short-lived operations. In this
mode, RTserver clears the guaranteed messages that have not been acknowledged
by the disconnected RTclient process and sends a GMD_NACK message back to
the sender of those messages.

Setting the option to gmd_success is useful for short-lived operations or when an
RTclient wants to exit cleanly without causing GMD failure in the sending
process. In this mode, RTserver clears the guaranteed messages that have not been
acknowledged by the disconnecting RTclient, but still sends an acknowledgment
of delivery (a GMD_ACK message) back to the sender of those messages.

Type: String

Default Value: gmd_failure

Valid Values: warm, gmd_failure, or gmd_success

warm specifies that RTserver saves subject, project, and guaranteed
message delivery information about the disconnecting RTclient so
that no messages are lost.

gmd_failure specifies that RTserver destroys all information about the
disconnecting RTclient and causes pending guaranteed message
delivery to fail.

gmd_success specifies that RTserver destroys all information about the
disconnecting RTclient, but causes pending guaranteed message
delivery to succeed.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

154 | Chapter 9 RTclient Options
ss.server_keep_alive_timeout

The ss.server_keep_alive_timeout option specifies how long, in seconds, the
RTclient waits for RTserver to respond to a keep alive query. This check is called a
keep alive. When this option is set to 0.0, keep alives are disabled. If the keep alive
fails, then the error callback is triggered with a timeout error. The larger the value
specified, the longer the RTclient waits to detect a possible RTserver failure. If this
value is set too low, however, the RTclient may mistakenly think that it has lost its
connection to RTserver when RTserver is merely busy.

ss.server_max_reconnect_delay

The ss.server_max_reconnect_delay option specifies the upper bound on a
random delay introduced when an RTclient has to reconnect to RTserver.

This option is useful when an RTserver with many clients fails and all of those
RTclients are attempting to reconnect. The delay enhances total reconnect time by
slightly staggering reconnect requests. Setting the option to zero disables the
delay.

Type: Real Number

Default Value: 15.0

Valid Values: Any real number 0.0 or greater

Type: Real Number

Default Value: 30.0

Valid Values: Any real number 0.0 or greater
TIBCO SmartSockets Java Library User’s Guide and Tutorial

ss.server_msg_send | 155
ss.server_msg_send

The ss.server_msg_send option specifies whether or not an RTclient can send
messages to RTserver. Some messages sent internally by the SmartSockets IPC
library, such as SUBJECT_SET_SUBSCRIBE messages, are always sent regardless
of the setting of ss.server_msg_send. This option is useful for backup processes
that should receive messages from RTserver but not send any out.

ss.server_names

The ss.server_names option specifies a list of logical connection names used to
find an RTserver. The RTserver names should be listed in order of preference,
separated by commas. If the connection to RTserver is lost, then a connection is
established with the next RTserver listed, in a circular fashion, until an RTserver
responds and a stable connection is established. Each logical connection name has
the form protocol:nodename:port. You can delete the protocol (which must be tcp for
Java) and the port, in which case the default is used. Only nodename is required.
The string "_node" can be used in place of the local nodename.

Type: Boolean

Default Value: true

Valid Values: true or false

Type: String List

Default Value: _node

Valid Values: Any valid logical connection names, separated by commas
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

156 | Chapter 9 RTclient Options
ss.server_read_timeout

The ss.server_read_timeout option specifies how long, in seconds, an RTclient
waits for traffic on the connection before it issues a keep alive request. This
timeout is used to check for possible network failures. When this option is set to
zero (0.0), then read timeouts are disabled. The larger the value set, the longer the
RTclient waits to detect a possible RTserver failure.

ss.server_start_delay

The ss.server_start_delay option specifies how long, in seconds, that an RTclient
sleeps between traversals of each RTserver (connection names) as specified in the
ss.server_names option.

Unlike the C API, the Java API does not attempt to start a new RTserver. This
option merely specifies how long to wait between connection attempts.

ss.server_start_max_tries

The ss.server_start_max_tries option specifies how many times to traverse the list
specified by the ss.server_names option attempting to find an RTserver. RTclient is
not able to communicate with other SmartSockets processes if it cannot create a
connection to RTserver.

Type: Real Number

Default Value: 30.0

Valid Values: Any real number 0.0 or greater

Type: Real Number

Default Value: 1.0

Valid Values: Any real number 0.0 or greater

Type: Integer

Default Value: 1

Valid Values: Any integer 1 or greater
TIBCO SmartSockets Java Library User’s Guide and Tutorial

ss.server_write_timeout | 157
ss.server_write_timeout

The ss.server_write_timeout option specifies how often, in seconds, data is
expected to be able to be written to the connection to RTserver. This timeout is
used to check for possible network failures. If a write timeout occurs, the error
callback is triggered with a timeout error. When this option is set to zero (0.0),
then write timeouts are disabled. The larger the value set, the longer the RTclient
must wait to detect a possible RTserver failure. If this is set too low, however, the
RTclient may mistakenly think that it has lost its connection to RTserver when
RTserver is merely very busy.

ss.socket_connect_timeout

The ss.socket_connect_timeout option specifies the maximum amount of time (in
seconds) the RT process waits when trying to create a client socket connected to a
server process. This timeout is used to check for possible network failures.
Checking for connect timeouts is disabled if ss.socket_connect_timeout is set to
0.0. All SmartSockets standard processes use sockets for inter-process
communication.

Proper operation requires JRE 1.4 or later.

Type: Real Number

Default Value: 30.0

Valid Values: Any real number 0.0 or greater

Type: Real Number

Default Value: 5.0

Valid Values: Any real number 0.0 or greater
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

158 | Chapter 9 RTclient Options
ss.subjects

The ss.subjects option specifies a list of the initial subjects to which the RTclient is
to subscribe. Multiple subjects can be listed and must be separated by commas:

ss.subjects: /system/eps, /system/pcs, /control/...

In addition to this list, the subject named in the ss.unique_subject option is
automatically subscribed to when the RTclient connects to RTserver.

The RTclient can subscribe to subjects at any time using the subscribe command.

ss.time_format

The ss.time_format option controls how the RT process displays the value of time.
Three standard formats and one user-defined format are available:

Type: String List

Default Value: None

Valid Values: Any valid subject names, separated by commas

Type: String (Identifier)

Default Value: • hms for RTserver and RTmon processes

• unknown for all other RT processes

Valid Values: • full

• fullzone

• hms

• numeric

full displays a combination of the date and the time.
fullzone displays a combination of the date and the time with a time zone

designation
hms displays the time in hours, minutes, and seconds.
numeric displays the floating point representation of time.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

ss.trace_flags | 159
ss.trace_flags

The ss.trace_flags option specifies how to format the trace file. If you specify
prefix, the output prefix is included in the trace information. The prefix indicates
from which module the trace information originated. If you specify timestamp
the trace information is timestamped.

You can specify either prefix or timestamp or both separated by a comma:

setopt trace_flags prefix, timestamp

ss.unique_subject

The ss.unique_subject option specifies a unique subject that the RTclient
automatically subscribes to when it creates a connection to RTserver. RTserver
does not allow multiple processes in the same project to have the same unique
subject name. The default value is _node_start-time, where:

Type: String List (Identifiers)

Default Value: prefix

Valid Values: prefix, timestamp, unknown

Type: String

Default Value: _node_start-time

Valid Values: Any unique value

 node is the network node name of the computer on which RTclient is running.

 start-time is the time the RTclient started, expressed as a hexadecimal value of
milliseconds.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

160 | Chapter 9 RTclient Options
ss.user_name

The ss.user_name option describes the user that launched the RTclient. Applets in
some restricted environments may not have access to the system user name
property. This option is set with the correct user name if it could be retrieved from
the Java environment. If it could not, it is set to rtworks. Java RTclients can
override the value with a more appropriate value.

Type: String

Default Value: username if found in the current Java environment

rtworks if username is not available

Valid Values: Any valid user name
TIBCO SmartSockets Java Library User’s Guide and Tutorial

| 161
Chapter 10 Using Java Clients

The basic information on SmartSockets clients is contained in the TIBCO
SmartSockets User’s Guide. Many of the features and much of the usage and client
interaction is similar for Java and C clients. This chapter discusses areas where
Java is unique that were not covered in the tutorials. For more information on
Java and guaranteed message delivery, see Chapter 11, Guaranteed Message
Delivery. For information on how the Java APIs map to the C APIs, see
Appendix A, Java API to C API Mapping.

Topics

• Using TIBCO SmartSockets Multicast, page 162
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

162 | Chapter 10 Using Java Clients
Using TIBCO SmartSockets Multicast

In addition to standard publish-subscribe with RTserver and RTclient,
SmartSockets provides a multicast option to further enhance the features and
performance of SmartSockets. This option uses reliable multicast, taking full
advantage of its bandwidth optimization properties. Multicast is an efficient way
of routing a message to multiple recipients. The SmartSockets Multicast option
enables messages to be multicast to RTclients. The SmartSockets Multicast option
uses the PGM protocol to route messages and a new RT process called RTgms to
handle the message routing. There are special PGM options for RTclients, and an
extended logical connection name that allows the RTclient to connect to the
RTgms process. To enable an RTclient to receive or send multicast messages, the
RTclient simply connects to the RTgms process, instead of connecting to an
RTserver.

To use multicast with SmartSockets, you must have a SmartSockets Multicast
license, separate from your standard SmartSockets license. The SmartSockets
Multicast option is available on UNIX and Windows platforms. Contact your
TIBCO sales representative for more information. Any RTservers that RTgms
connects to must be at the same SmartSockets version level as the RTgms process.
Any RTclients receiving multicast must be running with the SmartSockets Version
6.0 or higher runtime libraries. To use the multicast protocol, PGM, your network
hardware, such as routers and switches, must configured for multicast use.

For more information on multicasting or working with RTgms, see the TIBCO
SmartSockets User’s Guide. The rest of this section covers Java-related information
only.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Using TIBCO SmartSockets Multicast | 163
Using Multicast with Java
To use multicast with Java, there are several things you must do:

1. Configure and start an RTgms process to manage the multicast routing. There
is no Java version of RTgms--like RTservers, it is strictly C-based. For
information on configuring, starting, and managing RTgms processes, see the
chapter on multicast in the TIBCO SmartSockets User’s Guide.

2. Use the default configuration for multicast or create the two multicast
command files, mcast.cm and mcastopts.cm, for your RTclients that want to
use multicast.

The mcast.cm command file uses special PGM options to control the PGM
aspects of multicast, and these options are the same in both C and Java. These
options must be set in the mcast.cm file.

The mcastopts.cm command file contains one option, mcast_cm_file, which
you can use to specify the location of your mcast.cm file if you do not want to
use the default location or you want to share a single mcast.cm file across
multiple systems. The value you specify should be a fully qualified pathname.

For information on the multicast command files and setting the PGM options,
see the chapter on multicast in the TIBCO SmartSockets User’s Guide.

3. Add ss-pgm.jar to your CLASSPATH environment variable. See your
operating system documentation for instructions to add a file name to the
CLASSPATH.

4. Create a connection to the RTgms process from your RTclient. The RTclients
that want to use multicast connect to an RTgms process instead of an RTserver
process. The RTgms process manages the multicast message routing and
connects to the RTserver. See Creating a Connection to RTgms on page 165 for
more information. Note that you use a special multicast logical connection
name to connect to RTgms. This is described in Logical Connection Names for
Multicast on page 165.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

164 | Chapter 10 Using Java Clients
Creating a Connection to RTgms

If the SmartSockets system is enabled for multicast and the RTclient wants to use
multicast, the RTclient must connect to an RTgms for its global connection instead
of connecting to an RTserver. In most cases, the only change required is to the
ss.group_names and ss.server_names options for the RTclient. The RTclient still
uses the TipcSvc.getSrv method to make the connection. For information on
RTclient options and how to set them, see Chapter 9, RTclient Options, on
page 135.

The ss.group_names option specifies which multicast group the RTclient belongs
to. The default is rtworks, and you only need to change the value if you are not
using that group name.

The ss.server_names option must provide the logical connection name for an
RTgms process instead of the logical connection name for an RTserver process.

For example, the property database for your RTclient might contain:

ss.group_names=rtworks
ss.server_names=tcp:nodea

Let us assume the RTclient should belong to the multicast group mcast1, and
should connect to the RTgms on nodea using the default port, which is 5104.
Change the lines to:

ss.group_names=mcast1
ss.server_names=pgm:nodea

If you want to connect to an RTgms that is not using the default port, change the
ss.server_names line to:

ss.server_names=pgm:nodea:tcp.6000

which connects to the RTgms on nodea using the TCP protocol on port 6000. For
more information on the format of RTgms addresses, see Logical Connection
Names for Multicast.

Use TipcSvc.getSrv to connect to the RTgms process the same way you connect to
an RTserver process:

TipcSrv srv=TipcSvc.getSrv();
if (!srv.create()) {
 Tut.exitFailure("Couldn't connect to RTgms!\n");
}

To also connect to RTservers, the RTclient can use the multiple connections
feature, and create those RTserver connections using the TipcSvc.createSrv
method.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Using TIBCO SmartSockets Multicast | 165
Logical Connection Names for Multicast

There are two parts of the logical connection name that differ for multicast.
Generally, the logical connection name is:

protocol:node:address

When specifying a multicast logical connection name to connect to RTgms, the
value for protocol is always pgm. The address portion of your logical connection
name is a different format than for other protocols.

The format for multicast is:

pgm:node:unicast_protocol.address

where:

If you specify a multicast format address, and your SmartSockets system does not
have the multicast option installed, you receive an error when you attempt to
connect to RTgms.

node is the name of the node where RTgms is running. You can use
_node rather than specifying a name.

unicast_protocol specifies the unicast protocol to use when sending data to an
RTgms. The valid values you can specify are tcp or local.

On Windows, the default protocol is tcp. On UNIX, the default
protocol is local.

This field is optional, unless you specified localhost for the node
on a UNIX system. If you specify localhost for the node, the
unicast protocol must be tcp. On Windows, the default is tcp, so if
you do not specify this field, the default provides the correct value.

For example, on UNIX:

pgm:localhost:tcp

address specifies the address portion of the unicast logical connection name
used by the RTgms to receive data. This is the address or port
defined for the RTgms. The default is 5104.

This field is optional.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

166 | Chapter 10 Using Java Clients
TIBCO SmartSockets Java Library User’s Guide and Tutorial

| 167
Chapter 11 Guaranteed Message Delivery

This chapter gives a broad overview of the SmartSockets feature of guaranteed
message delivery (GMD), and then focuses on its use with Java. For an in-depth
discussion of GMD and its features, see the TIBCO SmartSockets User’s Guide.

Topics

• Overview of GMD, page 168

• Configuring GMD, page 170

• Using GMD, page 174

• Handling GMD Failures, page 180

• File-Based GMD Considerations, page 183

• Warm Connections, page 185

• GMD Limitations, page 188
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

168 | Chapter 11 Guaranteed Message Delivery
Overview of GMD

Under normal operation in SmartSockets, all messages sent through connections
are delivered successfully and processed in a timely manner. If a network failure
occurs, however, data can be lost. For some applications, such as bank
transactions or Internet commerce, missed messages or duplicate messages are
unacceptable. With GMD, an RTclient can stay informed as to whether a message
was delivered to some or all subscribers. GMD fully recovers from failures and
ensures that messages are transmitted as required.

There are two types of GMD:

• memory-based GMD

• file-based GMD

Memory-based GMD works well for transient network problems, but it does not
protect an RTclient from system crashes. Because it stores the messages only in
memory, a system crash before the message is delivered can cause the message to
be lost.

File-based GMD writes the messages to a file, which can be accessed for
re-delivery if there is a system crash. This means file-based GMD is much more
reliable, but slower than memory-based GMD. For any software product,
performance is slower when data is written to disk frequently and that
performance depends on the speed of your local file system. However, writing
crucial information, such as a message, to disk is still the best way to ensure
system reliability.

When deciding whether to use GMD, you need to decide what is most important
for your system, balancing performance and reliability, and determining your
tolerance for missed or duplicate messages in the event of network and system
crashes.

GMD Features
GMD has these features:

• persistence of messages, stored safely in disk files in case a program crashes
and is restarted

• transparent operation with automatic file management and acknowledgment
of delivery

• notification when GMD fails, to allow flexible recovery procedures that you
design
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Overview of GMD | 169
• easy to use

Simply set the delivery mode property of a message using the
setDeliveryMode method on the TipcMsg class or the TipcMt class, and set the
delivery timeout property of a message with setDeliveryTimeout on the
TipcMsg class or the TipcMt class.

• easy to configure

Use the default settings, or set the few GMD-related options in your option
database.

• industry benchmark performance that is limited only by the speed of your
local file system and the network

How GMD Works
After you initially configure GMD for your system, certain steps occur
automatically, without any intervention. Figure 10 shows the order of events:

Figure 10 Steps Involved in GMD Successful Delivery

1. Message is saved to GMD area.

2. Message is sent to RTserver.

3. Message is sent to Receiver.

4. After processing message, highest sequence number is updated.

5. Acknowledgment message is sent to RTserver.

6. Acknowledgment message is sent to Sender.

7. Message is deleted from GMD area.

Sender

RTserver

Receiver

GMD Area
GMD Area1

4

3

6

2

5

7

File or Memory

File or Memory
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

170 | Chapter 11 Guaranteed Message Delivery
Configuring GMD

To use the default configuration for GMD, you simply start using GMD, and the
default values of the GMD-related options are used. Information on starting GMD
is in Sending GMD Messages on page 176. When you start GMD using the default
configuration, file-based GMD is activated if you had set a value for
ss.unique_subject. If there was no value set for ss.unique_subject, memory-based
GMD is activated.

If you want to configure GMD to use values other than the defaults, you can set
the Java GMD-related options in the options database using the same techniques
as for any other options. See Option (Property) Databases and Loading RTclient
Options on page 136 for information on setting options.

Java GMD-Related Options
The Java options that affect GMD, listed in Table 4, are similar to the RTclient
options for C described in the TIBCO SmartSockets User’s Guide. You might find it
helpful to read the descriptions in that book for setting GMD-related options.
Complete descriptions of the Java RTclient options are in Chapter 9, RTclient
Options.

Table 4 Options Related to GMD

Option Name Description

ss.ipc_gmd_directory Specifies where the GMD files should be located.

ss.ipc_gmd_type Specifies whether GMD is file-based or
memory-based, which also determines where to
create the GMD area (on disk or in memory)

ss.server_delivery_timeout Controls the delivery timeout property of the
connection to RTserver.

ss.server_disconnect_mode Specifies the action RTserver should take when
RTclient disconnects from RTserver.

ss.unique_subject Specifying a unique_subject triggers file-based
GMD.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Configuring GMD | 171
Configuring File-Based GMD
To configure file-based GMD, you need to set some of the GMD-related options.
For information on setting options, see Setting RTclient Options on page 137.
Follow these steps for file-based GMD:

Step 1 Set a value for ss.unique_subject

You must set a value for the ss.unique_subject option, a value other than the
default of _node_start-time. For more information, see ss.unique_subject on
page 159.

Step 2 Use the default value for ss.ipc_gmd_type

If the ss.ipc_gmd_type option is left at its default value of default, file-based
GMD is attempted. For more information, see ss.ipc_gmd_directory on page 144.

Step 3 Optionally, set values for the other GMD-related options

You can use the default settings for the ss.ipc_gmd_directory,
ss.server_delivery_timeout, and ss.server_disconnect_mode options or set your
own values. These options do not affect what type of GMD is attempted,
file-based or memory-based. You can configure these options as you like for your
system:

1. Set a value for the ss.ipc_gmd_directory option or use the default value.

Under file-based GMD, the default location for GMD files is the directory
where Java is installed. You can set the ss.ipc_gmd_directory option to specify
a different directory.

2. Set a value for the ss.server_delivery_timeout option or use the default value
of 30 seconds.

You can change the value to give the sending process more or less time to wait
for all receiving processes to acknowledge delivery of a guaranteed message.
If you set the value to 0.0, this option is disabled, and the sending process
never times out.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

172 | Chapter 11 Guaranteed Message Delivery
3. Set a value for the ss.server_disconnect_mode option or use the default value
of gmd_failure.

The ss.server_disconnect_mode option specifies what the RTserver should do,
if anything, if and when an RTclient disconnects from RTserver. The three
possible values are:

Notes on File-Based GMD

• File-based GMD is only attempted if both are true:

— the ss.unique_subject option is set to a value other than its default, and

— the ss.ipc_gmd_type option is set to default

If ss.ipc_gmd_type is set to memory, memory-based GMD occurs even if you
set a value for ss.unique_subject. However, if you did not set a value for
ss.unique_subject, memory-based GMD is used even if ss.ipc_gmd_type is set
to default.

• When ss.unique_subject is set, and ss.ipc_gmd_type is default, SmartSockets
attempts file-based GMD, but sometimes must revert to memory-based GMD.
See Reverting to Memory-Based GMD on page 174.

• Although you specify file-based GMD, memory-based GMD is used
whenever file-based GMD is attempted but is unsuccessful. This provides a
measure of safety, because even though file-based GMD might fail, your
messages are still protected under GMD.

warm specifies that RTserver saves subject, project, and guaranteed
message delivery information about the disconnecting
RTclient so that no messages are lost.

gmd_failure specifies that RTserver destroys all information about the
disconnecting RTclient and causes pending guaranteed
message delivery to fail.

gmd_success specifies that RTserver destroys all information about the
disconnecting RTclient, but causes pending guaranteed
message delivery to succeed.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Configuring GMD | 173
Configuring Memory-Based GMD
To configure memory-based GMD, you need to set some of the GMD-related
options. For information on setting options, see Setting RTclient Options on
page 137. Follow these steps for memory-based GMD:

Step 1 Set the value for ss.ipc_gmd_type to memory

If the value is set to memory, memory-based GMD is used, even if
ss.unique_subject is set. If left to its default value of default, file-based GMD is
attempted. For more information, see ss.ipc_gmd_type on page 144.

Step 2 Optionally, set values for the other GMD-related options

You can use the default settings for the options ss.unique_subject,
ss.server_delivery_timeout, and ss.server_disconnect_mode, or set your own
values:

1. Set a value for the ss.unique_subject option or use the default value.

If you need to specify a value for ss.unique_subject other than the default
value, you can set ss.unique_subject and still get memory-based GMD if you
set ss.ipc_gmd_type to memory.

2. Set a value for the ss.server_delivery_timeout option or use the default value
of 30 seconds.

You can change the value to give the sending process more or less time to wait
for all receiving processes to acknowledge delivery of a guaranteed message.
If you set the value to 0.0, this option is disabled, and the sending process
never times out.

3. Set a value for the ss.server_disconnect_mode option or use the default value
of gmd_failure.

The ss.server_disconnect_mode option specifies what the RTserver should do,
if anything, if and when an RTclient disconnects from RTserver. The three
possible values are:
warm specifies that RTserver saves subject, project, and guaranteed

message delivery information about the disconnecting RTclient
so that no messages are lost.

gmd_failure specifies that RTserver destroys all information about the
disconnecting RTclient and causes pending guaranteed
message delivery to fail.

gmd_success specifies that RTserver destroys all information about the
disconnecting RTclient, but causes pending guaranteed
message delivery to succeed.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

174 | Chapter 11 Guaranteed Message Delivery
Reverting to Memory-Based GMD
When ss.unique_subject is set, and ss.ipc_gmd_type is set to default,
SmartSockets attempts file-based GMD. If file-based GMD cannot be carried out,
SmartSockets reverts to memory-based GMD for the message. Generally, when
SmartSockets reverts from file-based to memory-based GMD, it is because the
file-based GMD area could not be written to. If the disk files cannot be created or
a security exception is thrown, Java displays a warning message to the console,
and automatically switches to memory-based GMD.

A common example of this is a Java applet. Most Java applets cannot write to the
local file system, where the GMD spool area resides for file-based GMD. If you
specify file-based GMD, the applet attempts to write to the disk where the GMD
area is located. A SecurityException is thrown, and SmartSockets reverts to
memory-based GMD.

Using GMD

File-based GMD and memory-based GMD operate in exactly the same way.
Whenever a GMD message is sent, a copy is stored in the GMD spool area, on
disk or in memory, based on the values you specified for the options during
configuration. The files for GMD are created automatically and only when
necessary, typically on the first publish or first reception of a GMD message.

Java GMD Methods
The Java classes and methods used with GMD are listed in Table 5. Full API
reference information for these classes and methods is online in Javadoc format
and is provided with the SmartSockets product.

Table 5 Java Classes and Methods for GMD

Name Description

TipcMsg.getDeliveryMode Get the delivery mode of a message.

Equivalent C function: TipcMsgGetDeliveryMode

TipcMt.getDeliveryMode Get the delivery mode of a message type.

Equivalent C function: TipcMtGetDeliveryMode
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Using GMD | 175
TipcMsg.getDeliveryTimeout Get the delivery timeout of a message in seconds.

Equivalent C function: TipcMsgGetDeliveryTimeout

TipcMt.getDeliveryTimeout Get the delivery timeout of a message type in seconds.

Equivalent C function: TipcMtGetDeliveryTimeout

TipcMsg.setDeliveryMode Set the delivery mode of a message. Overrides the value set for a
message by TipcMt.setDeliveryMode.

GMD settings: DELIVERY_SOME or DELIVERY_ALL

Equivalent C function: TipcMsgSetDeliveryMode

TipcMt.setDeliveryMode Set the delivery mode of a message type.

GMD settings: DELIVERY_SOME or DELIVERY_ALL

Equivalent C function: TipcMtSetDeliveryMode

TipcMsg.setDeliveryTimeout Set the delivery timeout of a message in seconds. Overrides the
value set for a message by TipcMt.setDeliveryTimeout.

GMD settings: 0.0 disables checking for delivery timeouts. The
value can be any real number 0.0 or greater.

Equivalent C function: TipcMsgSetDeliveryTimeout

TipcMt.setDeliveryTimeout Set the delivery timeout of a message type.

GMD settings: 0.0 disables checking for delivery timeouts. The
value can be any real number 0.0 or greater.

Equivalent C function: TipcMtSetDeliveryTimeout

TipcSrv.gmdFileDelete Delete guaranteed message delivery files for the connection to
RTserver. Useful for deleting any obsolete GMD information.

Equivalent C function: TipcSrvGmdFileDelete

TipcSrv.gmdMsgAck Acknowledge the delivery of a message.

Equivalent C function: TipcMsgAck

TipcSrv.getGmdNumPending Get the number of outgoing GMD messages still pending on a
connection.

Equivalent C function: TipcSrvGetGmdNumPending

Table 5 Java Classes and Methods for GMD

Name Description
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

176 | Chapter 11 Guaranteed Message Delivery
Sending GMD Messages
To send messages with GMD, simply set the message delivery mode to
TipcDefs.DELIVERY_SOME or to TipcDefs.DELIVERY_ALL. Send the message as
usual with TipcSrv.send.

There are two ways to set the message delivery mode:

• use TipcMsg.setDeliveryMode to set the mode for individual messages

• use TipcMt.setDeliveryMode to set the mode for all messages of a particular
message type

Setting the mode to TipcDefs.DELIVERY_SOME means that the guaranteed
message must go to at least one subscriber. That is, the sending process only
needs to receive an acknowledgment from one receiving process before timing
out in order to declare success. It can receive acknowledgments from more than
one receiving process.

Setting the mode to TipcDefs.DELIVERY_ALL means that the guaranteed
message must go to all the subscribers. That is, the sending process must receive
acknowledgments from all the receiving processes before timing out before it can
declare success.

For example:

msg.setDeliveryMode(TipcDefs.DELIVERY_ALL);
srv.send(msg);

For GMD, TipcSrv.send:

1. Increments an internal per-connection outgoing sequence number.

2. Sets the message sequence number to the incremented value.

3. Saves a copy of the message in the connection GMD area.

4. Saves the current wall clock time in the GMD area, for detecting a delivery
timeout.

Receiving GMD Messages
For GMD, TipcSrv.next recognizes a message resent with GMD and checks if the
resent message has a sequence number lower than the highest sequence number
already acknowledged from the sending process. The check also handles
long-running processes that might overflow and wrap around the four byte
sequence number. If the resent message has already been acknowledged,
TipcSrv.next acknowledges the message again so that the sender is notified this
time of successful delivery.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Using GMD | 177
TipcSrv.next always allows GMD messages that have not been resent to pass
through, regardless of their sequence number. This allows flexibility and correct
behavior when some processes use TipcSrv.gmdFileDelete and others do not,
enabling use of old sequence numbers.

TipcSrv.next also handles GMD_ACK messages directly so that the application
code never has to worry about taking care to read and process one GMD_ACK
message for each outgoing message sent with GMD. When a GMD_ACK message
is received, the corresponding message is removed from the connection GMD
area.

Acknowledging GMD Messages
Typically, an application calls TipcSvc.mainLoop and this acknowledges the
message (sends a GMD_ACK message).

Also, you can useTipcMsg.ack, which automatically calls TipcSrv.gmdMsgAck to
acknowledge the message for GMD. TipcSrv.gmdMsgAck can also be called
manually to acknowledge a message. For example:

srv.gmdMsgAck(msg)

TipcSrv.gmdMsgAck constructs a GMD_ACK message containing the sequence
number of the message to be acknowledged and sends the GMD_ACK message
through the connection that the message to be acknowledged was received on.

Waiting for Completion of GMD
GMD senders must read messages occasionally to receive the acknowledgments.
If a connection process both sends and receives messages at regular intervals, no
extra actions are needed because the acknowledgments travel with the normal
flow of messages. A short-running or sending-only process can accomplish this
by calling TipcSrv.mainLoop or TipcSrv.next before the program exits. A sending
process can also check how many outgoing GMD messages are still pending with
TipcSrv.getGmdNumPending. This is useful for waiting until all
acknowledgments arrive. For example:

System.out.println("Read data until all acknowledgments come in.");
do {
 srv.mainLoop(1.0);
 num_pending=srv.getGmdNumPending();
} while (num_pending > 0);
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

178 | Chapter 11 Guaranteed Message Delivery
Example of Using GMD
Here is an example of configuring and using GMD with Java. This example also
uses a callback to process GMD failures. See Processing of GMD_FAILURE
Messages on page 182 to see the sample code for the callback.

import java.io.*;
import com.smartsockets.*;

public class gmd_example {

 private static final int SAMPLE = 1001;

/*=== */
 public gmd_example() {

 TipcSrv srv=TipcSvc.getSrv();

 // set the server names
 try {
 Tut.setOption("ss.server_names", "altoids,maple");
 }
 catch (TipcException e) {
 Tut.fatal(e);
 } // catch

 // set the unique subject for gmd
 try {
 Tut.setOption("ss.unique_subject", "gmd_publisher");
 }
 catch (TipcException e) {
 Tut.fatal(e);
 } // catch

 // delete old gmd files
 try {
 srv.gmdFileDelete();
 }
 catch (TipcException e) {
 Tut.fatal(e);
 } // catch

 // connect to RTserver
 try {
 srv.create();
 }
 catch (TipcException e) {
 Tut.exitFailure("Couldn’t connect to RTserver!");
 } // catch

 // get message type for gmd failure message
 TipcMt mt = TipcSvc.lookupMt(TipcMt.GMD_FAILURE);
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Using GMD | 179
 //destroy old gmd callback
 TipcCb cb = srv.getDefaultGmdFailureCb();
 try {
 srv.removeProcessCb(cb);
 }
 catch (TipcException e) {
 Tut.fatal(e);
 } // catch

 // setup new callback--callback code is shown later in this chapter
 gmdFailureMsgCallback pcb = new gmdFailureMsgCallback();
 TipcCb pcbh = srv.addProcessCb(pcb, mt, srv);
 // check the ’handle’ returned for validity
 if (null == pcbh) {
 Tut.exitFailure("Couldn’t register gmd failure callback!");
 } // if

 // define new message type
 try {
 mt = TipcSvc.createMt("SAMPLE", SAMPLE, "str");
 }
 catch (TipcException e) {
 Tut.exitFailure("Message type already exists!");
 } // catch

// following is a for loop which publishes 3 messages.
// assuming that no one subscribes to /sample/gmd and
// the option in the RTserver you connect to is set as follows:
// setopt zero_recv_failure_option TRUE
// each message will result in an immediate gmd failure
// and the callback entered for each

 for (int i=1; i <= 3; i++) {

 try {
 // create a message of type SAMPLE

TipcMsg msg = TipcSvc.createMsg(mt);
msg.setDest("/sample/gmd"); // publish to subject
msg.setDeliveryMode(TipcDefs.DELIVERY_ALL); // all receivers to ack
msg.setDeliveryTimeout(0.1);
msg.addNamedStr("Data", "gmd message #" + i);
System.out.println("< sending gmd message #" + i + ">");

 // send and flush the message
srv.send(msg);
srv.flush();

 // call mainloop to read in acknowledgement message
srv.mainLoop(2.0);

 }
 catch (TipcException e) {
 Tut.fatal(e);
 } // catch

 } // for
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

180 | Chapter 11 Guaranteed Message Delivery
 //disconnect from the server
 try {
 srv.destroy();
 srv.removeProcessCb(pcbh); //unregister the callback
 }
 catch (TipcException e) {
 Tut.exitFailure("unable to disconnect from server");
 } // catch

 } // gmd_example (constructor)

 public static void main(String[] argv) {
 new gmd_example();
 } // main
} // gmd_example class

Handling GMD Failures

Recovery from GMD_FAILURE messages is highly specific to the application, and
SmartSockets cannot perform it on its own. The GMD_FAILURE message notifies
the process that there is a problem, and the process can take whatever
user-defined action is needed. SmartSockets by default outputs a warning,
terminates GMD for the failed message, and continues.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Handling GMD Failures | 181
GMD_FAILURE Messages
When GMD fails, a GMD_FAILURE message is created internally by
SmartSockets. TipcSrv.process is called to process the message and notify the
sender that there has been a GMD failure. GMD programs can create connection
process callbacks for the GMD_FAILURE message type to execute their own
recovery procedures. The failed message is left in the connection GMD area, and it
is up to the GMD_FAILURE process callbacks to delete the message, terminating
GMD for that message, or resend the message.

Each GMD_FAILURE message contains four fields:

• a MSG message field containing the message sent by this process where GMD
failed

• a STR string field containing the name of the receiving process where GMD
failed, which is actually the value of the receiving process’s Unique_Subject
option

• an INT4 integer field containing a SmartSockets error number describing how
GMD failed

• a REAL8 numeric field containing the wall clock time the failed message was
originally sent

Delivery Timeout Failures
The only type of GMD_FAILURE message produced for non-RTclient or
non-RTserver GMD is a delivery timeout failure. The third field of the
GMD_FAILURE message is TipcSrv.ERROR_GMD_SENDER_TIMEOUT.

Connections automatically check for delivery timeouts whenever data is read
from the connection (with TipcSrv.next) or the connection is checked to see if data
can be read (with TipcSrv.check). You must use TipcSrv.next and TipcSrv.check
frequently enough.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

182 | Chapter 11 Guaranteed Message Delivery
Processing of GMD_FAILURE Messages
The default GMD failure callback is a sample callback designed only to warn the
user that guaranteed delivery of a message has failed. You should create
applications that destroy the callback and create their own process callbacks for
GMD_FAILURE messages, performing actions such as a recovery procedures you
design.

To obtain the default callback for GMD_FAILURE, use the
TipcSrv.getDefaultGmdFailureCb method. To register a new GMD_FAILURE
callback, use the TipcSrv.addProcessCb with a message type of
TipcMt.GMD_FAILURE.

Here is an example of a process callback:

import java.io.*;
import com.smartsockets.*;

public class gmd_example {

 private static final int SAMPLE = 1001;

/*=== */
/*..gmdFailureMsgCallback - callback for gmd failure */
 public class gmdFailureMsgCallback implements TipcProcessCb {

 public void process(TipcMsg msg, Object arg) {

 System.out.println("GMD failure");
 TipcMsg sender_msg = null;

 //* get published message header and contents */
 try {
 sender_msg = msg.nextMsg();
 }
 catch (TipcException e) {
 Tut.fatal(e);
 } // catch

 // point to error id field
 try {
 msg.setCurrent(2);
 }
 catch (TipcException e) {
 Tut.fatal(e);
 } // catch

 int error_number = 0;

 try {
 error_number=msg.nextInt4();
 }
 catch (TipcException e) {
 Tut.fatal(e);
 } // catch
TIBCO SmartSockets Java Library User’s Guide and Tutorial

File-Based GMD Considerations | 183
 // print out message saying what happened
 switch (error_number) {
 case 518:
 System.out.println("GMD sender timed out");
 break;
 case 519:
 System.out.println("GMD receiver timed out");
 break;
 case 520:
 System.out.println("GMD receiver exited");
 break;
 case 521:
 System.out.println("No receivers for subject: "
 + sender_msg.getDest() + "");
 break;
 default:
 System.out.println("Unknown error code: "

+ error_number);
 break;
 }

 // remove copies of message
 try {
 TipcSrv srv=TipcSvc.getSrv();
 srv.gmdMsgServerDelete(sender_msg); // delete from server
 srv.gmdMsgDelete(sender_msg); // delete from local spool
 }
 catch (TipcException e) {
 Tut.fatal(e);
 } // catch

 System.out.println("FAILED MESSAGE Follows");
 sender_msg.print();

 } // process callback
 } // gmdFailureMsgCallback

File-Based GMD Considerations

If you plan to use file-based GMD, you can control the resending of spooled GMD
messages. You can force all spooled GMD messages to be resent, or you can
prevent them from being resent by deleting them from the spool.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

184 | Chapter 11 Guaranteed Message Delivery
Resending GMD Messages
When a Java RTclient comes up and a connection is made to RTserver, the Java
SmartSockets class library automatically resends any GMD messages that are
stored on disk. This automatic sending of messages ensures that if a Java RTclient
crashed and then came back up, any messages that were not acknowledged by a
GMD_ACK, and are still in the GMD spool area, are automatically resent.

To force all spooled GMD messages to be resent, invoke the method
TipcSrv.gmdResend. This method must be invoked after the connection to
RTserver is established. For RTserver connections, this is done automatically once
the connection to RTserver is established.

Removing GMD Files
To prevent the SmartSockets Java RTclient from resending spooled GMD
messages when connecting to RTserver, invoke the method gmdFileDelete from
RTclient. You must invoke gmdFileDelete before the connection to RTserver is
established, but after the unique subject has been set. For example:

public class test {
 public static void main(String[] args) {
 TipcSrv srv;

 try {
// load options file, which must have value for
// ss.unique_subject

 Tut.loadOptionsFile("test.cm");

 // get server instance
 srv = TipcSvc.getSrv();

// remove GMD files from spool area
 srv.gmdFileDelete();

// connect to server, which would normally resend any
// unacknowledged messages from the GMD spool area, if
// present

 srv.create();

// continue processing...
 }
 catch (Exception e) {
 System.out.println(“Caught exception “ + e);
 System.out.println(e.printStackTrace());
 return;
 }
 }
}

TIBCO SmartSockets Java Library User’s Guide and Tutorial

Warm Connections | 185
Warm Connections

A warm connection to RTserver is a subset of a full connection to RTserver. A
warm connection keeps as much RTserver-related information as possible. The
only difference between a warm connection and a full connection is that the warm
connection does not have a valid socket (that is, there is no communication link to
RTserver with a warm connection). No messages can be flushed to RTserver on a
warm connection and no messages can be read from the warm connection, but
most functions behave in a fashion similar to when a full connection exists.

There are two types of warm connections:

• a connection that is created as a warm connection, when RTclient connects to
an RTserver using:

srv.create(TipcSrv.CONN_WARM);

• a connection that starts out as a full connection and changes to a warm
connection when the connection to RTserver is disconnected or destroyed.
This is frequently referred to as a connection with a warm RTclient, because
the RTserver remembers information about the RTclient.

New Warm Connections
A new warm connection is created when the RTclient creates a warm connection
to RTserver. The RTserver is not aware of the RTclient when the RTclient has a
warm connection. With a warm connection to RTserver, callbacks can be created,
callbacks can be destroyed, and messages can be buffered, including messages
sent without GMD. If RTclient has a warm connection and then creates a full
connection (the connection changes from warm to full), the warm-buffered
messages are flushed to the newly-created full connection. For more information,
see the section on warm connections to RTserver in the TIBCO SmartSockets User’s
Guide.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

186 | Chapter 11 Guaranteed Message Delivery
Creating a New Warm Connection

To create a warm connection to RTserver, use TipcSvc.create with the argument set
to CONN_WARM. Here is a simple example that sets the ss.server_auto_connect
option to FALSE, creates a warm connection, subscribes to subjects, and then
creates a full connection. The RTclient subscribes to subjects /subj0 to /subj99,
but only establishes the full connection after it is done subscribing:

/*------------------------java example-----------------------------

import com.smartsockets.*;

public class test {
 test() {
 TipcSrv srv = null;
 int i;
 try {

/*
* set the server_auto_connect option to false so
* client does not automatically try and create
* a connection when it calls any of the srv methods.
*/

 Tut.setOption("ss.server_auto_connect", "false");

/*
* get a srv object
*/

 srv = TipcSvc.getSrv();

/*
* create a warm connection
*/

 srv.create(TipcSrv.CONN_WARM);

/*
* subscribe to all the subjects
*/

 for (i=0; i<100; i++) {
 String sub = "/subj" + i;
 System.out.println("subscribing to = " + sub);
 srv.setSubjectSubscribe(sub, true);
 }
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Warm Connections | 187
 /*
 * create a full connection
 */
 srv.create();
 }
 catch (TipcException e) {
 e.printStackTrace();
 }
 }

 public static void main(String args[]) {
 test client = new test();
 }
}

You can use TipcSvc.destroy to destroy warm connections. For more information
on creating and destroying warm connections, look up TipcSvc in the Java API
reference, provided online in Javadoc format.

Connections with Warm RTclients
A warm connection with a warm RTclient starts out as a full connection, and
becomes a warm connection when the full connection is lost or destroyed. This
type of warm connection is used only for GMD. With a warm RTclient, the
RTserver remembers the name of the RTclient and the subjects to which the
RTclient was subscribing when that RTclient disconnected. RTserver tracks the
GMD messages that this warm RTclient should receive and acknowledge.
RTserver does not buffer any non-GMD messages for the RTclient.

RTclient informs RTserver to keep warm RTclient information for itself by setting
the ss.server_disconnect_mode option to warm before creating or destroying a full
connection (the value of ss.server_disconnect_mode is sent to RTserver at those
times). In this warm mode, if an RTclient disconnects for any reason (crashes or
simply calls TipcSrvDestroy), all necessary RTservers (those with direct GMD
publishing RTclients) keep warm RTclient information.

The warm RTclient is not associated with any RTserver, and it can later reconnect
to any RTserver in the same multiple RTserver group. Until the warm RTclient
reconnects or the timeout specified in the RTserver option
Client_Reconnect_Timeout is reached, each RTserver continues to buffer GMD
messages sent by its own direct RTclients that have a destination subject being
subscribed to by the warm RTclient. If the warm RTclient reconnects in time, then
all RTservers resend the proper GMD messages to the reconnected RTclient in the
proper order. RTclient can even switch from one RTserver to another, and the
RTserver takes care of all the necessary rerouting for GMD.

For more information on warm RTclients, see the section on warm RTclient in
RTserver in the TIBCO SmartSockets User’s Guide.
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

188 | Chapter 11 Guaranteed Message Delivery
Creating a Warm RTclient

You do not create a warm connection with a warm RTclient. Instead, you
configure a warm RTclient by setting the value for the ss.server_disconnect_mode
option to warm. Then, when the full connection from that RTclient to an RTserver
is disconnected, it changes to a warm connection automatically. For more
information on setting the option, see Configuring GMD on page 170.

GMD Limitations

GMD can recover from most network failures, but in particular cases, there can be
problems:

• If a sending process crashes before an outgoing message can be completely
saved to the GMD area, the message cannot be recovered.

• If a receiving process crashes after processing a message but before the highest
sequence number can be updated in the GMD area, the message might be
processed twice.

• Mixing GMD and message priorities can cause the highest sequence number
in the GMD area to be updated in non-sequential order. If the receiving
process crashes while processing messages in non-sequential order, the resent
messages might be skipped.

Though unlikely, these conditions can occur if a node or disk crashes while a
message is being written or while sequence numbers are being updated.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

| 189
Appendix A Java API to C API Mapping

The SmartSockets Java Class Library includes Java wrappers for many
SmartSockets C functions. This appendix shows how these Java methods map to
the original C function. This can help you look up the C function for more
information on the API in general. See the TIBCO SmartSockets Application
Programming Interface for complete documentation of all C functions.

Topics

• Interface TipcConnClient, page 190

• Interface TipcConnServer, page 193

• Class TipcMon, page 193

• Class TipcMonExt, page 196

• Interface TipcMsg, page 197

• Interface TipcMt, page 207

• Interface TipcSrv, page 208

• C Functions With No Java Equivalent, page 212
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

190 | Appendix A Java API to C API Mapping
Table 6 Interface TipcConnClient

Java Method Name C Function Name Comments and Exceptions

addDefaultCb TipcConnDefaultCbCreate

addErrorCb TipcConnErrorCbCreate

addProcessCb TipcConnProcessCbCreate

addQueueCb TipcConnQueueCbCreate

addReadCb TipcConnReadCbCreate

addWriteCb TipcConnWriteCbCreate

check TipcConnCheck

destroy TipcConnDestroy

flush TipcConnFlush

getArch TipcConnGetArch

getAutoFlushSize TipcConnGetAutoFlushSize

getBlockMode TipcConnGetBlockMode

getDefaultControlCb No parallel C function exists.

getDefaultGmdFailureCb No parallel C function exists.

getGmdDir TipcGetGmdDir

getGmdNumPending TipcConnGetGmdNumPending

getNode TipcConnGetNode

getNumQueued TipcConnGetNumQueued

getOption No parallel C function exists.

getOptionBool No parallel C function exists.

getOptionDouble No parallel C function exists.

getOptionInt No parallel C function exists.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Java API to C API Mapping | 191
getOptionStr No parallel C function exists.

getPid TipcConnGetPid

getProperties No parallel C function exists.

getQueueSize No parallel C function exists.

getReadBufferSize TipcConnBufferGetReadSize

getTimeout TipcConnGetTimeout

getTrafficBytesRecv TipcConnTrafficGetBytesRecv

getTrafficBytesSent TipcConnTrafficGetBytesSent

getTrafficMsgsRecv TipcConnTrafficGetMsgsRecv

getTrafficMsgsSent TipcConnTrafficGetMsgsSent

getUniqueSubject TipcConnGetUniqueSubject

getUser TipcConnGetUser

getWriteBufferSize TipcConnBufferGetWriteSize

gmdFileDelete TipcConnGmdFileDelete

gmdMsgAck No parallel C function exists.

gmdMsgDelete TipcConnGmdMsgDelete

gmdMsgResend TipcConnGmdMsgResend

gmdResend TipcConnGmdResend

insert TipcConnMsgInsert

keepAlive TipcConnKeepAlive

loadOptionsFile No parallel C function exists.

loadOptionsStream No parallel C function exists.

loadOptionsURL No parallel C function exists.

Java Method Name C Function Name Comments and Exceptions
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

192 | Appendix A Java API to C API Mapping
lookupDefaultCb TipcConnDefaultCbLookup

lookupErrorCb TipcConnErrorCbLookup

lookupProcessCb TipcConnProcessCbLookup

lookupQueueCb TipcConnQueueCbLookup

lookupReadCb TipcConnReadCbLookup

lookupWriteCb TipcConnWriteCbLookup

mainLoop TipcConnMainLoop

makeSubjectAbsolute No parallel C function exists.

next TipcConnMsgNext

process TipcConnMsgProcess

read TipcConnRead

removeDefaultCb No parallel C function exists.

removeErrorCb No parallel C function exists.

removeProcessCb No parallel C function exists.

removeQueueCb No parallel C function exists.

removeReadCb No parallel C function exists.

removeWriteCb No parallel C function exists.

search TipcConnMsgSearch

searchType TipcConnMsgSearchType

send TipcConnMsgSend

sendRpc TipcConnMsgSendRpc

setAutoFlushSize TipcConnSetAutoFlushSize

setOption No parallel C function exists.

Java Method Name C Function Name Comments and Exceptions
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Java API to C API Mapping | 193
Table 7 Interface TipcConnServer

Table 8 Class TipcMon

setTimeout TipcConnSetTimeout

Java Method Name C Function Name Comments and Exceptions

Java Method Name C Function Name Comments and Exceptions

accept TipcConnAccept

destroy No parallel C function exists.

Java Method Name C Function Name

clientBufferPoll TipcMonClientBufferPoll

clientCbPoll TipcMonClientCbPoll

clientCpuPoll TipcMonClientCpuPoll

clientExtPoll TipcMonClientExtPoll

clientGeneralPoll TipcMonClientGeneralPoll

clientInfoPoll TipcMonClientInfoPoll

clientMsgTrafficPoll TipcMonClientMsgTrafficPoll

clientMsgTypePoll TipcMonClientMsgTypePoll

clientNamesNumPoll TipcMonClientNamesNumPoll

clientNamesPoll TipcMonClientNamesPoll

clientOptionPoll TipcMonClientOptionPoll

clientSubjectPoll TipcMonClientSubjectPoll

clientSubscribeNumPoll TipcMonClientSubscribeNumPoll

clientSubscribePoll TipcMonClientSubscribePoll

clientTimePoll TipcMonClientTimePoll
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

194 | Appendix A Java API to C API Mapping
getClientCongestionWatch TipcMonClientCongestionGetWatch

getClientBufferWatch TipcMonClientBufferGetWatch

getClientMsgRecvWatch TipcMonClientMsgRecvGetWatch

getClientMsgSendWatch TipcMonClientMsgSendGetWatch

getClientNamesWatch TipcMonClientNamesGetWatch

getClientSubscribeWatch TipcMonClientSubscribeGetWatch

getClientTimeWatch TipcMonClientTimeGetWatch

getIdentStr TipcMonGetIdentStr

getProjectNamesWatch TipcMonProjectNamesGetWatch

getServerCongestionWatch TipcMonServerCongestionGetWatch

getServerConnWatch TipcMonServerConnGetWatch

getServerMaxClientLicensesWatch TipcMonServerMaxClientLicensesGetWatch

getServerNamesWatch TipcMonServerNamesGetWatch

getSubjectNamesWatch TipcMonSubjectNamesGetWatch

getSubjectSubscribeWatch TipcMonSubjectSubscribeGetWatch

projectNamesPoll TipcMonProjectNamesPoll

serverBufferPoll TipcMonServerBufferPoll

serverConnPoll TipcMonServerConnPoll

serverCpuPoll TipcMonServerCpuPoll

serverGeneralPoll TipcMonServerGeneralPoll

serverMsgTrafficPoll TipcMonServerMsgTrafficPoll

serverNamesPoll TipcMonServerNamesPoll

serverOptionPoll TipcMonServerOptionPoll

Java Method Name C Function Name
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Java API to C API Mapping | 195
serverRoutePoll TipcMonServerRoutePoll

serverTimePoll TipcMonServerTimePoll

setClientBufferWatch TipcMonClientBufferSetWatch

setClientCongestionWatch TipcMonClientCongestionSetWatch

setClientMsgRecvWatch TipcMonClientMsgRecvSetWatch

setClientMsgSendWatcg TipcMonClientMsgSendSetWatch

setClientNamesWatch TipcMonClientNamesSetWatch

setClientSubscribeWatch TipcMonClientSubscribeSetWatch

setClientTimeWatch TipcMonClientTimeSetWatch

setIdentStr TipcMonSetIdentStr

setProjectNamesWatch TipcMonProjectNamesSetWatch

setServerCongestionWatch TipcMonServerCongestionSetWatch

setServerConnWatch TipcMonServerConnSetWatch

setServerMaxClientLicensesWatch TipcMonServerMaxClientLicensesSetWatch

setServerNamesWatch TipcMonServerNamesSetWatch

setSubjectNamesWatch TipcMonSubjectNamesSetWatch

setSubjectSubscribeWatch TipcMonSubjectSubscribeSetWatch

subjectNamesPoll TipcMonSubjectNamesPoll

subjectSubscribePoll TipcMonSubjectSubscribePoll

Java Method Name C Function Name
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

196 | Appendix A Java API to C API Mapping
Table 9 Class TipcMonExt

Java Method Name C Function Name

delete TipcMonExtDelete

setBinary TipcMonExtSetBinary

setBool TipcMonExtSetBool

setBoolArray TipcMonExtSetBoolArray

setInt2 TipcMonExtSetInt2

setInt2Array TipcMonExtSetInt2Array

setInt4 TipcMonExtSetInt4

setInt4Array TipcMonExtSetInt4Array

setInt8 TipcMonExtSetInt8

setInt8Array TipcMonExtSetInt8Array

setReal4 TipcMonExtSetReal4

setReal4Array TipcMonExtSetReal4Array

setReal8 TipcMonExtSetReal8

setReal8Array TipcMonExtSetReal8Array

setStr TipcMonExtSetStr

setStrArray TipcMonExtSetStrArray

setUtf8 TipcMonExtSetUtf8

setUtf8Array TipcMonExtSetUtf8Array
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Java API to C API Mapping | 197
Table 10 Interface TipcMsg

Java Method Name C Function Name Comments and Exceptions

ack TipcMsgAck

addNamedBinary TipcMsgAddNamedBinary

addNamedBool TipcMsgAddNamedBool

addNamedBoolArray TipcMsgAddNamedBoolArray

addNamedByte TipcMsgAddNamedByte

addNamedChar TipcMsgAddNamedChar

addNamedGuid No parallel C function exists.

addNamedGuidArray No parallel C function exists.

addNamedInt2 TipcMsgAddNamedInt2

addNamedInt2Array TipcMsgAddNamedInt2Array

addNamedInt4 TipcMsgAddNamedInt4

addNamedInt4Array TipcMsgAddNamedInt4Array

addNamedInt8 TipcMsgAddNamedInt8

addNamedInt8Array TipcMsgAddNamedInt8Array

addNamedMsg TipcMsgAddNamedMsg

addNamedMsgArray TipcMsgAddNamedMsgArray

addNamedMsgId No parallel C function exists.

addNamedMsgIdArray No parallel C function exists.

addNamedObject No parallel C function exists.

addNamedReal4 TipcMsgAddNamedReal4

addNamedReal4Array TipcMsgAddNamedReal4Array

addNamedReal8 TipcMsgAddNamedReal8
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

198 | Appendix A Java API to C API Mapping
addNamedReal8Array TipcMsgAddNamedReal8Array

addNamedStr TipcMsgAddNamedStr

addNamedStrArray TipcMsgAddNamedStrArray

addNamedTimestamp TipcMsgAddNamedTimestamp

addNamedTimestampArray TipcMsgAddNamedTimestamp
Array

addNamedUnknown TipcMsgAddNamedUnknown

addNamedUtf8 TipcMsgAddNamedUtf8

addNamedUtf8Array TipcMsgAddNamedUtf8Array

addNamedXml TipcMsgAddNamedXml

appendBinary TipcMsgAppendBinary

appendBool TipcMsgAppendBool

appendBoolArray TipcMsgAppendBoolArray

appendByte TipcMsgAppendByte

appendChar TipcMsgAppendChar

appendGuid No parallel C function exists.

appendGuidArray No parallel C function exists.

appendInt2 TipcMsgAppendInt2

appendInt2Array TipcMsgAppendInt2Array

appendInt4 TipcMsgAppendInt4

appendInt4Array TipcMsgAppendInt4Array

appendInt8 TipcMsgAppendInt8

appendInt8Array TipcMsgAppendInt8Array

appendMsg TipcMsgAppendMsg

Java Method Name C Function Name Comments and Exceptions
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Java API to C API Mapping | 199
appendMsgArray TipcMsgAppendMsgArray

appendMsgId No parallel C function exists.

appendMsgIdArray No parallel C function exists.

appendObject No parallel C function exists.

appendReal4 TipcMsgAppendReal4

appendReal4Array TipcMsgAppendReal4Array

appendReal8 TipcMsgAppendInt8

appendReal8Array TipcMsgAppendInt8Array

appendStr TipcMsgAppendStr

appendStrArray TipcMsgAppendStrArray

appendTimestamp TipcMsgAppendTimestamp

appendTimestampArray TipcMsgAppendTimestampArray

appendUnknown TipcMsgAppendUnknown

appendUtf8 TipcMsgAppendUtf8

appendUtf8Array TipcMsgAppendUtf8Array

appendXml TipcMsgAppendXml

nextByte TipcMsgNextByte

clone TipcMsgClone

deleteCurrent TipcMsgDeleteCurrent

deleteField TipcMsgDeleteField

deleteNamedField TipcMsgDeleteNamedField

deleteProp No parallel C function exists.

existsNamed TipcMsgExistsNamed

Java Method Name C Function Name Comments and Exceptions
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

200 | Appendix A Java API to C API Mapping
generateMessageId TipcMsgGenerateMessageId

getArrivalTimestamp TipcMsgGetArrivalTimestamp

getCompression TipcMsgGetCompression

getCorrelationId TipcMsgGetCorrelationId

getCurrent No parallel C function exists.

getCurrentFieldCharFormat No parallel C function exists.

getCurrentFieldIntFormat No parallel C function exists.

getCurrentFieldKnown TipcMsgGetCurrentFieldKnown

getCurrentFieldRealFormat No parallel C function exists.

getDeliveryMode TipcMsgGetDeliveryMode

getDeliveryTimeout TipcMsgGetDeliveryTimeout

getDest TipcMsgGetDest

getExpiration TipcMsgGetExpiration

getLbMode TipcMsgGetLbMode

getLocalDelivery No parallel C function exists.

getMessageId TipcMsgGetMessageId

getNameCurrent TipcMsgGetNameCurrent

getNamedBinary TipcMsgGetNamedBinary

getNamedBool TipcMsgGetNamedBool

getNamedBoolArray TipcMsgGetNamedBoolArray

getNamedByte TipcMsgGetNamedByte

getNamedChar TipcMsgGetNamedChar

getNamedFieldKnown No parallel C function exists.

Java Method Name C Function Name Comments and Exceptions
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Java API to C API Mapping | 201
getNamedGuid No parallel C function exists.

getNamedGuidArray No parallel C function exists.

getNamedInt2 TipcMsgGetNamedInt2

getNamedInt2Array TipcMsgGetNamedInt2Array

getNamedInt4 TipcMsgGetNamedInt4

getNamedInt4Array TipcMsgGetNamedInt4Array

getNamedInt8 TipcMsgGetNamedInt8

getNamedInt8Array TipcMsgGetNamedInt8Array

getNamedMsg TipcMsgGetNamedMsg

getNamedMsgArray TipcMsgGetNamedMsgArray

getNamedMsgId No parallel C function exists.

getNamedMsgIdArray No parallel C function exists.

getNamedObject No parallel C function exists.

getNamedReal4 TipcMsgGetNamedReal4

getNamedReal4Array TipcMsgGetNamedReal4Array

getNamedReal8 TipcMsgGetNamedReal8

getNamedReal8Array TipcMsgGetNamedReal8Array

getNamedStr TipcMsgGetNamedStr

getNamedStrArray TipcMsgGetNamedStrArray

getNamedTimestamp TipcMsgGetNamedTimestamp

getNamedTimestampArray TipcMsgGetNamedTimestamp
Array

getNamedUnknown TipcMsgGetNamedUnknown

getNamedUtf8 TipcMsgGetNamedUtf8

Java Method Name C Function Name Comments and Exceptions
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

202 | Appendix A Java API to C API Mapping
getNamedUtf8Array TipcMsgGetNamedUtf8Array

getNamedXml TipcMsgGetNamedXml

getNumFields TipcMsgGetNumFields

getPacketSize TipcMsgGetPacketSize

getPriority TipcMsgGetPriority

getPropBinary No parallel C function exists.

getPropInt No parallel C function exists.

getPropShort No parallel C function exists.

getPropStr No parallel C function exists.

getPropStrArray No parallel C function exists.

getReadOnly TipcMsgGetReadOnly

getReplyTo TipcMsgGetReplyTo

getSender TipcMsgGetSender

getSenderTimestamp TipcMsgGetSenderTimestamp

getSeqNum TipcMsgGetSeqNum

getType TipcMsgGetType

getTypeNamed TipcMsgGetTypeNamed

getUserProp TicpMsgGetUserProp

nextBinary TipcMsgNextBinary

nextBool TipcMsgNextBool

nextBoolArray TipcMsgNextBoolArray

nextChar TipcMsgNextChar

nextGuid No parallel C function exists.

Java Method Name C Function Name Comments and Exceptions
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Java API to C API Mapping | 203
nextGuidArray No parallel C function exists.

nextInt2 TipcMsgNextInt2

nextInt2Array TipcMsgNextInt2Array

nextInt4 TipcMsgNextInt4

nextInt4Array TipcMsgNextInt4Array

nextInt8 TipcMsgNextInt8

nextInt8Array TipcMsgNextInt8Array

nextMsg TipcMsgNextMsg

nextMsgArray TipcMsgNextMsgArray

nextMsgId No parallel C function exists.

nextMsgIdArray No parallel C function exists.

nextObject No parallel C function exists.

nextReal4 TipcMsgNextReal4

nextReal4Array TipcMsgNextReal4Array

nextReal8 TipcMsgNextReal8

nextReal8Array TipcMsgNextReal8Array

nextStr TipcMsgNextStr

nextStrArray TipcMsgNextStrArray

nextTimestamp TipcMsgNextTimestamp

nextTimestampArray TipcMsgNextTimestampArray

nextType TipcMsgNextType

nextUnknown TipcMsgNextUnknown

nextUtf8 TipcMsgNextUtf8

Java Method Name C Function Name Comments and Exceptions
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

204 | Appendix A Java API to C API Mapping
nextUtf8Array TipcMsgNextUtf8Array

nextXml TipcMsgNextXml

print TipcMsgPrint

setArrivalTimestamp TipcMsgSetArrivalTimestamp

setCompression TipcMsgSetCompression

setCorrelationId TipcMsgSetCorrelationId

setCurrent TipcMsgSetCurrent

setDeliveryMode TipcMsgSetDeliveryMode

setDeliveryTimeout TipcMsgSetDeliveryTimeout

setDestTipcMsgSetDest No parallel C function exists.

setExpiration TipcMsgSetExpiration

setLbMode TipcMsgSetLbMode

setLocalDelivery No parallel C function exists.

setNameCurrent TipcMsgSetNameCurrent

setNumFields TipcMsgSetNumFields

setPriority TipcMsgSetPriority

setPropBinary No parallel C function exists.

setPropInt No parallel C function exists.

setPropShort No parallel C function exists.

setPropStr No parallel C function exists.

setPropStrArray No parallel C function exists.

setReplyTo TipcMsgSetReplyTo

setSender TipcMsgSetSender

Java Method Name C Function Name Comments and Exceptions
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Java API to C API Mapping | 205
setSenderTimestamp TipcMsgSetSenderTimestamp

setSeqNum No parallel C function exists.

setType TipcMsgSetType

setUserProp TipcMsgSetUserProp

toByteArray No parallel C function exists.

updateNamedBinary TipcMsgUpdateNamedBinary

updateNamedBool TipcMsgUpdateNamedBool

updateNamedBoolArray TipcMsgUpdateNamedBoolArray

updateNamedByte TipcMsgUpdateNamedByte

updateNamedChar TipcMsgUpdateNamedChar

updateNamedGuid No parallel C function exists.

updateNamedGuidArray No parallel C function exists.

updateNamedInt2 TipcMsgUpdateNamedInt2

updateNamedInt2Array TipcMsgUpdateNamedInt2Array

updateNamedInt4 TipcMsgUpdateNamedInt4

updateNamedInt4Array TipcMsgUpdateNamedInt4Array

updateNamedInt8 TipcMsgUpdateNamedInt8

updateNamedInt8Array TipcMsgUpdateNamedInt8Array

updateNamedMsg TipcMsgUpdateNamedMsg

updateNamedMsgArray TipcMsgUpdateNamedMsgArray

updateNamedMsgId No parallel C function exists.

updateNamedMsgIdArray No parallel C function exists.

updateNamedObject No parallel C function exists.

Java Method Name C Function Name Comments and Exceptions
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

206 | Appendix A Java API to C API Mapping
updateNamedReal4 TipcMsgUpdateNamedReal4

updateNamedReal4Array TipcMsgUpdateNamedReal4Array

updateNamedReal8 TipcMsgUpdateNamedReal8

updateNamedReal8Array TipcMsgUpdateNamedReal8Array

updateNamedStr TipcMsgUpdateNamedStr

updateNamedStrArray TipcMsgUpdateNamedStrArray

updateNamedTimestamp TipcMsgUpdateNamedTimestamp

updateNamedTimestamp
Array

TipcMsgUpdateNamedTimestamp
Array

updateNamedUtf8 TipcMsgUpdateNamedUtf8

updateNamedUtf8Array TipcMsgUpdateNamedUtf8Array

updateNamedXml TipcMsgUpdateNamedXml

Java Method Name C Function Name Comments and Exceptions
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Java API to C API Mapping | 207
Table 11 Interface TipcMt

Java Method Name C Function Name Comments and Exceptions

destroy TipcMtDestroy

getCompression TipcMtGetCompression

getDeliveryMode TipcMtGetDeliveryMode

getDeliveryTimeout TipcMtGetDeliveryTimeout

getGrammar TipcMtGetGrammar

getLbMode TipcMtGetLbMode

getLocalDelivery No parallel C function exists.

getName TipcMtGetName

getNum TipcMtGetNum

getPriority TipcMtGetPriority

getUserProp TipcMtGetUserProp

setCompression TipcMtSetCompression

setDeliveryMode TipcMtSetDeliveryMode

setDeliveryTimeout TipcMtSetDeliveryTimeout

setLbMode TipcMtSetLbMode

setLocalDelivery No parallel C function exists.

setPriority TipcMtSetPriority

setPriorityUnknown TipcMtSetPriorityUnknown

setUserProp TipcMtSetUserProp
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

208 | Appendix A Java API to C API Mapping
Table 12 Interface TipcSrv

Java Method Name C Function Name Comments and Exceptions

addCreateCb TipcSrvCreateCbCreate

addDefaultCb TipcSrvDefaultCbCreate Inherited from the TipcConn class.

addDestroyCb TipcSrvDestroyCbCreate

addErrorCb TipcSrvErrorCbCreate Inherited from the TipcConn class.

addProcessCb TipcSrvProcessCbCreate

addProcessCb TipcSrvProcessCbCreate Inherited from the TipcConn class.

addQueueCb TipcSrvQueueCbCreate Inherited from the TipcConn class.

addReadCb TipcSrvReadCbCreate Inherited from the TipcConn class.

addWriteCb TipcSrvWriteCbCreate Inherited from the TipcConn class.

check TipcSrvCheck

create TipcSrvCreate

destroy TipcSrvDestroy

destroy TipcSrvDestroy Inherited from the TipcConn class.

flush TipcSrvFlush

getArch TipcSrvGetArch Inherited from the TipcConn class.

getAutoFlushSize TipcSrvGetAutoFlushSize Inherited from the TipcConn class.

getBlockMode TipcSrvGetBlockMode Inherited from the TipcConn class.

getConnStatus TipcSrvGetConnStatus

getDefaultControlCb Inherited from the TipcConn class.

getDefaultErrorCb TipcSrvErrorCbLookup

getDefaultGmdFailureCb Inherited from the TipcConn class.

getGmdDir TipcGetGmdDir Inherited from the TipcConn class.
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Java API to C API Mapping | 209
getGmdNumPending TipcSrvGetGmdNumPending Inherited from the TipcConn class.

getNode TipcSrvGetNode Inherited from the TipcConn class.

getNumQueued TipcSrvGetNumQueued Inherited from the TipcConn class.

getOption Inherited from the TipcConn class.

getOptionBool Inherited from the TipcConn class.

getOptionDouble Inherited from the TipcConn class.

getOptionInt Inherited from the TipcConn class.

getOptionStr Inherited from the TipcConn class.

getPid TipcSrvGetPid Inherited from the TipcConn class.

getProperties Inherited from the TipcConn class.

getQueueSize Inherited from the TipcConn class.

getReadBufferSize TipcSrvBufferGetReadSize Inherited from the TipcConn class.

getServerLCN No parallel C function exists.

getServerName No parallel C function exists.

getSubjectLb TipcSrvSubjectGetSubscribeLb

getSubjectSubscribe TipcSrvSubjectGetSubscribe

getSubscribedList TipcSrvSubjectTraverseSubscribe

getTimeout TipcSrvGetTimeout Inherited from the TipcConn class.

getTrafficBytesRecv TipcSrvTrafficGetBytesRecv Inherited from the TipcConn class.

getTrafficBytesSent TipcSrvTrafficGetBytesSent Inherited from the TipcConn class.

getTrafficMsgsRecv TipcSrvTrafficGetMsgsRecv Inherited from the TipcConn class.

getTrafficMsgsSent TipcSrvTrafficGetMsgsSent Inherited from the TipcConn class.

getUniqueSubject TipcSrvGetUniqueSubject

Java Method Name C Function Name Comments and Exceptions
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

210 | Appendix A Java API to C API Mapping
getUser TipcSrvGetUser Inherited from the TipcConn class.

getWriteBufferSize TipcSrvBufferGetWriteSize Inherited from the TipcConn class.

gmdFileDelete TipcSrvGmdFileDelete Inherited from the TipcConn class.

gmdMsgAck Inherited from the TipcConn class.

gmdMsgDelete TipcSrvGmdMsgDelete Inherited from the TipcConn class.

gmdMsgResend Inherited from the TipcConn class.

gmdMsgServerDelete TipcSrvGmdMsgServerDelete

gmdResend Inherited from the TipcConn class.

insert TipcSrvMsgInsert Inherited from the TipcConn class.

isRunning TipcSrvIsRunning In Java, isRunning creates a
connection if one does not already
exist. In C, TipcSrvIsRunning
creates and then destroys the
connection.

keepAlive TipcSrvKeepAlive Inherited from the TipcConn class.

loadOptionsFile Inherited from the TipcConn class.

loadOptionsStream Inherited from the TipcConn class.

loadOptionsURL Inherited from the TipcConn class.

logAddMt TipcSrvLogAddMt

logRemoveMt TipcSrvLogRemoveMt

lookupCreateCb TipcSrvCreateCbLookup

lookupDefaultCb TipcSrvDefaultCbLookup Inherited from the TipcConn class.

lookupDestroyCb TipcSrvDestroyCbLookup

lookupErrorCb TipcSrvErrorCbLookup Inherited from the TipcConn class.

lookupProcessCb TipcSrvProcessCbLookup

Java Method Name C Function Name Comments and Exceptions
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Java API to C API Mapping | 211
lookupProcessCb TipcSrvProcessCbLookup Inherited from the TipcConn class.

lookupQueueCb TipcSrvQueueCbLookup Inherited from the TipcConn class.

lookupReadCb TipcSrvReadCbLookup Inherited from the TipcConn class.

lookupWriteCb TipcSrvWriteCbLookup Inherited from the TipcConn class.

mainLoop TipcSrvMainLoop Inherited from the TipcConn class.

makeSubjectAbsolute Inherited from the TipcConn class.

next TipcSrvMsgNext

process TipcSrvMsgProcess Inherited from the TipcConn class.

read TipcSrvRead Inherited from the TipcConn class.

removeCreateCb No parallel C function exists.

removeDefaultCb Inherited from the TipcConn class.

removeDestroyCb No parallel C function exists.

removeErrorCb Inherited from the TipcConn class.

removeProcessCb Inherited from the TipcConn class.

removeQueueCb Inherited from the TipcConn class.

removeReadCb Inherited from the TipcConn class.

removeWriteCb Inherited from the TipcConn class.

search TipcSrvMsgSearch Inherited from the TipcConn class.

searchType TipcSrvMsgSearchType Inherited from the TipcConn class.

send TipcSrvMsgSend

sendRpc TipcSrvMsgSendRpc Inherited from the TipcConn class.

setAutoFlushSize TipcSrvSetAutoFlushSize Inherited from the TipcConn class.

setOption Inherited from the TipcConn class.

Java Method Name C Function Name Comments and Exceptions
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

212 | Appendix A Java API to C API Mapping
Table 13 C Functions With No Java Equivalent

setSubjectSubscribe TipcSrvSubjectSetSubscribe

setSubjectSubscribeEx TipcSrvSubjectSetSubscribeEx

setTimeout TipcSrvSetTimeout Inherited from the TipcConn class.

setUsernamePassword TipcSrvSetUsernamePassword

Java Method Name C Function Name Comments and Exceptions

C Function Name C Function Name

TipcBufMsgAppend TipcBufMsgNext

TIpcCbConnProcessGmdFailure TipcCbConnProcessKeepAliveCall

TipcCbSrvError TipcCbSrvProcessControl

TipcCbSrvProcessGmdFailure TipcConnCreate

TipcConnCreateClient TipcConnCreateServer

TipcConnDecodeCbCreate TipcConnDecodeCbLookup

TipcConnEncodeCbCreate TipcConnEncodeCbLookup

TipcConnGetGmdMaxSize TipcConnGetSocket

TipcConnGetXtSource TipcConnGmdFileCreate

TipcConnLock TipcConnMsgWrite

TipcConnMsgWriteVa TipcConnSetGmdMaxSize

TipcConnSetSocket TipcConnUnlock

TipcDeliveryModeToStr TipcDispatcherSrvAdd

TipcDispatcherSrvRemove TipcFtToStr

TipcInitThreads TipcLbModeToStr

TipcMonExtSetReal16 TipcMonExtSetReal16Array

TipcMonPrintWatch TipcMsgAck
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Java API to C API Mapping | 213
TipcMsgAddNamedBinaryPtr TipcMsgAddNamedBoolArrayPtr

TipcMsgAddNamedInt2ArrayPtr TipcMsgAddNamedInt4ArrayPtr

TipcMsgAddNamedInt8ArrayPtr TipcMsgAddNamedMsgArrayPtr

TipcMsgAddNamedMsgPtr TipcMsgAddNamedReal4ArrayPtr

TipcMsgAddNamedReal8ArrayPtr TipcMsgAddNamedReal16

TipcMsgAddNamedReal16Array TipcMsgAddNamedReal16ArrayPtr

TipcMsgAddNamedStrArrayPtr TipcMsgAddNamedStrPtr

TipcMsgAddNamedUtf8ArrayPtr TipcMsgAddNamedUtf8Ptr

TipcMsgAddNamedXmlPtr TipcMsgAppendBinaryPtr

TipcMsgAppendBoolArrayPtr TipcMsgAppendInt2ArrayPtr

TipcMsgAppendInt4ArrayPtr TipcMsgAppendInt8ArrayPtr

TipcMsgAppendMsgArrayPtr TipcMsgAppendMsgPtr

TipcMsgAppendReal4ArrayPtr TipcMsgAppendReal8ArrayPtr

TipcMsgAppendReal16 TipcMsgAppendReal16Array

TipcMsgAppendReal16ArrayPtr TipcMsgAppendStrArrayPtr

TipcMsgAppendStrPtr TipcMsgAppendStrAReal8

TipcMsgAppendUtf8ArrayPtr TipcMsgAppendUtf8Ptr

TipcMsgAppendXmlPtr TipcMsgCreate

TipcMsgDestroy TipcMsgFieldUpdateBinaryPtr

TipcMsgFieldUpdateBoolArrayPtr TipcMsgFieldUpdateInt2ArrayPtr

TipcMsgFieldUpdateInt4ArrayPtr TipcMsgFieldUpdateInt8ArrayPtr

TipcMsgFieldUpdateReal4ArrayPtr TipcMsgFieldUpdateReal8ArrayPtr

TipcMsgFieldUpdateReal16ArrayPtr TipcMsgFieldUpdateStrPtr

C Function Name C Function Name
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

214 | Appendix A Java API to C API Mapping
TipcMsgFieldUpdateTimestampArrayPtr TipcMsgFieldUpdateUtf8Ptr

TipcMsgFieldUpdateXmlPtr TicpMsgFieldSetSize

TipcMsgFileCreate TipcMsgFileCreateFromFile

TipcMsgFileDestroy TipcMsgFileRead

TipcMsgFileWrite TipcMsgGetDeliveryMode

TipcMsgGetHeaderStrEncode TipcMsgGetNamedReal16

TipcMsgGetNamedReal16Array TipcMsgGetRefCount

TIpcMsgIncrRefCount TipcMsgNextReal16

TipcMsgNextReal16Array TipcMsgNextStrReal8

TipcMsgPrintError TipcMsgRead

TipcMsgReadVa TipcMsgSetHeaderStrEncode

TipcMsgTraverse TipcMsgUpdateNamedBinaryPtr

TipcMsgUpdateNamedBoolArrayPtr TipcMsgUpdateNamedInt2ArrayPtr

TipcMsgUpdateNamedInt4ArrayPtr TipcMsgUpdateNamedInt8ArrayPtr

TipcMsgUpdateNamedMsgArrayPtr TipcMsgUpdateNamedMsgPtr

TipcMsgUpdateNamedReal4ArrayPtr TipcMsgUpdateNamedReal8ArrayPtr

TipcMsgUpdateNamedReal16 TipcMsgUpdateNamedReal16Array

TipcMsgUpdateNamedReal16ArrayPtr TipcMsgUpdateNamedStrArrayPtr

TipcMsgUpdateNamedStrPtr TipcMsgUpdateNamedUnknown

TipcMsgUpdateNamedUtf8ArrayPtr TipcMsgUpdateNamedUtf8Ptr

TipcMsgUpdateNamedXmlPtr TipcMsgWriteVa

TipcMtCreate TipcMtGetHeaderStrEncode

TipcMtLogAddMt TipcMtLogRemoveMt

C Function Name C Function Name
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Java API to C API Mapping | 215
TipcMtLookup TipcMtLookupByNum

TipcMtPrint TipcMtSetHeaderStrEncode

TipcMtTraverse TipcPropertiesCreate

TipcPropertiesCreateMsg TipcPropertiesDestroy

TipcPropertiesGet TipcPropertiesGetCount

TipcPropertiesGetDefault TipcPropertiesMsgCreate

TipcPropertiesSet TipcPropertiesTraverse

TipcSrvGetGmdMaxSize TipcSrvGetSocket

TipcSrvGetXtSource TipcSrvGmdFileCreate

TipcSrvGmdMsgStatus TipcSrvLock

TipcSrvMsgWrite TipcSrvMsgWriteVa

TipcSrvPrint TipcSrvSetGmdMazSize

TipcSrvSetSocket TipcSrvStdSubjectSetSubscribe

TipcSrvStop TipcSrvSubjectCbCreate

TipcSrvSubjectCbDestroyAll TipcSrvSubjectCbLookup

TipcSrvSubjectDefaultCbCreate TipcSrvSubjectDefaultCbLookup

TipcSrvSubjectGmdInit TipcSrvSubjectLbInit

TipcSrvTraverseCbCreate TipcSrvTraverseCbLookup

TipcSrvUnlock TipcStrToDeliveryMode

TipcStrToFt TipcStrToLbMode

C Function Name C Function Name
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

216 | Appendix A Java API to C API Mapping
TIBCO SmartSockets Java Library User’s Guide and Tutorial

| 217
Index

A

abstract factory pattern 26
accessing

named fields 65
addresses

for multicast 165
ALERT message type 59
API

Java to C mapping 189
applets

GMD considerations 174
lifecycle 122
security model 120

automatic data translation 58

B

BOOLEAN_DATA message type 59

C

C functions
Java eqivalent 189

callbacks
creating 72
default process 76
definition of global 70
destroying 73
error 77
handle to 73
interfaces 71
priority 71
process 74

writing 77

process for GMD_FAILURE messages 181
properties 73
read 76
server create 76
server destroy 76
subject 75
using error with ss.server_write_timeout 157
using server create 93
using server destroy 93
with warm connection 185
write 76
writing default process 80

CANCEL_ALERT message type 59
CANCEL_WARNING message type 59
case sensitivity xviii

on UNIX and Windows xviii
classes

factory 26
CLASSPATH

appletviewer 130
Java class libraries 16
multicast 163
ss-pgm.jar file 163

Client_Reconnect_Timeout option 153
commands

subscribe 158
compiling 23
CONN_INIT message type 59
CONNECT_CALL message type 59
CONNECT_RESULT message type 59
connecting to RTserver 26
connections

creating 26
defined 8
multiple RTserver 27
RTserver 26
security with applets 121
using TipcConn class 32
with warm RTclient 187
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

218 | Index
constructors 26
conventions used in this manual xvi
customer support xix

D

data translation
description 58

databases
Java Properties 136
option 110
property 110

debugging
specifying a trace file format 159

default process callbacks 76
definitions

connection 8
message 7
message type 7
project 36
RTserver 32
subject 40
warm connection 185

deleting
named fields 65

delivery mode message property 176
delivery timeout failures 181
DISCONNECT message type 60

E

ENUM_DATA message type 60
enumerated options 112

setting valid values 112
enumerations

mapped 112
environment

including Java libraries 16
error handling 28

examples
GMD process callback 182
messaging thread infrastructure 122
sample of using GMD 178

exceptions
Java error handling 28

extension data, monitoring 9

F

factory class 26
failures

delivery timeout 181
fields

accessing by name 65
GMD_FAILURE message 181
repetitive group of 100

file names
specifying xviii

files
format of trace file 159

formats
for time 158

functions
case-sensitivity xviii
TipcConnCheck 181
TipcSrv.Next to receive GMD messages 176
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Index | 219
G

GMD
applets 174
buffering messages for warm clients 187
default configuration 170
delivery process 169
features 168
file-based

reverting to memory 174
ss.ipc_gmd_directory 171
ss.ipc_gmd_type 171
ss.server_delivery_timeout 171
ss.server_disconnect_mode 172
ss.unique_subject 171

Java RTclient options 170
memory-based

ss.ipc_gmd_type 173
ss.server_delivery_timeout 173
ss.server_disconnect_mode 173
ss.unique_subject 173

potential failures 188
processing failures 181
sample GMD_FAILURE callback 182
sample of usage 178
using TipcMsg.setDeliveryMode 176
using TipcMt.setDeliveryMode 176
waiting for completion 177
warm RTclients 187

GMD_FAILURE message 181
fields 181

grammar
for message types 99

groups
multicast addresses 165

guaranteed message delivery
see GMD 168

H

handle
to callback 73

heap size 117, 147

I

identifiers
case sensitivity xviii

INFO message type 60
installation requirements 16
interfaces 26

J

Java
compiling 23
security restrictions 120

Java Class Library
including in environment 16
prerequisites 16

Java Developer Kit
required version 16

Java Properties databases 136
Java Security Manager 120
Java Virtual Machine

applets and security 120
running out of memory 117, 147

K

keep alive
definition 154

L

legal values
for enumerated options 112

load balancing 46
LB_NONE 48
LB_ROUND_ROBIN 48
LB_SORTED 48
LB_WEIGHTED 48
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

220 | Index
local file system
applet access 121

local machine lookup 121
location transparency

with publish-subscribe 46
looking up message types 60

M

mapped enumerations 112
mapping Java to C APIs 189
mcast.cm file 163
mcastopts.cm file 163
memory

JVM running out of 117, 147
message

unrecovered GMD 188
message queue size 117, 147
message types

creating user-defined 99
defined 7
field types defined 99
grammar 99
list of standard 58
looking up 60
standard

ALERT 59
BOOLEAN_DATA 59
CANCEL_ALERT 59
CANCEL_WARNING 59
CONN_INIT 59
CONNECT_CALL 59
CONNECT_RESULT 59
DISCONNECT 60
ENUM_DATA 60
INFO 60
NUMERIC_DATA 60
SERVER_STOP_CALL 60
SERVER_STOP_RESULT 60
STRING_DATA 60
SUBJECT_SET_SUBSCRIBE 60
WARNING 60

messages
case sensitivity xviii
data translation 58
defined 7
delivery mode property 176
duplicate processing 188
GMD completion 177
GMD_FAILURE 181
GMD_FAILURE fields 181
load balancing 46
processing with callbacks 77
resending GMD 184
routing demonstration 42
sender and destination 40
sending with GMD 176
waiting for GM completion 177

methods
for option-handling 111
TipcMsg.ack and GMD 177
TipcMsg.setDeliveryMode to send GMD

messages 176
TipcMt.setDeliveryMode to send GMD

messages 176
TipcSrv.getGmdNumPending 177
TipcSrv.gmdFileDelete sequence numbers 177
TipcSrv.gmdMsgAck 177
TipcSrv.gmdResend 184
TipcSrv.mainLoop GMD example 177
TipcSrv.Next with GMD 177
TipSrv.mainLoop example 93
using TipcSvc.createMt 99

multicast
address field 165
creating connection 164
description 162
logical connection names 165
mcast.cm file 163
mcastopts.cm file 163
requirements in Java 163
ss.group_names option 143
ss-pgm.jar file 163
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Index | 221
N

network
checking for failures 156
using timeouts to find failures 157

network failures
error callbacks 77

network security
applets 121

NUMERIC_DATA message type 60

O

option databases 110
options

case sensitivity xviii
custom read-only 117
defining in property database 136
enumerated 112
for RTserver 36
loading from file or URL 136
loading from local file 113
RTserver

Client_Reconnect_Timeout 153
setting RTclient 112
setting valid values for enumerated 112
ss.compression 140
ss.compression_args 141
ss.compression_name 141
ss.compression_stats 141
ss.default_msg_priority 142
ss.default_protocols 142
ss.default_subject_prefix 142
ss.enable_control_msgs 143
ss.group_names 143, 164
ss.ipc_gmd_directory 144
ss.ipc_gmd_type 144
ss.log_in_data 145
ss.log_in_internal 145
ss.log_in_status 145
ss.log_out_data 146
ss.log_out_internal 146
ss.log_out_status 146

ss.max_read_queue_length 117, 147
ss.max_read_queue_size 117, 147
ss.mcast_cm_file 148
ss.min_read_queue_percentage 117, 148
ss.monitor_ident 149
ss.monitor_level 149
ss.monitor_scope 150
ss.project 150
ss.proxy.password 151
ss.proxy.username 151
ss.server_auto_connect 151
ss.server_auto_flush_size 152
ss.server_delivery_timeout 152
ss.server_disconnect_mode 153
ss.server_keep_alive_timeout 154
ss.server_max_reconnect_delay 154
ss.server_msg_send 155
ss.server_names 155, 164
ss.server_names to specify RTserver node 49
ss.server_read_timeout 156
ss.server_start_delay 156
ss.server_start_max_tries 156
ss.server_write_timeout 157
ss.socket_connect_timeout 157
ss.subjects 158
ss.time_format 158
ss.trace_flags 159
ss.unique_subject 159
using Project 11
using ss.server_names with applets 121

P

peer-to-peer messaging 32
process callbacks 74, 181
programs

receive 39
receive.java 23
send 37
send.java 21

Project option
default value 36
usage 11
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

222 | Index
projects
definition 36

property databases 110
publish-subscribe

demonstration 44
using subjects 41

R

read callbacks 76
receive program 39
receive.java program 23
receiver-makes-right

data translation 58
receiving GMD acknowledgements 177
repetitive group of fields 100
RTclient

extension data 9
reconnecting to RTserver 187
warm 187

RTserver
creating connections 26
definition 32
finding 155
multiple connections 27
on another node 49
starting 34
starting automatically 35
warm connection to 185

RTserver and RTclient
architecture 10

RTserver options 36
rtserver.cm file 36
rtserver64 command 25, 35, 50, 80, 97, 130
running Java programs 25

S

security restrictions 120
send program 37
send.java program 21

sending
messages with GMD 176

server create callbacks 76
server destroy callbacks 76
SERVER_STOP_CALL message type 60
SERVER_STOP_RESULT message type 60
shell commands

specifying xviii
SmartSockets Java classes

functional areas 20
sockets

wait 157
software

installing SmartSockets 16
required products 16

ss.compression option 140
ss.compression_args option 141
ss.compression_name option 141
ss.compression_stats option 141
ss.default_msg_priority option 142
ss.default_protocols option 142
ss.default_subject_prefix option 142
ss.enable_control_msgs option 143
ss.group_names option 143, 164
ss.ipc_gmd_directory option 144

GMD considerations 171
ss.ipc_gmd_type option 144

file-based GMD 171
memory-based GMD 173

ss.log_in_data option 145
ss.log_in_internal option 145
ss.log_in_status option 145
ss.log_out_data option 146
ss.log_out_internal option 146
ss.log_out_status option 146
ss.max_read_queue_length option 117, 147
ss.max_read_queue_size option 117, 147
ss.mcast_cm_file option 148
ss.min_read_queue_percentage option 117, 148
ss.monitor_ident option 149
ss.monitor_level option 149
ss.monitor_scope option 150
ss.project option 150
ss.proxy.password option 151
ss.proxy.username option 151
TIBCO SmartSockets Java Library User’s Guide and Tutorial

Index | 223
ss.server_auto_connect option 151
ss.server_auto_flush_size option 152
ss.server_delivery_timeout option 152

GMD considerations 171
ss.server_disconnect_mode option 153

GMD considerations 172
ss.server_keep_alive_timeout option 154
ss.server_max_reconnect_delay option 154
ss.server_msg_send option 155
ss.server_names option 155, 164

applets 121
RTserver on different node 49

ss.server_read_timeout option 156
ss.server_start_delay option 156
ss.server_start_max_tries option 156
ss.server_write_timeout option 157
ss.socket_connect_timeout option 157
ss.subjects option 158
ss.time_format option 158
ss.trace_flags option 159
ss.unique_subject option 159

file-based GMD 171
memory-based GMD 173

ss-pgm.jar file 163
STRING_DATA message type 60
subject callbacks 75
SUBJECT_SET_SUBSCRIBE message type 60
subjects

definition 40
hierarchical subject namespace 41
subscribing to 158
wildcards 42

subscribe command
with ss.subjects 158

support, contacting xix
System property table 113

T

technical support xix
threads

creating for applets 122
green 123

TipcConnCheck function 181
TipcDefs

LB_NONE 48
LB_ROUND_ROBIN 48
LB_SORTED 48
LB_WEIGHTED 48

TipcMsg.ack method
acknowledging GMD messages 177

TipcMsg.setDeliveryMode method
sending GMD messages 176

TipcMt.setDeliveryMode method
sending GMD messages 176

TipcSrv.getGmdNumPending method 177
TipcSrv.gmdFileDelete method

sequence numbers 177
TipcSrv.gmdMsgAck method 177
TipcSrv.gmdResend method 184
TipcSrv.mainLoop method

with GMD 177
TipcSrv.Next function

receiving GMD messages 176
TipcSrv.Next method

with GMD 177
TipcSvc factory class 26
TipcSvc.createMt

creating user-defined types 99
TipcSvc.lookupMt

example of use 60

U

unrecovered messages
GMD 188

updating
named fields 65
 TIBCO SmartSockets Java Library User’s Guide and Tutorial

224 | Index
W

waiting
messages 177

warm connection 185
warm RTclient 187
WARNING message type 60
wildcards in subjects 42
write callbacks 76
TIBCO SmartSockets Java Library User’s Guide and Tutorial

	TIBCO SmartSockets™
	Contents
	Figures
	Tables
	Preface
	About This Book
	Intended Audience
	Related Documentation
	Using the Online Documentation

	Conventions Used in This Manual
	Typeface Conventions
	Notational Conventions
	Identifiers
	Case

	How to Contact TIBCO Support

	Chapter 1 Introducing TIBCO SmartSockets
	What Comprises TIBCO SmartSockets?
	TIBCO SmartSockets Features
	Java Message Service
	Platform Support
	Source Code Availability
	Programming Language Support

	Major Components of TIBCO SmartSockets
	Messages
	Message Types
	Connections
	RTserver and RTclient
	RTmon

	Chapter 2 Lesson Overview
	Before You Begin
	Required Software
	Including the Java Class Libraries

	TIBCO SmartSockets Java Class Library Scope
	Using the Java Class Library
	The Java Class Library Lessons

	Chapter 3 Lesson 1: Your First Program
	Lesson 1 Overview
	A Hello World! Program
	Compiling

	A Program to Read a Message
	Running the Application
	What’s Going On

	Multiple RTserver Connections
	Error Handling
	Summary

	Chapter 4 Lesson 2: Publish-Subscribe
	Lesson 2 Overview
	What is RTserver?
	Distributing Message Load
	Connectivity

	Running RTserver
	Starting the RTserver
	Stopping the RTserver
	RTserver Options

	What is a TIBCO SmartSockets Project?
	What are Subjects?
	Understanding Hierarchical Subject Namespace
	Specifying Wildcards in Subjects
	Demonstrating Message Routing
	Demonstrating Publish-Subscribe Services

	Using Load Balancing
	Connecting to RTserver on Another Node
	Disconnecting from RTserver
	Summary

	Chapter 5 Lesson 3: Messages
	Lesson 3 Overview
	What is in a Message?
	What is Automatic Data Translation?

	What are Message Types?
	Working With Messages
	Named Fields
	Summary

	Chapter 6 Lesson 4: Callbacks
	Lesson 4 Overview
	Introduction to Callbacks
	Creating Callbacks
	Manipulating Callbacks
	Destroying Callbacks

	Callback Types
	Process Callbacks
	Subject Callbacks
	Default Callbacks
	Read Callbacks
	Write Callbacks
	Server Create Callbacks
	Server Destroy Callbacks
	Error Callbacks

	Using Callbacks
	Writing a Process Callback
	Writing a Default Callback
	Writing a Subject Callback
	Using the TipSrv.mainLoop Convenience Method
	Using Server Create and Destroy Callbacks

	Creating Your Own Message Types
	Sample Programs

	Summary

	Chapter 7 Lesson 5: TIBCO SmartSockets Options
	Lesson 5 Overview
	Option (Property) Databases
	Utility Methods for Handling Options
	Setting Simple RTclient Options
	Working with Enumerated Options
	Loading RTclient Options from a File or URL
	Making Custom Options Read-Only
	Java-Specific Options

	Summary

	Chapter 8 Lesson 6: Java Applets
	Lesson 6 Overview
	Applets and the Security Model
	Network Connections
	Local Machine Lookup
	Local File System Access

	Applet Life Cycle
	Using Messaging Threads
	Example Applet: ChatApplet
	Summary
	Congratulations!

	Chapter 9 RTclient Options
	Option (Property) Databases
	Loading RTclient Options
	Setting RTclient Options
	ss.backup_name
	ss.compression
	ss.compression_args
	ss.compression_name
	ss.compression_stats
	ss.default_msg_priority
	ss.default_protocols
	ss.default_subject_prefix
	ss.enable_control_msgs
	ss.group_names
	ss.ipc_gmd_directory
	ss.ipc_gmd_type
	ss.log_in_data
	ss.log_in_internal
	ss.log_in_status
	ss.log_out_data
	ss.log_out_internal
	ss.log_out_status
	ss.max_read_queue_length
	ss.max_read_queue_size
	ss.mcast_cm_file
	ss.min_read_queue_percentage
	ss.monitor_ident
	ss.monitor_level
	ss.monitor_scope
	ss.project
	ss.proxy.password
	ss.proxy.username
	ss.server_auto_connect
	ss.server_auto_flush_size
	ss.server_delivery_timeout
	ss.server_disconnect_mode
	ss.server_keep_alive_timeout
	ss.server_max_reconnect_delay
	ss.server_msg_send
	ss.server_names
	ss.server_read_timeout
	ss.server_start_delay
	ss.server_start_max_tries
	ss.server_write_timeout
	ss.socket_connect_timeout
	ss.subjects
	ss.time_format
	ss.trace_flags
	ss.unique_subject
	ss.user_name

	Chapter 10 Using Java Clients
	Using TIBCO SmartSockets Multicast
	Using Multicast with Java

	Chapter 11 Guaranteed Message Delivery
	Overview of GMD
	GMD Features
	How GMD Works

	Configuring GMD
	Java GMD-Related Options
	Configuring File-Based GMD
	Configuring Memory-Based GMD
	Reverting to Memory-Based GMD

	Using GMD
	Java GMD Methods
	Sending GMD Messages
	Receiving GMD Messages
	Acknowledging GMD Messages
	Waiting for Completion of GMD
	Example of Using GMD

	Handling GMD Failures
	GMD_FAILURE Messages
	Delivery Timeout Failures
	Processing of GMD_FAILURE Messages

	File-Based GMD Considerations
	Resending GMD Messages
	Removing GMD Files

	Warm Connections
	New Warm Connections
	Connections with Warm RTclients

	GMD Limitations

	Appendix A Java API to C API Mapping
	Index

