
2.2
R E L E A S E N O T E S

GNU Toolchain

T O R N A D O

Copyright 2002 Wind River Systems, Inc.

ALL RIGHTS RESERVED. No part of this publication may be copied in any form, by photocopy,
microfilm, retrieval system, or by any other means now known or hereafter invented without the prior
written permission of Wind River Systems, Inc.

AutoCode, Embedded Internet, Epilogue, ESp, FastJ, IxWorks, MATRIXX, pRISM, pRISM+, pSOS,
RouterWare, Tornado, VxWorks, wind, WindNavigator, Wind River Systems, WinRouter, and Xmath are
registered trademarks or service marks of Wind River Systems, Inc.

Attaché Plus, BetterState, Doctor Design, Embedded Desktop, Emissary, Envoy, How Smart Things Think,
HTMLWorks, MotorWorks, OSEKWorks, Personal JWorks, pSOS+, pSOSim, pSOSystem, SingleStep,
SNiFF+, VxDCOM, VxFusion, VxMP, VxSim, VxVMI, Wind Foundation Classes, WindC++, WindManage,
WindNet, Wind River, WindSurf, and WindView are trademarks or service marks of Wind River Systems,
Inc. This is a partial list. For a complete list of Wind River trademarks and service marks, see the following
URL:

http://www.windriver.com/corporate/html/trademark.html

Use of the above marks without the express written permission of Wind River Systems, Inc. is prohibited.
All other trademarks mentioned herein are the property of their respective owners.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): 800/545-WIND
telephone: 510/748-4100
facsimile: 510/749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

GNU Toolchain for Tornado Release Notes, 2.2

31 Jul 02
Part #: DOC-14511-ZD-01

Contents
1 Introduction .. 1

2 General Changes .. 1

3 An Important Note About Aggressive Alias Analysis ... 2

4 G++ Changes .. 3

Code Generation and Optimization .. 3
Namespaces .. 4
Template Handling .. 5
Exception Handling ... 5
Other New Features ... 5

5 GCC Changes ... 6

Error Handling ... 6
Code Generation and Optimization .. 6
Compiler Optimizations ... 7
New Features .. 8
Changes for the ARM Architecture Family 8
Changes for the MIPS Architecture Family 9
Changes for the Pentium Architecture Family 9
Changes for the PowerPC Architecture Family 9
Changes for the SPARC Architecture Family 13
Changes for the StrongARM Architecture Family 14
Changes for the SuperH Architecture Family 14
iii

GNU Toolchain for Tornado 2.2
Release Notes
6 Extensions for AltiVec Support ... 14

GDB Changes ... 14
WDB Changes .. 15

7 Binutils .. 15

8 Assembler ... 17

9 Linker ... 19

10 Benchmark Test Results .. 20

10.0.1 Compilation Time Reports ... 20

Host Machine Configuration ... 20
Command-Line Compilation Options ... 21
Results ... 22

10.0.2 Performance Time Reports ... 22

Pentium Target Architectures .. 23
PowerPC Target Architectures ... 23
Hitachi Target Architectures .. 24
MIPS Target Architecture ... 24

11 Known Problems .. 25

12 Customer Services ... 25
iv

GNU Toolchain
for Tornado

Release Notes

2.2
1. Introduction

The Tornado GNU compiler in this distribution is called 2.96+. It is not related to
the Red Hat compiler distributed with Red Hat Linux 7.0. The identical name is an
unfortunate coincidence. This distribution is three years newer than the Tornado
2.0 C compiler, and about a year newer than the Tornado 2.0 C++ compiler. These
release notes list the extensive changes and enhancements that have been made in
that time.

Documentation for this Tornado GNU compiler is provided in HTML only. The
GNU Toolkit User’s Guide, the GDB User’s Guide, and the GNU Make User’s Guide are
accessible from installDir/docs/books.html and from the Tornado Help menu. The
only part of the GNU toolchain available for ColdFire is binutils.

2. General Changes

Following is a list of changes for existing Tornado 2.0 customers:

� Windows tools are built using cygwin32, rather than the Microsoft libraries.
This appears to improve reliability.

� The GNU Assembler Pre-processor (GASP) has been merged into the
assembler and no longer exists as a separate command. Additional C++ code
compiled with the Tornado 2.0 compiler is not compatible with code produced
1

GNU Toolchain for Tornado 2.2
Release Notes
by the current version of the compiler. Existing C++ code must be rebuilt with
the new compiler.

� Similarly, existing Tornado 2.0 projects are not compatible with the new
toolchains. It is recommended that you recreate your projects after installing
this release.

� The -nostdinc compiler flag should no longer be used. If you have pre-existing
custom makefiles, you may need to remove this flag from your compile rules.

� If you get compiler errors such as “stddef.h: No such file or directory,” you
probably need to recreate your project or remove the -nostdinc compile flag
from your makefile, as explained above.

� The C++ header files and some C header files (131 files in all) have been moved
from installDir/target/h to various include directories under
installDir/host/hostType. For example, the C++ Standard Template Library
(STL) headers no longer appear in target/h. You do not need to do anything
unusual to get the compiler to find the headers in the new location; just make
sure you do not use the -nostdinc flag.

� The x86 compiler is now called ccpentium rather than cc386. If you have
custom makefiles and wish to generate code for a 386 (or 486), you must
change your compile rules to use the flags -mcpu=i386 -march=i386 (or
-mcpu=i486 -march=i486).

3. An Important Note About Aggressive Alias Analysis

This version of the GNU compiler performs much stricter alias analysis than
previous versions. Strictly incorrect (according to ANSI/ISO) C code that worked
with older compilers may now produce unexpected results when built with the
current compiler. For example, the following code is not portable ANSI/ISO C
(because it attempts to access an int through a pointer to an unsigned short):

#include <stdio.h>

int
main ()

{
int a = 0x12345678;
unsigned short *b = (unsigned short *)&a;
2

4
G++ Changes
printf ("%x\n", a);
b[1] = 0;
printf ("%x\n", a);

return 0;
}

Does the above program always print:

a) 12345678 or 12345678 (depending on endianness)
12340000 5678

or does it print:

b) 12345678
12345678

or does it print neither?

According to the C standard, the answer is undefined. With older compilers (those
without type-based aliasing) the result would always be a; with this version, and
with newer compilers that have more powerful optimizers, it is more common to
see b (if optimization flags are used).

You can turn off alias analysis (and allow old, “buggy” code to compile) by using
the -fno-strict-aliasing compiler flag. However, you will then lose all the
optimizations and speed improvements that come from doing aggressive alias
analysis.

Please see the description of -fstrict-aliasing in the online manual for more
information.

4. G++ Changes

This section summarizes changes and enhancements to the C++ compiler.

Code Generation and Optimization

This release reduces support for code that fails to meet the current C++ standard.
In the past, that code would have generated a warning message; now it generates
an error.
3

GNU Toolchain for Tornado 2.2
Release Notes
� For non-conforming code that can be handled, the errors can be reverted to
warnings with the -fpermissive option.

� You can now use -fno-implicit-inline-templates to suppress writing out
implicit instantiations of inline templates. Normally, they are written out, even
with -fno-implicit-templates, so that optimization does not affect which
instantiations are needed.

� -fstrict-prototype now also suppresses implicit declarations.

� On ELF systems, duplicate copies of symbols with initialized common linkage
(such as template instantiations, vtables, and extern inlines) are now discarded
by the GNU linker, so -frepo is not required. This support requires GNU ld()
from binutils 2.8 or later, which was not present in the Tornado 2.0 version.

Namespaces

Namespaces are fully supported, except that appropriate STABS or DWARF 2.0
debugging codes are not generated for similarly named data in different
namespaces. You should insure for now that your data names are unique, even
across namespaces. The library has not yet been converted to use the namespace
std, however, and the old std-faking code is still on by default. To turn it off, you
can use -fhonor-std.

Namespaces are supported within the limits specified below:

compilers
Namespaces are fully supported by the compilers except for a bug; no STABS
or DWARF 2.0 record is generated for namespace or using statements. All data
names, regardless of namespace, appear in the global namespace.

libraries
The C and C++ library names are not yet hidden inside the std:: namespace.
You should continue to avoid reusing documented standard library names.

debugger, StethoScope
The debugger and StethoScope can process functions within namespaces, but
not data.
4

4
G++ Changes
Template Handling

Substantial template improvements include the following:

� Member template classes are supported.

� Template friends are supported.

� Template parameters are supported.

� Local classes in templates are supported.

The C++ Standard Template Library for this release corresponds to SGI version
3.11.

Exception Handling

Changes and improvements to exception handling include the following:

� Exception handling is now thread-safe, and supports nested exceptions and
placement delete.

� The new operator now throws bad_alloc where appropriate.

� This release includes some changes to reduce static overhead for exception
handling. It also includes some major changes to the setjmp/longjmp-based
exception handling mechanism to make it less pessimistic.

For AltiVec-specific information, see C++ Exception Handling and AltiVec Support,
p.11.

Other New Features

General features that are new since the last release include the following:

� String constants are now of type const char[n], rather than char[n]. This can be
reversed with -fno-const-strings.

� References to functions such as &funcName(...) are now supported.

� Lookup of class members during class definition now works in all cases.

� In overload resolution, type conversion operators are now properly treated as
always coming from the most derived class.

� C9x-style restricted pointers are supported, using the __restrict keyword.
5

GNU Toolchain for Tornado 2.2
Release Notes
� Many obsolete options have been removed, including -fall-virtual,
-fmemoize-lookups, -fsave-memoized, +e?, -fenum-int-equivalence,
-fno-nonnull-objects.

� Protected virtual inheritance is now supported.

� For class D derived from B which has a member int i, &D::i is now of type
int B::* instead of int D::*.

� Loops are now optimized better; in most cases, the test now occurs at the end
of the loop, as is the case with the C front-end.

5. GCC Changes

This section summarizes changes to the C compiler.

Error Handling

Error handling has been improved; code that used to compile without error may
now generate errors. These errors represent previously unreported deviations
from the ANSI standard.

Code Generation and Optimization

Changes and enhancements to code generation and optimization include the
following:

� The compiler now implements global common sub-expression elimination
(GCSE) as well as global constant/copy propagation.

� Major improvements have been made to the alias analysis code. A new option
to allow front-ends to provide alias information to the optimizers has also been
added (-fstrict-aliasing). -fstrict-aliasing is on by default. For more
information, see 3. An Important Note About Aggressive Alias Analysis, p.2.

� The security problem with temporary file permissions has been fixed.
6

5
GCC Changes
� The register move optimization pass has been extensively rewritten. It now
uses much more information about the target to determine the profitability of
transformations.

� The compiler now recomputes register usage information immediately before
register allocation. Previously, such information was not kept up to date after
instruction combination, which led to poor register allocation choices by the
priority-based register allocator.

� The register reloading phase of the compiler has been improved to better
optimize spill code. This primarily helps targets that generate many spills
(including the Pentium ports and many register-poor embedded ports).

� A few changes in the heuristics used by the register allocator and scheduler
have been made that can significantly improve performance for certain
applications. The compiler’s branch-shortening algorithms have been
significantly improved to work better on targets that align jump targets. The
compiler now supports the ADDRESSOF optimization, which can significantly
reduce the overhead for inline calls.

� The compiler now supports a code size optimization switch (-Os). When this
switch is enabled, the compiler chooses optimizations that improve code size
over those that improve code speed.

� The compiler has been improved to completely eliminate library calls that
compute constant values. This is particularly useful on machines that do not
have integer multiply/divide or floating point support on-chip.

Compiler Optimizations

Changes specifically to the compiler optimization include the following:

� The memory footprint for the compiler has been significantly reduced for
certain pathological cases.

� The build time for the MIPS architecture family has been improved by refining
the handling of scheduling parameters.

� Compile time for certain programs using large constant initializers has been
improved.
7

GNU Toolchain for Tornado 2.2
Release Notes
New Features

General features new since the last release include the following:

� GCC now supports a --help option to print detailed help information.

� The DWARF 2 debugging information format is supported on ELF systems,
and is the default for -g on those systems. It can also be used for C++.

� A new switch, -fstack-check, has been added to check for stack overflow on
systems that do not have such a feature built into their ABI.

� The new -Wundef and -Wno-undef switches generate a warning if an
undefined identifier is evaluated in an #if directive.

� The -Wall and -Wimplicit options now cause GCC to warn about implicit
integers in declarations (for example, register i;), since the C Standard
committee has decided to disallow this in the next revision of the standard.
-Wimplicit-function-declarations and -Wimplicit-int are subsets of the
-Wimplicit option.

� The -Wsign-compare option generates a warning if signed and unsigned
values are compared.

Changes for the ARM Architecture Family

� The -mlongcall package of option, pragma, and attributes has been added. It
matches the function of the PowerPC package introduced in the last Tornado
release.

� The -march=xxx, -mtune=xxx, -mcpu=xxx options have been added.

� Interworking (or 32-bit ARM code with 16-bit Thumb code) is unsupported
(untested).

NOTE: -mlongcall has been tested.

NOTE: -mtune and -march are untested.
8

5
GCC Changes
Changes for the MIPS Architecture Family

� New support for the MIPS4 instruction set has been added.

� The R4100, R4300 and R5000 processors are now supported.

� Multiply/Multiply-Add support has been largely rewritten to generate more
efficient code.

� The -gdwarf2 option has been reintroduced. This allows you to choose
between the DWARF Version 2 and STABS debugging information formats.

� The compiler has been modified to avoid branch-likely instructions, which
have proven unstable in earlier versions.

� Multiply-accumulate support has been added.

Changes for the Pentium Architecture Family

� Data in the static store is aligned to meet Intel recommendations. Jump targets
are aligned, as recommended by Intel.

� Epilogue sequences have been improved.

� Back-end improvements have been made that should help register allocation
on all Pentium variants.

� Support for PentiumPro conditional move instructions has been fixed and
enabled.

� Several changes have been made throughout the port to make generated code
more Pentium-friendly. Support for 64-bit integer operations has been
improved.

� Scheduling parameters for Pentium and Pentium Pro have been added.

Changes for the PowerPC Architecture Family

� For PowerPC 604 only, the stack frame is always 16-byte aligned, rather than
8-byte aligned. This alignment does not exclude the use of third-party libraries
that have been compiled for 8-byte alignment.
9

GNU Toolchain for Tornado 2.2
Release Notes
The following new command-line options are now supported. For more
information, see the GNU ToolKit User’s Guide.

� -mcpu=401 (added as an alias for -mcpu=403)

� -mcpu=604e, 405, 602, 603e, 620, 801, 823, 505, 821, 860, and power2

� -meabi

� -memb, -msim, -mmvme, -myellowknife, and -mads

� -mfused-madd and -mno-fused-madd

� -mregnames

� -mrelocatable-lib and -mno-relocatable-lib

� -msdata, -msdata=none, -msdata=default, -msdata=sysv, and -msdata=eabi

� -msim, -mmve, and -memb

� -mtune=xxx

� -mupdate and -mno-update

� -p/-pg

The following command-line options have been changed. For more information,
see the GNU ToolKit User’s Guide.

� -fvec enables AltiVec instructions, but disables vector and pixel as keywords:
__vector, __pixel and bool remain as type specifier keywords.

� -fvec-eabi enables AltiVec instructions, including vector, pixel, __vector,
__pixel, and bool as type specifier keywords.

� -mcpu=403 now implies -mstrict-align.

� -mcpu=405 is simply passed to the PowerPC assembler to enable the assembly
of PPC405 instructions.

� objdumpppc disassembles AltiVec instructions.

� wchar_t is now of type long as specified by the ABI, rather than unsigned
short.
10

5
GCC Changes
Unsupported Features

The following features are unsupported:

� Prefixed Underscore

In the PowerPC architecture, the compiler does not prefix underscores to symbols.
In other words, symbol is not equivalent to _symbol as it is in other architecture
implementations.

� Small Data Area

The compiler supports the small data area. However, for this release of Tornado for
PowerPC, VxWorks does not support the small data area. Therefore the -msdata
compiler flag must not be used.

C++ Exception Handling and AltiVec Support

Throwing C++ exceptions between modules that were compiled with different
compiler flags may result in unexpected behavior. C++ exceptions save register
state. Modules compiled with AltiVec support (using either -fvec or -fvec-eabi)
save all non-volatile AltiVec registers, but modules compiled without AltiVec
support do not save any AltiVec registers. If a C++ exception is thrown from an
AltiVec-enabled module, caught by a non-AltiVec enabled handler, and then
thrown from there to an AltiVec-enabled handler that alters the AltiVec registers, it
is possible to corrupt the saved AltiVec state. In particular, the non-volatile vector
registers (v20 through v31) may be corrupted.

The following example illustrates the above scenario. It consists of a program
comprised of two files, file1.cpp and file2.cpp. Because file2 is compiled with the
-fvec option, we call it AltiVec code. file1 is compiled without a -fvec option, so it
is called non-AltiVec code.

The example takes program flow across the two modules. It is also contrived to
make intelligent guesses about the compiler’s register allocation strategy. The
output is incorrect when one of the files is compiled without the -fvec option.

Listing for file1.cpp:

extern "C" int printf (const char *fmp, ...);
extern void bar ();

void foo ()
{
try

{
bar ();
}

11

GNU Toolchain for Tornado 2.2
Release Notes
catch (...)
{
}

}

Listing for file2.cpp:

extern "C" int printf (const char *fmp, ...);
extern void foo ();

typedef __vector signed long T;

void bar ()
{
// use a non-volatile vector register
asm ("vsplitisw 24,0"); // v24 <- (0,0,0,0)
}

void Start ()
{
// use a non-volatile vector register v24
T local = (__vector signed long) (-1, -1, -1, -1);

asm ("vsplitisw 24,15"); // v24 <- (15, 15, 15, 15)

foo ();

// continue using the non-volatile vector registers
asm ("addi 9, 31, 32"); // local <- v24
asm ("stvx 24, 0, 9");

printf ("Finally, local = (%vld)\n", local);
}

To resolve this behavior, follow the steps below.

Step 1: Reproduce the problem.

To produce a partially linked object file2.o, compile the two files with the
following commands:

% ccppc -mcpu=604 -c file1.cpp
% ccppc -mcpu=604 -nostdlib -fvec -r file1.o file2.cpp

Download file2.o to a target, and execute the Start function.

-> Start
Finally, local = (0,0,0,0)
->

The foo function in file1.cpp is non-AltiVec code. Therefore, the try...catch block in
foo does not save and restore the AltiVec context. Within the try...catch block, the
12

5
GCC Changes
call to bar alters the value of vector register v24. Because file1.cpp does not save
AltiVec context, the value 0 in v24 assigned by bar remains unchanged when
program flow returns to Start. The original value 15 assigned before the call to bar
is now corrupted. This explains the incorrect output local = (0,0,0,0).

Step 2: Correct the behavior.

Compile both files with the -fvec option:

% ccppc -mcpu=604 -nostdlib -fvec -r file1.cpp file2.cpp -o file2.o

Download file2.o to a target and execute the Start function.

-> Start
Finally, local = (15,15,15,15)
->

Since both modules now have AltiVec code (compiled with the -fvec option) the
try...catch block in foo now saves and restores the AltiVec context. The value 15
originally assigned in Start is faithfully restored by foo when it returns.

For more information on AltiVec support, see The only changes to GDB are extensions
for AltiVex support., p.14 and This section lists extensions to the WDB and WTX
protocols for AltiVec support, p.15.

Changes for the SPARC Architecture Family

� The compiler now includes V8 plus and V9 support and tuning for
Ultrasparcs.

� Haifa instruction scheduling is now enabled by default.

The following new command-line options are now supported. For more
information, see the GNU ToolKit User’s Guide.

� -mcpu=xxx and -mtune=xxx

� -malign-loops=xxx, -malign-jumps=xxx, and -malign-functions=xxx

� -mimpure-text and -mno-impure-text
13

GNU Toolchain for Tornado 2.2
Release Notes
Changes for the StrongARM Architecture Family

For information on StrongARM changes, see Changes for the ARM Architecture
Family, p.8.

Changes for the SuperH Architecture Family

The GNU toolchain for this release uses the ELF object module format and DWARF
2.0 debug information. For very large projects, the DWARF debug information can
result in slow load time in the Tornado debugger, CrossWind. For such cases, it is
recommended that only a smaller number of modules be built with the -g option.

6. Extensions for AltiVec Support

GDB Changes

The only changes to GDB are extensions for AltiVex support.

In this release, gdb features a setaltivec command that allows users to set a
particular value into a given vector register. Some typical scenarios for using the
setaltivec commands are described below.

(gdb)help setaltivec

setaltivec <regname> 0x<hex>_<hex>_<hex>_<hex>
Sets the value of the specific AltiVec register.

To set a given value into an AltiVec register using setaltivec, enter the following:

(gdb)setaltivec v4 0x45454545_12345678_12_5A7

Vector register contents can be printed using the print command:

(gdb)print $v4

0x454545451234567800000012000005A7
14

7
Binutils
WDB Changes

This section lists extensions to the WDB and WTX protocols for AltiVec support

The following new WTX and WDB API functions have been added for AltiVec
support.

7. Binutils

Changes and enhancements to binutils include the following:

� A new command-line switch to objdump -M (or --disassembler-options)
takes a parameter which can then be interpreted on a per-target basis by the
disassembler. It is used by ARM targets to select register name sets, ISA, APCS,
or raw versions.

� objdump support has been added for -mi386:intel, which causes disassembly
to be displayed with Intel syntax.

� A new program, readelf, has been added. This program displays the contents
of ELF format files, regardless of target machine.

Table 1 WTX API Functions for AltiVec Support

Routine Command Syntax Description

wtxTargetHasAltivecGet() hWtx Returns TRUE if the target has an
AltiVec unit.

Table 2 WDB API Functions for AltiVec Support.

Routine Command Syntax Description

wdbAltivecSave() void Saves the AltiVec registers into a buffer.

wdbAltivecRestore() void Restores the AltiVec register values
from a buffer.

wdbAltivecGet() ppRegs Gets a pointer to the AltiVec context.

wdbAltivecSet() pRegs Sets the AltiVec context from a buffer.
15

GNU Toolchain for Tornado 2.2
Release Notes
� objcopy now takes --change-section-lma, --change-section-vma, and
--change-section-address options. The old --adjust-section-vma option is
equivalent to --change-section-address. The other --adjust-* options have
now been renamed to --change-*, although --adjust-* continues to work.

� dlltool now supports the IMPORTS command.

� dlltool now takes the --export-all-symbols, --no-export-all-symbols,
--exclude-symbols, and --no-default-excludes options.

� objcopy now takes a -j/--only-section option to copy only the specified
sections.

� The windres program has been added. It can be used to manipulate resources
in WIN32 files as used on Windows 95 and Windows NT.

� The objcopy --gap-fill and --pad-to options operate on the LMA rather than
the VMA of the sections.

� The S modifier has been added to the archiver to make it possible not to build
a symbol table.

� The objdump disassembly format has been improved. Use the new
--prefix-addresses option to get the old format. There are also new
--disassemble-zeroes and --no-show-raw-insn options that affect
disassembler output.

� Formats can now be specified as configuration triplets. For example, objdump
-b i386-pc-linux. The triplets are not passed through config.sub, so they must
be in canonical form.

� The new addr2line program has been added. This program uses the
debugging information to convert an address into a filename and line number
within a program.

� The --change-leading-char argument has been added to objcopy.

� The --weaken argument has been added to objcopy.

� objdump --dynamic-reloc now works on ELF executables and shared
libraries.

� The --adjust-vma option has been added to objdump.

� The -C/--demangle option has been added to objdump.

� The -p/--preserve-dates option has been added to strip and objcopy.

– For information on objcopy changes, see the reference page, which is
accessible from the Tornado Help menu.
16

8
Assembler
– objcopy cannot be used to convert relocatable files, but is useful for
absolute (fully-linked) files.

– Documentation of nm type codes for ELF is found in binutils.texi.

� objdump now disassembles ppc405 instructions.

8. Assembler

Changes and enhancements to the assembler include the following:

� A new pseudo-op, .intel_syntax, has been implemented to allow GAS to parse
Pentium assembly dialect. This pseudo-op applies to the Pentium architecture
only.

� GAS now assembles assembly programs with Intel syntax. This applies to the
Pentium architecture only.

� This version of the assembler includes greatly improved instruction operand
checking for Pentium processors. This change produces errors or warnings on
incorrect assembly code that previous versions of GAS accepted. If you get
unexpected messages from code that worked with older versions of GAS,
please double-check the code before reporting a bug.

� The instruction to jump indirect through a register is now spelled differently.
It is spelled jmp *%eax. This applies to the Pentium architecture only.

� A new pseudo-op, .type, is used (for all architectures) to provide type
information so that a symbol is loaded by VxWorks. The .type directive
explicitly declares the type of the symbol, but is only necessary for
programmers who are writing their own assembly source files, and who want
those symbols to be visible to the VxWorks loader.

� Two new pseudo-ops, .func and .endfunc, are provided to aid in debugging
user-written assembler code.

� The -gdwarf2 option has been added to generate DWARF 2 debugging
information.

NOTE: Binutils ships with all architectures, including ColdFire, which does not
include the rest of the toolchain.
17

GNU Toolchain for Tornado 2.2
Release Notes
� The assembler now optimizes the exception frame information generated by
EGCS and GCC 2.8. The new --traditional-format option disables this
optimization.

� The -a option takes a new suboption, m (for example, -alm) to expand macros
in a listing.

� The -a option takes a new suboption, c (for example, -alc), to skip false
conditionals in listings.

� The -MD option has been added to print dependencies.

� MIPS16 support has been added.

� The alignment directives now take an optional third argument which specifies
the maximum number of bytes to skip. If doing the alignment would require
skipping more than the given number of bytes, the alignment is not done at all.

� The ELF assembler has a new pseudo-op, .symver, used for symbol versioning.

� A new pseudo-op, .equiv, has been added; it is similar to .equ, except that it
causes an error if the symbol is already defined.

� The PowerPC assembler now allows the use of symbolic register names (r0,
and so on) if -mregnames is used. Symbolic names preceded by a % (%r0, and
so on) can be used any time. PowerPC 860 mtspr and mfspr (move-to and
move-from SPR) instructions have been added.

� PowerPC ELF support has been added.

� Pentium and PowerPC gnu-win32 support has been added.

� GAS now directly supports macros, without requiring GASP.

� The --defsym SYM=VALUE option has been added.

� -mips4 support has been added to MIPS assembler.

� -mips32 and -mips64 support has been added to MIPS assembler.

� PIC (position-independent code) support has been added to Solaris assembler.

� PowerPC assembler now assembles ppc405 instructions when the new
command-line option -m405 is specified.

� AltiVec instruction support has been added in GAS with -mvec.
18

9
Linker
9. Linker

Changes and enhancements to the linker include the following:

� .vx sections are passed through.

� Garbage collection of unused sections has been added, enabled by
--gc-sections. It requires additional back-end support, which is currently
implemented for ppc-elf and mips-elf only. Others ignore the option.

� The following have been added to the linker script language: SORT (to permit
sorting sections by filename or section name), EXTERN (an equivalent to the -u
command-line option), ASSERT, and EXCLUDE_FILE (for further control over
wildcard filenames).

� The -O option has been added to optimize linker output (currently this only
affects ELF shared library generation).

� The -e option now accepts a number as well as a symbol name.

� The --no-undefined option has been added to disallow undefined symbols
when creating a shared library.

� The --demangle and --no-demangle options have been added.

� SQUAD has been added to the linker script language.

� A new option, --no-warn-mismatch, has been added.

� The MEMORY command now parses the attributes to determine where
sections that are not placed in a specific memory region are placed.

� Linker scripts may contain shell wildcard characters for file and section names.

� The linker now supports symbol versions in ELF.

� The following were added to the linker script language: the NOCROSSREFS
command, the LOADADDR expression, the MAX and MIN functions, and the
OVERLAY construct.

� A new option, --warn-section-align, has been added to generate a warning
when the address of an output section changes due to the alignment of an
input section.

� The new options --filter/-F and --auxiliary/-f have been added.

� A new option, --cref, has been added to print out a cross-reference table.
19

GNU Toolchain for Tornado 2.2
Release Notes
� A new option, --wrap SYMBOL, has been added, which causes undefined
references to SYMBOL to be resolved to the linker-created wrapper function
__wrap_SYMBOL.

� A new option, --no-whole-archive, has been added to turn off the effect of
--whole-archive.

� Input sections assigned to the output section /DISCARD/ in the linker script are
not included in the output file.

10. Benchmark Test Results

This section lists the results of a comparative analysis of the GNU toolchain
between the Tornado 2.0 (or, where appropriate, Tornado 2.1) and Tornado 2.2.
Reports were generated for compilation times and for performance times.

10.0.1 Compilation Time Reports

This section lists the reports for the compilation time comparison between Tornado
2.0 and 2.2 GNU toolchains. The BYTEmark ver. 2 (3/95) tool was used to generate
these benchmarks.

Host Machine Configuration

The investigation was performed on a host machine with the following
configuration:

� Machine . Sun Ultra-5_10

� Physical Memory. 256 Mb

� Virtual memory. 670 Mb

� OS. SunOS release 5.7
20

10
Benchmark Test Results
Command-Line Compilation Options

The compilation options applied the highest level of GNU optimization, and are
listed below.

MIPS64 Options

-G 0 -mno-branch-likely -mips4 -ansi -EB -O3 -I. -I/vobs/wpwr/target/h
-DCPU=MIPS64 -DTOOL_FAMILY=gnu -DTOOL=gnu -DMIPSEB -D_WRS_MIPS_VR5400_ERRATA
-c -DVXWORKS -Wp,-lang-c

MIPS32 Options

-G 0 -mno-branch-likely -mips2 -EB -ansi -O3 -I/vobs/wpwr/target/h
-DCPU=MIPS32 -DMIPSEB -DSOFT_FLOAT -msoft-float -c -DVXWORKS -Wp,-lang-c

Pentium-II Options

-nostdlib -fno-builtin -fno-defer-pop -c -DVXWORKS -Wp,-lang-c -O3
-fomit-frame-pointer -march=pentiumpro -DCPU=PENTIUM2

Pentium Options

-nostdlib -fno-builtin -fno-defer-pop -c -DVXWORKS -Wp,-lang-c -O3
-fomit-frame-pointer -march=pentium -DCPU=PENTIUM

PPC604 Options

-nostdlib -fno-builtin -fno-defer-pop -c -DVXWORKS -Wp,-lang-c
-fomit-frame-pointer -mcpu=604 -DCPU=PPC604 -O3

PPC603 Options

-nostdlib -fno-builtin -fno-defer-pop -c -DVXWORKS -Wp,-lang-c
-fomit-frame-pointer -mcpu=603 -DCPU=PPC603 -O3

SH4 Options

-nostdlib -fno-defer-pop -c -DVXWORKS -Wp,-lang-c -fomit-frame-pointer -m4
-DCPU=SH7750 -O3

SH3 Options

-nostdlib -fno-defer-pop -c -DVXWORKS -Wp,-lang-c -fomit-frame-pointer -m3
-DCPU=SH7700 -O3
21

GNU Toolchain for Tornado 2.2
Release Notes
Results

Table 3 list the results of this investigation. Higher delta percentages indicate faster
compilation times.

10.0.2 Performance Time Reports

This section lists the reports for the compilation time comparison between Tornado
2.0 and 2.2. The BYTEmark (tm) Native Mode Benchmark ver. 2 (3/95) tool was
used to generate these reports. This benchmark generates two indexes:

� "II" . Integer Index (for integer operations)

� "FPI" . Floating-Point Index (for floating-point operations)

These tests were performed on each of the compiler front ends. Both front ends
used the Tornado 2.2 (VxWorks 5.5) kernel. Tests were compiled from the
command line. The command-line options are listed below with each architecture.
In the result tables below, higher indices indicate better performance and higher
delta percentages indicate better runtime (executable) performance.

Table 3 Compilation Time Comparison of Tornado 2.0 and Tornado 2.2

Architecture Tornado 2.0 Tornado 2.2 Delta

MIPS32 7.9 10.4 -31 %

MIPS64 7.0 9.6 -37 %

Pentium I 4.8 11.0 -129 %

Pentium II 4.8 9.5 -97 %

PPC 603 4.8 10.9 -127 %

PPC 604 4.8 10.9 -127 %

SH3 10.1*

* The SH tests were compiled on Tornado 2.1.

10.1 0 %

SH4 10.5* 10.4 +1 %
22

10
Benchmark Test Results
Pentium Target Architectures

Table 4 lists the performance indices for Pentium-II boards (pcPentium2-7). The
excutables were compiled with the following GNU compiler options:

-nostdlib -fno-builtin -fno-defer-pop -c -DVXWORKS -Wp,-lang-c -O3
-fomit-frame-pointer -march=pentiumpro -DCPU=PENTIUM2

-nostdlib -fno-builtin -fno-defer-pop -c -DVXWORKS -Wp,-lang-c -O3
-fomit-frame-pointer -march=pentium -DCPU=PENTIUM

PowerPC Target Architectures

Table 5 lists the performance indices for executables run on PPC 7400 boards
(mv5100). The excutables were compiled with the following GNU compiler
options:

-nostdlib -fno-defer-pop -O3 -fomit-frame-pointer -mcpu=604 -DCPU=PPC604

-nostdlib -fno-defer-pop -O3 -fomit-frame-pointer -mcpu=603 -DCPU=PPC603

Table 4 Performance Indices for Pentium Boards

Target Command Tornado 2.0 Front End Tornado 2.2 Front End Delta

Pentium II II = 4.965049

FPI = 3.710102

II = 6.126236

FPI = 4.183378

+23 %

+13 %

Pentium II = 4.970590

FPI = 3.688528

II = 5.397496

FPI = 4.154262

+8.6 %

+12.6%

Table 5 Performance Indices for PPC 7400 Boards

Target Architecture
CPU

Tornado 2.0
Front End

Tornado 2.2
Front End

Delta

PPC604 II = 7.063887

FPI = 8.696446

II = 7.200637

FPI = 8.894768

+ 2 %

+ 2.3 %

PPC603 II = 7.196563

FPI = 8.628312

II = 7.280278

FPI = 8.995991

+ 1.1 %

+ 4.2 %
23

GNU Toolchain for Tornado 2.2
Release Notes
Hitachi Target Architectures

Table 6 lists the performance indices for SH3 (ms7729se) and SH4 (ms7750se)
boards. The excutables were compiled with the following GNU compiler options:

-nostdlib -fno-defer-pop -fomit-frame-pointer -m4 -DCPU=SH7750 -O3

-nostdlib -fno-defer-pop -fomit-frame-pointer -m3 -DCPU=SH7700 -O3

MIPS Target Architecture

Table 7 lists the performance indexes for MIPS32 (ddb5476) and MIPS64
(ddb547-1) boards. The excutables were compiled with the following GNU
compiler options for MIPS32 and MIPS64.

� Tornado 2.0

-EB -mips2 -G 0 -ansi -O3 -funroll-loops -DCPU=R3000 -msoft-float

-EB -mips4 -G 0 -O3 -funroll-loops -DCPU=R4000 -DMIPSEB

� Tornado 2.2

-G 0 -mno-branch-likely -mips2 -EB -O3 -DCPU=MIPS32 -DMIPSEB -DSOFT_FLOAT
-msoft-float

-G 0 -mno-branch-likely -mips4 -EB -O3 -DCPU=MIPS64 -DMIPSEB

Table 6 Performance Indices for SH3 and SH4 Boards

Target Architecture
CPU

Tornado 2.0
Front End

Tornado 2.2
Front End

Delta

SH7750 II = 2.036200

FPI = 0.920407

 II = 2.121015

FPI = 0.951641

+ 4.17 %

+ 3.39 %

SH7700 II = 0.852523

FPI = 0.071152

 II = 0.842931

FPI = 0.071122

-1.13 %

-0.04 %
24

11
Known Problems
11. Known Problems

For up-to-date information on current and fixed software problem reports (SPRs),
visit the WindSurf Web site at www.windriver.com/windsurf/.

12. Customer Services

Wind River is committed to meeting the needs of its customers. As part of that
commitment, Wind River provides a variety of services, including training courses
and contact with customer support engineers, along with a Web site containing the
latest advisories, FAQ lists, known problems lists, and other valuable information
resources.

Customer Support

For customers holding a maintenance contract, Wind River offers direct contact
with a staff of software engineers experienced in Wind River products. A full
description of the Customer Support program is described in the Customer Support
User’s Guide, available at the following Web site:

http://www.windriver.com/support

Table 7 Performance Indices for MIPS32 and MIPS64 Boards

Target Architecture
CPU

Tornado 2.0
Front End

Tornado 2.2
Front End

Delta

MIPS32 II = 2.187173

FPI = 0.032820

II = 2.108248

FPI = 0.032784

-3.61 %

-0.11 %

MIPS64 II = 2.265500

FPI = 0.923565

 II = 2.214943

FPI = 0.949614

-223 %

+2.28 %
25

GNU Toolchain for Tornado 2.2
Release Notes
The Customer Support User’s Guide describes the services that Customer Support
can provide, including assistance with installation problems, product software,
documentation, and service errors.

You can reach Customer Support using either of the following methods:

� E-mail. You can contact Wind River Customer Support by sending e-mail to
support@windriver.com.

� 1-800-872-4977 (1-800-USA-4WRS) . Within North America, you can contact
Customer Support with a toll-free voice telephone call. For telephone access
outside North America, see the Support Web site shown above.

For Customer Support contact information specific to your products, please visit
the Support Web site.

WindSurf

Wind River Customer Services also provides WindSurf, an online support service
available under the Support Web site. WindSurf offers basic services to all Wind
River customers, including advisories, publications such as the Customer Support
User’s Guide, and a list of training courses and schedules. For maintenance contract
holders, WindSurf also provides access to additional services, including known
problems lists, available patches, answers to frequently asked questions, and demo
code.
26

	GNU Toolchain Release Notes
	Contents
	1.� Introduction
	2.� General Changes
	3.� An Important Note About Aggressive Alias Analysis
	4.� G++ Changes
	Code Generation and Optimization
	Namespaces
	Template Handling
	Exception Handling
	Other New Features

	5.� GCC Changes
	Error Handling
	Code Generation and Optimization
	Compiler Optimizations
	New Features
	Changes for the ARM Architecture Family
	Changes for the MIPS Architecture Family
	Changes for the Pentium Architecture Family
	Changes for the PowerPC Architecture Family
	Changes for the SPARC Architecture Family
	Changes for the StrongARM Architecture Family
	Changes for the SuperH Architecture Family

	6.� Extensions for AltiVec Support
	GDB Changes
	WDB Changes

	7.� Binutils
	8.� Assembler
	9.� Linker
	10.� Benchmark Test Results
	10.0.1� Compilation Time Reports
	Host Machine Configuration
	Command-Line Compilation Options
	Results

	10.0.2� Performance Time Reports
	Pentium Target Architectures
	PowerPC Target Architectures
	Hitachi Target Architectures
	MIPS Target Architecture

	11.� Known Problems
	12.� Customer Services

