TIBCO SmartSockets™

C++ User’s Guide

Software Release 6.8
July 2006

WiTIBCO

The Power of Now®

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY
(OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE.
THE EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY
ANY OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND
CONDITIONS OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED
SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT,
THE CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING
DOWNLOAD OR INSTALLATION OF THE SOFTWARE (AND WHICH IS DUPLICATED IN THE
TIBCO SMARTSOCKETS INSTALLATION GUIDE). USE OF THIS DOCUMENT IS SUBJECT TO
THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE
ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document contains confidential information that is subject to U.S. and international copyright
laws and treaties. No part of this document may be reproduced in any form without the written
authorization of TIBCO Software Inc.

TIB, TIBCO, Information Bus, The Power of Now, TIBCO Adapter, RTclient, RTserver, RTworks,
SmartSockets, and Talarian are either registered trademarks or trademarks of TIBCO Software Inc.
in the United States and/or other countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO
SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.

Copyright © 1991-2006 TIBCO Software Inc. ALL RIGHTS RESERVED.

TIBCO Software Inc. Confidential Information

Contents
PrefaCE . . e e e %
INtended AUdIENCE. e e e Vi
Related DOCUMENTALIONottt e e e e e e e e vii
TIBCO Product DOCUMENTALION ottt e e e e e e e e e e e vii
Using the Online DOCUMEeNtation e e e e e e e vii
Conventions Used in This Manual e viii
Typeface CONVENTIONS i e e e e viii
Notational CoNVENLIONS.o e e e e e e iX
[0 1= 01 11T P iX
L 1 X
How to Contact TIBCO SUPPOIL.ttt e e e e e e e e e e e e e e e e e e Xi
Chapter 1 Introduction to the C++ Class Library 1
C++ Class Library OVerview e e 2
C++ Class Library FEatUres.o e e e e 2
CHH NABIMESPACE. . . . oottt ittt e e e 2
NatiVE TYPE NAMES . . o ottt e e e e e e e e 3
Exception Handling. oo 3
CONStANt ObJECES . . ot e 4
Callback SUPPOIT . . o 4
UtIlitIeS FUNCHON WEaPPEIS. . . o ottt e 4
Multiple CONNECHION SUPPOILot e e e e e e e e e e e e e 7
Chapter 2 Usingthe C++ Class Library e e e 9
Example: C++ TIBCO SmartSockets Application e 10
The Sender Program e e 10
The ReCeIVer Program e e e e 12
Compiling, Linking, and RUNNING oo e e e e e 15
Using Callbacks t0 ProCesSs MESSAQES. vttt et i e e e e e e e e 17
Exception Handlingo i e 20
Exception Class HierarChy e e e e 21
EXCeption Class FeatUres. i e e e e 22
INCIUAE FIlES. . .o e e 22

TIBCO SmartSockets C++ User’s Guide

iv | Contents

Source File Distribution 23
The Binary Library 23
The Source Code.o . 23
Source File Organization 24

USINg TRreads.o e e e e 26

IO EX .o 27

TIBCO SmartSockets C++ User’s Guide

Topics

Preface

TIBCO SmartSockets is a message-oriented middleware product that enables
programs to communicate quickly, reliably, and securely across:

= local area networks (LANS)
= wide area networks (WANS)
= the Internet

SmartSockets takes care of network interfaces, guarantees delivery of messages,
handles communications protocols, and directs recovery after system or network
problems. This enables you to focus on higher-level requirements rather than the
underlying complexities of the network.

This guide describes the C++ class interface for the SmartSockets library. It also
provides detailed descriptions and examples of how to set up, compile and run
C++ applications using the C++ class library.

For an overview of the new features, changes, and enhancements in Software
Release 6.8, see the TIBCO SmartSockets Installation Guide.

= Intended Audience, page vi
= Related Documentation, page vii
= Conventions Used in This Manual, page viii

< How to Contact TIBCO Support, page Xi

TIBCO SmartSockets C++ User’s Guide

Vi | Intended Audience

Intended Audience

This guide is intended for C++ programmers who plan to develop with
SmartSockets in an object-oriented manner, without using the C application
programing interface (API).

Some prerequisite knowledge is needed to understand the concepts and examples
in this guide:

working knowledge of C++

familiarity with the operating system is required for developing SmartSockets
applications (UNIX, Windows, or whatever platform is running
SmartSockets). This includes knowing how to log in, log out, edit a text file,
change directories, list files, and compile, link, and run a program.

understand general messaging and publish/subscribe concepts and
terminology

familiarity with the SmartSockets messaging concepts covered in the TIBCO
SmartSockets User’s Guide.

TIBCO SmartSockets C++ User’s Guide

Preface

Related Documentation

This section lists documentation resources you may find useful.

TIBCO Product Documentation

The following documents form the SmartSockets documentation set:

TIBCO SmartSockets APl Quick Reference

TIBCO SmartSockets Application Programming Interface
TIBCO SmartSockets C++ User’s Guide

TIBCO SmartSockets cxxipc Class Library

TIBCO SmartSockets Installation Guide

TIBCO SmartSockets Java Library User’s Guide and Tutorial
TIBCO SmartSockets .NET User’s Guide and Tutorial
TIBCO SmartSockets Tutorial

TIBCO SmartSockets User’s Guide

TIBCO SmartSockets Utilities

TIBCO SmartSockets C++ and Java Class Libraries

C++ class library and Java application programming interface (API) reference
materials are available in HTML format only. Access the references through
the TIBCO HTML documentation interface.

Using the Online Documentation

The SmartSockets documentation files are available for you to download
separately, or you can request a copy of the TIBCO Documentation CD.

TIBCO SmartSockets C++ User’s Guide

Vii

Viii | Conventions Used in This Manual

Conventions Used in This Manual

This manual uses the following conventions.

Typeface Conventions

This manual uses the following typeface conventions

Example Use

monospace This monospace font is used for program output and code example listing and
for file names, commands, configuration file parameters, and literal
programming elements in running text.

monospace bold This bold monospace font indicates characters in a command line that you
must type exactly as shown. This font is also used for emphasis in code
examples.

Italic Italic text is used as follows:

= In code examples, file names etc., for text that should be replaced with an
actual value. For example: "Select install-dir/runexample .bat."

e For document titles.

= For emphasis.

Bold Bold text indicates actions you take when using a GUI, for example, click OK,
or choose Edit from the menu. It is intended to help you skim through
procedures when you are familiar with them and just want a reminder.

Submenus and options of a menu item are indicated with an angle bracket, for
example, Menu > Submenu.

Warning. The accompanying text describes a condition that severely affects the
A functioning of the software.

% Note. Be sure you read the accompanying text for important information.

Tip. The accompanying text may be especially helpful.

\\ilf

TIBCO SmartSockets C++ User’s Guide

Preface | ix

Notational Conventions

The notational conventions in the table below are used for describing command
syntax. When used in this context, do not type the brackets listed in the table as
part of a command line.

Notation Description Use
[] Brackets Used to enclose an optional item in the command syntax.
<> Angle Brackets Used to enclose a name (usually in Italic) that represents an

argument for which you substitute a value when you use the
command. This convention is not used for XML or HTML
examples or other situations where the angle brackets are part
of the code.

{} Curly Brackets Used to enclose two or more items among which you can
choose only one at a time.

Vertical bars (|) separate the choices within the curly brackets.

Ellipsis Indicates that you can repeat an item any number of times in
the command line.

Identifiers

The term identifier is used to refer to a valid character string that names entities
created in a SmartSockets application. The string starts with an underscore (_) or
alphabetic character and is followed by zero or more letters, digits, percent signs
(%), or underscores. No other special characters are valid. The maximum length
of the string is 63 characters. Identifiers are not case-sensitive.

These are examples of valid identifiers:

EPS
battery_11
K11

_all
These are invalid identifiers:

20
battery-11
@com
$amount

TIBCO SmartSockets C++ User’s Guide

X | Conventions Used in This Manual

Case

Function names are case-sensitive, and must use the mixed-case format you see in
the text. For example, TipcMsgCreate, TipcSrvStop, and
TipcMonClientMsgTrafficPoll are SmartSockets functions and must use the case
as shown.

Monitoring messages are also case-sensitive, and should be all upper case, such as
T_MT_MON_SERVER_NAMES POLL_CALL. This makes it easy to distinguish
them from option or function names.

Although option names are not case-sensitive, they are usually presented in text
with mixed case, to help distinguish them from commands or other items. For
example, Server_Names, Unique_Subject, and Project are all SmartSockets
options.

Identifiers used with the products in the SmartSockets family are not
case-sensitive. For example, the identifiers thermal and THERMAL are equivalent
in all processes.

In UNIX, shell commands and filenames are case-sensitive, though they might
not be in other operating systems, such as Windows. To make it easier to port
applications between operating systems, always specify filenames in lower case.

TIBCO SmartSockets C++ User’s Guide

Preface | xi

How to Contact TIBCO Support

For comments or problems with this manual or the software it addresses, please
contact TIBCO Support as follows.

For an overview of TIBCO Support, and information about getting started
with TIBCO Support, visit this site:

http://www.tibco.com/services/support
If you already have a valid maintenance or support contract, visit this site:
http://support.tibco.com

Entry to this site requires a user name and password. If you do not have a user
name, you can request one.

TIBCO SmartSockets C++ User’s Guide

xii | How to Contact TIBCO Support

TIBCO SmartSockets C++ User’s Guide

Chapter 1

Topics

Introduction to the C++ Class Library

SmartSockets Versions 6.2 and above include the sscpp class library. The sscpp
library is the preferred C++ class library for SmartSockets development. This
chapter provides an overview of the sscpp class library features.

Prior to Version 6.2, the only C++ library included with SmartSockets was the
cxxipc library. Although the old cxxipc library is maintained for backwards
compatibility, it does not include new SmartSockets features. For more
information on the cxxipc library, see the TIBCO SmartSockets cxxipc Class Library.

All new SmartSockets C++ development should use the sscpp library.
Throughout the rest of this book, the sscpp library is referred to as the C++ class
library.

The C++ class library includes:

= anamespace for SmartSockets

= support for multiple RTserver connections

= amodel for callbacks that does not require static callback methods
= an exception hierarchy that shows where errors occurred

= wrappers for select C utilities functions

= use of native types

The C++ class library reference documentation is available in HTML format.
Access the reference material from the HTML documentation interface. See the
TIBCO SmartSockets cxxipc Class Library for the cxxipc library.

e C++ Class Library Overview, page 2

e C++ Class Library Features, page 2

TIBCO SmartSockets C++ User’s Guide

1

2 | Chapter 1 Introduction to the C++ Class Library

C++ Class Library Overview

When working in C++, you interact with the SmartSockets C++ class library in
these ways:

= by constructing a C++ object using an appropriate class constructor, then
invoking the member functions of that object

= by invoking static member functions of a class without necessarily
constructing any particular objects of that class

= by deriving new C++ classes as subtypes of provided classes to extend or
otherwise modify the behavior of SmartSockets classes

This chapter describes some features of the SmartSockets C++ class library.
Additional reference material is available in HTML format. Access the reference
material from the HTML documentation interface.

The TIBCO SmartSockets User’s Guide, TIBCO SmartSockets Application
Programming Interface, and the TIBCO SmartSockets Utilities, which are companion
reference documents to this manual, describe RTserver and all other features
using the C programming language API. Most SmartSockets class member
functions are simple C++ wrappers around a corresponding C language API
function.

C++ Class Library Features

This library provides many new features not included in the cxxipc library,
including the SmartSockets namespace, use of native type names, improved
exception and callback handling, wrappers for utilities functions, and support for
multiple RTserver connections.

C++ Namespace

The C++ class library uses the SmartSockets namespace to simplify class names. If
there are conflicts between the SmartSockets C++ library and another library,
prefix SmartSockets class names with SmartSockets::. For example, TipcConn can
also be written as SmartSockets::TipcConn.

TIBCO SmartSockets C++ User’s Guide

C++ Class Library Features | 3

Native Type Names

This is a mapping of SmartSockets types to native C++ types:

Type Declared as:

T_INT1 intl
T_UINT1 uintl
T_TINT2 int2
T_UINT2 uint?2
T_INT4 int4
T_UINT4 uint4
T_TINT8 int8
T REAL4 reald
T_REALS real8
T_REAL16 reall6

Wherever possible, these names are also changed:

Name Changed to:

T_STR char *
T_PTR void *
T_BOOL bool

Exception Handling

The Exception class is used to categorize errors. The C++ class library explicitly
declares which exceptions are thrown from each class. The exception hierarchy
follows the main classes in the class hierarchy. For example, exceptions generated
from methods in the TipcMt class throw TipcMtException exceptions. See
Exception Handling on page 20 for more information on the Exception class.

TIBCO SmartSockets C++ User’s Guide

4 | Chapter 1 Introduction to the C++ Class Library

Constant Objects

The C++ class library uses the const indicator for all methods that do not modify
the contents of an object. For example, methods that received a literal string in the
cxxipc library now receive const char *.

Callback Support

Callback objects can now be passed as parameters into registration methods. If
registration is successful, the registration method returns a pointer to the callback
class and a template parameter showing the type of callback used. The callback

classes are:

< ConnectionCallBack < ErrorCallBack

= DecodeCallBack = MessageCallBack

= EncodeCallBack < MessageQueueCallBack

Utilities Function Wrappers

The C++ class library includes support for some Tut* functions from the C API.
These methods are in four new classes:

System — static methods that access the operating system
Utilities — static methods that access the SmartSockets application
Option — methods that create and configure options

XML — methods that manipulate XML objects

The classes and their methods, with their corresponding C API functions, are
shown in Table 1.

Table 1 Utilities Function Wrappers

Class Method Name C Function Name
System
exit TutExit
getFloatingPointFormat TutGetRealFormat
getintFormat TutGetintFormat
getTime TutGetWalltime

TIBCO SmartSockets C++ User’s Guide

Table 1 Utilities Function Wrappers

C++ Class Library Features | 5

Class Method Name C Function Name
runCommand TutSystem
sleep TutSleep

Utilities

getSocketDir

TutGetSocketDir

getVersionName

TutGetVersionName

getVersionNumber

TutGetVersionNumber

parseCommandFile

TutCommandParseFile

parseCommandString

TutCommandParseString

parseTypedCommandString

TutCommandParseTypedString

Option

create

TutOptionCreate

destroyOption

TutOptionDestroy

getBool

TutOptionGetBool

getEnum

TutOptionGetEnum

getEnumList

TutOptionGetEnumList

getName

TutOptionGetName

getReadOnly

TutOptionGetReadOnly

getReal8

TutOptionGetNum

getRequired

TutOptionGetRequired

getString

TutOptionGetStr

getStringList

TutOptionGetStrList

getType

TutOptionGetType

isKknown

TutOptionGetKnown

TIBCO SmartSockets C++ User’s Guide

6 | Chapter 1 Introduction to the C++ Class Library

Table 1 Utilities Function Wrappers

Class Method Name C Function Name
option constructor TutOptionLookup
optionChangeCbCreate TutOptionChangeChCreate
setBool TutOptionSetBool
setEnum TutOptionSetEnum
setEnumList TutOptionSetEnumList
setReadOnly TutOptionSetReadOnly
setReal8 TutOptionSetNum
setRequired TutOptionSetRequired
setString TutOptionSetStr
setStringList TutOptionSetStrList
setUnKnown TutOptionSetUnknown

XML
clone TutXmiClone
createFromStaticBuf TutXmiCreateStatic
getString TutXmlGetStr
option constructor TutXmlCreate
setString TutXmlSetStr

TIBCO SmartSockets C++ User’s Guide

C++ Class Library Features

Multiple Connection Support

The C++ class library supports multiple connections, allowing an RTclient to
connect to multiple RTservers. Multiple connections are supported by TipcSrv
class, in conjunction with these methods and classes:

setCredentials — the TipcSrv class includes the method setCredentials, which
sets credentials for the connection. This allows you to use any credential
mechanism, such as a certificate or user name and password, to authenticate a
client application before it joins the RTserver cloud.

TipcSrvCache — the TipcSrvCache class allows you to store messages in a
memory cache. Use the setSubscribeCache method in the TipcSrv class to
enable caching.

TipcDispatcher — the TipcDispatcher class creates RTclient dispatchers. A
dispatcher manages events and incoming messages. For more information on
dispatchers, see the TIBCO SmartSockets User’s Guide.

TipcEvent — the TipcEvent class creates events. Events are objects registered
in a dispatcher. There are five kinds of events: connection, message, socket,
timer, and user. For more information on events, see the TIBCO SmartSockets
User’s Guide.

TipcMon — The TipcMon class works with the TipcSrv class to monitor
various aspects of a SmartSockets application. In RTclients using multiple
connections, a reference to the connection where monitoring operations are
carried out is a necessary parameter.

Extension data from RTclients, which is data created within an RTclient, can be
monitored by another RTclient with the TipcMonExt* or TipcSrvMonExt*
APIs. The RTserver is not involved in generating this kind of monitoring
information.

The C++ class library has the same advantages and limitations as the
SmartSockets multiple connections API. Some SmartSockets commands, such as
connect, disconnect, subscribe, and unsubscribe, cannot be used with C++.

TIBCO SmartSockets C++ User’s Guide

7

8 | Chapter 1 Introduction to the C++ Class Library

TIBCO SmartSockets C++ User’s Guide

Chapter 2

Topics

9

Using the C++ Class Library

This chapter introduces a simple C++ TIBCO SmartSockets application using the
C++ class library. The mechanics of compiling and linking applications using the
class library are also included.

= Example: C++ TIBCO SmartSockets Application, page 10
= Exception Handling, page 20

= Include Files, page 22

= Source File Distribution, page 23

= Using Threads, page 26

TIBCO SmartSockets C++ User’s Guide

10 | Chapter 2 Using the C++ Class Library

Example: C++ TIBCO SmartSockets Application

These two C++ language example programs illustrate a simple SmartSockets
application that uses the C++ class library. The first program, the sender program,
uses the RTserver to publish a message consisting of two strings to the receiver

program.

The files needed to compile, link, and run the example programs are located in

this directory:

UNIX:
$RTHOME/examples/sscpp

Windows:
%RTHOME%\ examples\sscpp

The Sender Program

11
13
14

15
16

int main(int argc, char

The sender example is a program written in C++ that uses the RTserver to publish
two strings in the message to another program. A discussion of the highlights

follows the program example.

#include <rtworks/sscpp.h>

using namespace SmartSockets;

**argv)
TipcSrv *srv;

/I Set the name of the project.
try {
Option opt("project");
opt.setEnum("ipc_example");
}
catch (OptionException oe) {
Utilities::out("Error creating options: %s\n", oe.what());
return T EXIT_ FAILURE;

}

/I Connect to RTserver, and open the connection.

try {
srv = new TipcSrv("", NULL, NULL, NULL);
srv->open() ;

¥

catch (TipcSrvException se) {

Utilities::out("Error in creating connection: %s\n", se.what());

return T EXIT_ FAILURE;
}

TIBCO SmartSockets C++ User’s Guide

17
18
19

20
21
22
23

24
25
26

27
28

30

31
32

33

34

Example: C++ TIBCO SmartSockets Application

/I Create a message.
TipcMsg msg(T_MT_STRING_DATA);
try {
msg.setDest((const char*)"demo");

// Build the message with two string fields: "x"* and ""Hello World".
msg << (const char*)"x" << (const char*)"Hello World";
if (!'msg) {
Utilities::out("Error appending fields of TipcMsg object.\n");
return T_EXIT_ FAILURE;
}
}
catch (TipcMsgException me) {
Utilities::out("Error in creating and appending message: %s\n", me.what());
return T EXIT_ FAILURE;
}

// Send the message.
try {
srv->send(msg) ;
srv->flush();
srv->close();
}
catch (TipcSrvException se) {
Utilities::out("Error in sending message through the connection: %s\n",
se.what());
return T EXIT_ FAILURE;

return T_EXIT SUCCESS;
} // main

Some things to notice about the sender program:

Linel The first line of the program, #include <rtworks/sscpp.h>, must
be included in every program that uses the SmartSockets C++ class
library. It contains a series of #include statements for the various
header files of the class library.

Line 2 Sets the SmartSockets namespace. The SmartSockets namespace
prevents naming conflicts between SmartSockets and other
applications.

Lines 6-7 The Option constructor creates a project, and the setEnum method
sets project name for the sender program. The receiver program uses
the same project name. See the TIBCO SmartSockets User’s Guide for
more information on project names.

Lines 12-13 Obtains a handle to a TipcSrv object, then creates and opens a
connection to RTserver. By default, this creates a full connection.

TIBCO SmartSockets C++ User’s Guide

11

12 | Chapter 2 Using the C++ Class Library

Lines 17-19 Constructs a TipcMsg object by passing the T_MT_STRING_DATA
message type as an argument to the constructor. The message
destination is set to demo. See the TIBCO SmartSockets User’s Guide for
more information on the destination property of messages.

Line 20 Appends data fields to the TipcMsg object. This example illustrates a
means of appending data that is unique to the C++ class library as
compared to the C API. Data is appended by using overloaded
insertion operators in a function chain. Data can also be appended
using the overloaded TipcMsg::append member function, which
provides an interface similar to the C API TipcMsgAppend*

functions.

Lines 28-30 Publishes the message and closes the connection to RTserver by
calling the TipcSrv member functions TipcSrv::send, TipcSrv::flush,

and TipcSrv::close.

The Receiver Program

N O u

10

11
12
13

14

The receiver example is a program written in C++ that uses the RTserver to
receive two strings in the message from another program. A discussion of the

highlights follows the program example.

#include <rtworks/sscpp.h>

using namespace SmartSockets;

int main(int argc, char **argv)

{

TipcSrv *srv;

/ Set the name of the project.
try {
Option opt("project");
opt.setEnum("ipc_example");
}
catch (OptionException oe) {

Utilities::out("Error creating options: %s\n"

return T_EXIT_FAILURE;

}
/I Connect to RTserver, and open the connection.
try {
srv = new TipcSrv("", NULL, NULL, NULL);

srv->open();

, oe.what());

/I Subscribe to receive any messages published to the "demo™ subject.

srv->setSubscribe((const char*)"demo");

TIBCO SmartSockets C++ User’s Guide

15
16
17

18
19

20

22

23

24

25
26
27

28

29
30
31
32

33
34
35

36
37

38

catch (TipcSrvException se)

{

Utilities::out("Error in creating connection:

return T EXIT_ FAILURE;
}

const char *var_name;
const char *var_value;

/I Get the next incoming message.
try {
TipcMsg msg;

Example: C++ TIBCO SmartSockets Application

if(!srv->nextEx(msg, T_TIMEOUT_FOREVER))

{

Utilities::out("Timeout reached.\n");

return T EXIT FAILURE;
}

if (!msg) {

%s\n", se.what());

Utilities::out("Error creating TipcMsg object.\n");

return T EXIT FAILURE;
}

/I Set the pointer to first field in message
msg.setCurrent(0);

// Extract the information from the received message.
msg >> var_name >> var_value H
if (Imsg) {

Utilities::out("Error reading fields of TipcMsg object.\n");

return T EXIT FAILURE;
}

}
catch(TipcMsgException me) {

Utilities::out("Error in TipMsg class:

return T EXIT_ FAILURE;
}

// Display the values on stdout.
Utilities::out("Variable Name = %s\n",
Utilities::out("Variable Value %s\n" ,

srv->close();
return T_EXIT_SUCCESS;
3 //main

%s\n", me.

var_name) ;
var_value) ;

what());

TIBCO SmartSockets C++ User’s Guide

13

14 | Chapter 2 Using the C++ Class Library

Some things to notice about the receiver program:

Line 1

Line 2

Lines 6-7

Lines 12-13

Line 14

Lines 21-22

Line 28

Line 29

Lines 36-37

The first line of the program, #include <rtworks/sscpp.h>, must
be included in every program that uses the SmartSockets C++ class
library. It contains a series of #include statements for the various
header files of the class library.

Sets the SmartSockets namespace. The SmartSockets namespace
prevents naming conflicts between SmartSockets and other
applications.

The Option constructor creates a project, and the setEnum method
sets project name for the receiver program. The sender program uses
the same project name.

Obtains a handle to a TipcSrv object, then creates and opens a
connection to RTserver.

Subscribes to the subject, demo, by calling the TipcSrv::setSubscribe
member function. Note that the sender program designated demo as
the destination of the message. See the TIBCO SmartSockets User’s
Guide for information about subjects.

Creates a TipcMsg object and calls the TipcSrv::nextEx member
function, with T_TIMEOUT_FOREVER and the TipcMsg object as
arguments to the call.

The result of the nextEx member function is the TipcMsg object or a
NULL.

After receiving a message from RTserver, the receiver program sets
the pointer to first field in message with the TipcMsg::setCurrent
member function.

Extracts the data fields from the message with a C++ function chain
of overloaded extraction operators. Data are also extracted using the
overloaded TipcMsg::next member functions, which provide an
interface similar to the C API TipcMsgNext* functions.

Displays the values of the data fields by outputting the data using the
Utilities::out method.

This example avoids using cout from IOSTREAM. Some SmartSockets functions
%} use Utilities::out to display status information. Because Utilities::out uses the

stdout stream and cout typically uses its own output stream, use Utilities::out in

RTclient programs, rather than cout, so that output prints in sequential order.

TIBCO SmartSockets C++ User’s Guide

Example: C++ TIBCO SmartSockets Application

Compiling, Linking, and Running

Step 1

Step 2

Step 3

Follow these steps to compile, link, and run the sender and receiver example
programs.
Copy the sndr.cxx and rcvr.cxx programs

To compile, link, and run the example programs, you must copy the programs to
your own directory. The programs are located in this directory:

UNIX:
$RTHOME/examples/sscpp

Windows:
%RTHOME%\ examples\sscpp

Start the RTserver

If RTserver is not already running, start it;

UNIX:

$ rtserver

Windows:
$ rtserver

On platforms that support both 32- and 64-bit, use the rtserver64 command to
run the 64-bit version of the rtserver script.

Compile and link the sender and receiver programs

Use these commands to compile and link the programs:

UNIX:

$ rtlink -cpp -o sndr.x sndr.cxx
$ rtlink -cpp -o rcvr.x rcvr.cxx

Windows:
$ nmake /f sndrw32m.mak
$ nmake /f rcvrw32m.mak

TIBCO SmartSockets C++ User’s Guide

15

16 | Chapter 2 Using the C++ Class Library

Step 4

Step 5

On a UNIX system the rt1ink command by default uses the C compiler cc
command to compile and link. Specifying the -cpp flag tells rt1ink to use the
native C++ compiler (for example, on a Solaris platform the compiler is named
cc) and adds the SmartSockets C++ class library to the list of libraries to be linked
into the executable. To use a C++ compiler other than the default compiler, set the
environment variable cc to the name of the compiler. rt1ink then uses this
compiler.

For example, these commands are used to compile and link on UNIX with the
GNU C++ compiler g++:

UNIX:

$ env CC=g++ rtlink -cpp -o sndr.x sndr.cxx
$ env CC=g++ rtlink -cpp -o rcvr.x rcvr.cxx

Start the receiver program

To run the programs, start the receiving process first in one window and then the
sending process in another terminal emulator window.

Start up the receiving program in the first window:

UNIX:

$ rcvr.x

Windows:
$ rcvr.exe

Start the sender program

In a separate window from where the receiving program is running, start up the
sending program:

UNIX:

$ sndr.x

Windows:
$ sndr.exe

TIBCO SmartSockets C++ User’s Guide

Program Output

Example: C++ TIBCO SmartSockets Application

The output from the sending process is similar to this:

Connecting to project <ipc_example> on <_node> RTserver
Using tcp protocol

Message from RTserver: Connection established.

Start subscribing to subject </_workstationl 6607>

The output from the receiving process is similar to this:

Connecting to project <ipc_example> on <_node> RTserver
Using tcp protocol

Message from RTserver: Connection established.

Start subscribing to subject </_workstationl_6605>
Variable Name = x

Variable Value = Hello World

Using Callbacks to Process Messages

The receiver program can also be written to use callbacks for message processing.
The rcvrcb. cxx example program, like the receiver program, uses the RTserver
to receive two strings in the message from another program. However, the

rcvrceb. cxx program reads and processes the received message within a callback.

A discussion of the highlights follows the program example.

1 #include <rtworks/sscpp.h>

2 using namespace SmartSockets;

I

//..numcb -- numeric data callback

3 class msg_cb
4 public MessageCallBack
{
5 public:
6 virtual void onMessage (CallBack<MessageCallBack>* callback,
TipcMsg & msg,
TipcConn & conn)
{
7 Utilities::out("Entering msg_cb.\n");
8 const char *var_name;
9 const char *var_value;
10 try {
11 msg.setCurrent(0);
/I Extract the information from the received message.
12 msg >> var_name >> var_value;
13 if (!msg) {
14 Utilities::out("Error reading fields of TipcMsg object.\n");
}

}

TIBCO SmartSockets C++ User’s Guide

17

18 | Chapter 2 Using the C++ Class Library

15 catch(TipcMsgException me) {
16 Utilities::out("Error in TipMsg class: %s\n", me.what());
}
// Display the values on stdout.

17 Utilities::out("Variable Name = %s\n'", var_name);
18 Utilities::out("Variable Value = %s\n'", var_value);

¥

}
19 dint main(int argc, char **argv)
{

20 TipcSrv *srv;
21 msg_cb *mcb = new msg_cb();
22 CallBack<MessageCallBack>* cb;

/ Set the name of the project.
23 try {
24 Option opt("project");
25 opt.setEnum("ipc_example");

}
26 catch (OptionException oe) {
27 Utilities::out("Error creating options: %s\n", oe.what());
28 return T_EXIT FATILURE;

}

/I Connect to RTserver, and open the connection.
29 try {
30 srv = new TipcSrv("", NULL, NULL, NULL);
31 srv->open() ;

/I Subscribe to receive any messages published to the "demo™ subject.

32 srv->setSubscribe((const char*)"demo");
}
33 catch (TipcSrvException se)
{
34 Utilities::out("Error in creating connection: %s\n", se.what());
35 return T EXIT_ FAILURE;
}

/1 process callback for STRING_DATA
36 try {

37 TipcMt mt = TipcMt: :lookup(T_MT_STRING_DATA);
38 CallBack<MessageCallBack>* cb = srv->processCbCreate(mt, mcb);
}
39 catch (TipcMtException mte) {
40 Utilities::out("Exception on mt lookup for STRING_DATA. %s\n", mte.what());
41 return T EXIT_ FAILURE;
}
42 catch (TipcSrvException srve) A{
43 Utilities::out("Error in creating process callback. %s\n", srve.what());
44 return T EXIT_ FAILURE;
}
45 try {
46 srv->mainLoop(45.0);
}

TIBCO SmartSockets C++ User’s Guide

47
48
49

50

51
52

53
54

Example: C++ TIBCO SmartSockets Application

catch (TipcSrvException se) {
if (se.getErrNum()
Utilities::out("Server main loop failed.\n");

}

!= T_ERR_TIMEOUT_REACHED) {

Utilities::out("Exception in mainloop. %s\n", se.what());

}

cb->destroy();

delete mchb;

srv->close();
return T_EXIT_SUCCESS;

} /I main

Some things to notice about the rcvrcb. cxx program:

Lines 3-18

Line 6
Line 21
Lines 22-35

Line 37
Line 38
Lines 39-44

Line 46

Lines 51-52

The declaration of the callback structure. In the callback, messages
are processed as they were in lines 28-37 of the receiver program, on
page 12.

The onMessage method is the default callback message handler.
Creates a callback on RTserver.

Creates a project and sets the project name, creates and opens a
connection to RTserver, and subscribes to the subject, demo. These
lines correspond to lines 5-17 in the receiver program, on page 12.

Creates a message type object of type T_MT_STRING_DATA.
Creates a callback using processCbCreate.

Provides exception handling if the program cannot find the message
type or cannot create the callback.

Uses the mainLoop method to check for messages for 45 seconds.
Any messages received during that time are processed by the
callback.

Destroys the callback and frees up the memory.

TIBCO SmartSockets C++ User’s Guide

19

20 | Chapter 2 Using the C++ Class Library

Exception Handling

Most of the SmartSockets functions return FALSE on failure, and TRUE on success.
The corresponding C++ member functions throw exceptions on failure. Each class
in the C++ library has an associated exception class.

A block written in C looks similar to this:

if (!TipcMsgAppendStr(msg, "voltage")) {
TutOut("Could not append first field.\n");
return T_EXIT FAILURE;

¥

In C++, this same code looks similar to this:

try {
msg << "voltage";

}

catch (TipcMsgException msge) {
TutOut("Could not append first field.\n");
return T_EXIT FAILURE;

}

In the next example, TipcMsg::getDest calls the C function TipcMsgGetDest. If the
C API returns FALSE, then a TipcMsgException exception is thrown to the user:

/* */
[*.. TipcMsg::dest -- get the destination property of a message */

const char * TipcMsg::getDest() const throw (TipcMsgException)

{

char * dest_return = (char *)""; [/linitialize variable

if (!TipcMsgGetDest(_msg, &dest_return))

throw TipcMsgException();

return const_cast<const char*> (dest_return);
¥
Use the try/catch block to handle unexpected behavior from the member
function:
try {

TipcMsg msg;
char* the_dest = (char *)msg.getDest();
¥
catch (TipcMsgException msge) {
// handle the error
¥

TIBCO SmartSockets C++ User’s Guide

Exception Handling | 21

Exception Class Hierarchy

Each main class in the C++ library has an associated Exception class. The
exception hierarchy follows the main classes in the class hierarchy. For example,
exceptions generated from methods in the TipcMt class throw TipcMtException
exceptions. Figure 1 shows the Exception class hierarchy.

Figure 1 Exception Class Inheritance Hierarchy

—— CallBackException

——— TipcMsgException

——— ExceptionNames

. TipcMsgFileException

. SystemException

——— TipcConnException —— TipcSrvException

Exception —
TipcMtException

- TipcDispatcherException
| TipcSrvCacheException
——— TipcEventException
—— UtilitiesException

— TipcMonException

- XMLException

TIBCO SmartSockets C++ User’s Guide

22 | Chapter 2 Using the C++ Class Library

Exception Class Features

Include Files

Each Exception class includes these member functions, which retrieve
information about errors that are generated:

= what — retrieves the descriptive string associated with the SmartSockets error
number

= getErrNum — retrieves the SmartSockets error number

= getOSErrNum — retrieves the error number for an operating system error
= getSocketErrNum — retrieves the error number for a socket error

e getCErrNum — retrieves the error number for a C error

For more information on all error codes, see the TIBCO SmartSockets API Quick
Reference.

Each . cxx source file has a corresponding . h header file containing the
declaration of a SmartSockets class. Code written in C++ that uses the C++ class
library must include the header file sscpp.h, which is located in this directory:

UNIX:
$RTHOME/include/$RTARCH/rtworks

Windows:
%RTHOME%\include\rtworks

This include file automatically includes all the header files used for interprocess
communication using the C++ class library.

TIBCO SmartSockets C++ User’s Guide

Source File Distribution | 23

Source File Distribution

The C++ class library is distributed in binary and source code format.

The Binary Library

The binary library, whose suffix may differ according to platform, is included
with the SmartSockets distribution in these directories:

UNIX:
$RTHOME/1ib/$RTARCH/librtsscpp50.so

Windows:
%RTHOME%\1ib\%RTARCH%\tsscpp.lib

The binaries are compiled with a native compiler from a vendor’s platform. For
example, a Sun SPARCompiler was used to compile binaries for Solaris.

The Source Code

Because C++ compilers do not necessarily generate binary code that is compatible
with other C++ compilers, the C++ source is also distributed so that you can
compile the class library with a C++ compiler compatible with your environment.
The source files are located in this directory:

UNIX:
$RTHOME/source/sscpp

Windows:
%RTHOME%\ source\sscpp

A sample makefile is included with the source files to build the C++ library. The
library name produced and the name of the directory are:

UNIX:
$RTHOME/1ib/$RTARCH/1libsscpp.a

Windows:
%RTHOME%\1ib\%RTARCH%\sscpp.lib

On UNIX, the sample makefile builds the library with the Sun WorkShop C++
compiler, ccC.

TIBCO SmartSockets C++ User’s Guide

24 | Chapter 2 Using the C++ Class Library

This makefile does not overwrite the TIBCO library from the product distribution.

Source File Organization

The source file organization is:

Table 2 SmartSockets Source File Organization

SmartSockets C++ Class

Source File Implementation

tcallbck.cxx CallBack
ConnectionCallBack
DecodeCallBack
EncodeCallBack
ErrorCallBack
MessageCallBack
MessageQueueCallBack

tconn.cxx TipcConn
TipcConnServer
TipcConnClient

TipcConnSearchSelector

tdisp.cxx TipcDispatcher

TipcDispatcherTraverser

tevent.cxx TipcEvent
ConnEvent
MessageEvent
SocketEvent

TimeEvent

TIBCO SmartSockets C++ User’s Guide

Source File Distribution | 25

Table 2 SmartSockets Source File Organization

SmartSockets C++ Class
Implementation

Source File

tex.cxx Exception
CallBackException
SystemException
TipcConnException
TipcSrvException
TipcDispatcherException
TipcEventException
TipcMonException
TipcMsgException
TipcMsgFileException
TipcMtException
TipcSrvCacheException
UtilitiesException
XMLException

texnames.cxx ExceptionNames

tmon.cxx TipcMon

tmsg.cxx TipCMSg

TipcMsgTraverser

tmsgfile.cxx TipcMsgFile

tmsgname . cxx TipcMsgManipName

tmsgsize.cxx TipcMsgManipSize

tmt.cxx Tipth

TipcMtTraverser

toption.cxx Option

OptionChangeCallBack

TIBCO SmartSockets C++ User’s Guide

26 | Chapter 2 Using the C++ Class Library

Table 2 SmartSockets Source File Organization

SmartSockets C++ Class

e e Implementation
tscache.cxx TipcSrvCache
tsTrv.cxx TipcSrv
tsystem.cxx System
tutil.cxx Utilities

txml . cxx XML

Using Threads

To use threads in your application, you must initialize them. Programs that call
SmartSockets methods from more than one thread must first call
Utilities::initThreads, even if they do not use any of the other thread methods.
Utilities::initThreads initializes the thread APl and turns on internal thread
synchronization calls. This protects the integrity of the library’s internal data
structures.

If threads are used in a program, Utilities::initThreads must be called before any
other SmartSockets method. This member function calls the TipcInitThreads
function in C. See the TIBCO SmartSockets Utilities for more details on the threads
API.

TIBCO SmartSockets C++ User’s Guide

Index

C

caching 7
callbacks 4, 17
case sensitivity x

on UNIX and Windows x
connections

multiple connections 7
const indicator 4
constant objects 4
cout

in SmartSockets programs 14
credentials 7
customer support Xxi

D

dispatchers 7
documentation vii

E

error handling 3

events 7

exception handling 3
extension data, monitoring 7

F

file names
specifying x

functions
case-sensitivity X
utility 4

H

header file

include files 22
hierarchical namespace

see namespace
HTML

documentation vii

identifiers
case sensitivity X
include files
header file 22

M

memory cache 7
messages
accessing data fields 14
appending data fields 12
case sensitivity X
processing using callbacks 17
monitoring
RTclient data 7
SmartSockets data 7
multiple connections 7

TIBCO SmartSockets C++ User’s Guide

27

28 | Index

N T
namespace technical support xi
SmartSockets namespace 2 TipcMon
native type names 3 monitoring RTclient data 7
monitoring SmartSockets data 7
TipcMsg
accessing data fields 14
O appending data fields 12
TipcSrv
options monitoring RTclient data 7
case sensitivity X monitoring SmartSockets data 7

SubjectSubscribe 14
subscribing to a subject 14

R

RTclient extension data, monitoring 7 U
rtserver64 command 15
utility functions 4

wrappers 4
S
shell commands W
specifying x
SmartSockets C++ Class Library wrappers 2

an example 10
SmartSockets namespace 2
source files

binary library 23

distribution 23

organization 24

source code 23
sscpp class library 1

features 2
support, contacting xi

TIBCO SmartSockets C++ User’s Guide

	TIBCO SmartSockets™
	Contents
	Preface
	Intended Audience
	Related Documentation
	TIBCO Product Documentation

	Using the Online Documentation
	Conventions Used in This Manual
	Typeface Conventions
	Notational Conventions
	Identifiers
	Case

	How to Contact TIBCO Support

	Chapter 1 Introduction to the C++ Class Library
	C++ Class Library Overview
	C++ Class Library Features
	C++ Namespace
	Native Type Names
	Exception Handling
	Constant Objects
	Callback Support
	Utilities Function Wrappers
	Multiple Connection Support

	Chapter 2 Using the C++ Class Library
	Example: C++ TIBCO SmartSockets Application
	The Sender Program
	The Receiver Program
	Compiling, Linking, and Running
	Using Callbacks to Process Messages

	Exception Handling
	Exception Class Hierarchy
	Exception Class Features

	Include Files
	Source File Distribution
	The Binary Library
	The Source Code
	Source File Organization

	Using Threads

	Index

