C111C C LIBRARY API ver. 3.00

Document Version:
2.0

Document Revision:
November, 29 2007 FP, UZ, MV

Description:
Helper function library for devel oping user applications to control a C111C Ethernet Camac Crate Controller.

Requirements:
Dependencies:

Referring documents:
[1] C111C USER'SMANUAL

(g1 ((o o (8T {0} o TR 2
[T 0Ttz Y 1 =T PSP 2
Compiling @and MaKEFII@..........ueiie e 3
DL 1] ST PP 4
ConfiguIration FUNCLIONScoiiuiie et sae e e e e et e e ene e e enaeeeneeeanns 5
[OV 111 A o 12
Generic coMMAN FUNCLIONSoocviiiiiiie et e e e e e e r e e e e e s e e sassbareeeeeeeeeans 20

BlOCK tranSf e FUNCLIONS.oeeeeeeee et e e e e e e e e e e e e e e e e eeeennnnns 22

| ntroduction

The C111C CAMAC Crate Controller can be controlled by a remote host by means of socket connections.
Two different ports at the same TCP/IP address are used for exchanging commands and data between
C111C and the host computer. Port 2000 is dedicated to ASCII commands, while port 2001 is dedicated to
Binary commands.

All commands are available in ASCII form. An ASCIl command is a text string that the host computer
sends to C111C on port 2000. A complete reference of all ASCIlI commands can be found in the User’s
Manual, section “ASCIlI command reference”. ASCIlI commands are easy to handle because they are
simple text strings, but they can be quit slow for some applications. For this reason a command subset
has been introduced, the Binary commands subset.

NOT all commands are available in binary form, but only those CAMAC commands for which speed can
be an issue. Binary commands are faster, but more complex, because they use a special protocol,
described in sections “TCP binary control socket” and “Binary commands reference” of the User’s
manual .

A control program can be written in any language, regardless of the platform and operating system
running on the host computer. What is needed is just a piece of code to send and receive data on a socket
connection. If binary commands are used, the programmer must also write some code to implement the
binary protocol.

The purpose of the Library is to simplify and speed up code development for C/C++
programmers, hiding all details regarding socket connections and the binary protocol. No knowledge of
socket programming and of the binary protocol is required and the user can avoid reading the manual’s
chapters about binary pratocal.

The C Libray always uses binary commands. Three special commands (CMDS, CMDR, CMDSR)
are available to send and receive commands and data in ASCII format.

Library files

The C Library is distributed in source code form (no precompiled binary).
Thelibrary consistsin two files:

1) crate lib.c

2) crate_lib.h

Compiling and M akefile

Using Linux platforms

Thelibrary files must be added to your project for use thelibrary functions.

Example 1 (Application and library files arein the same folder)

1) Assuming that your source code application isin /home/jenet/jenet_appli.c

2) Assuming that the library source code application isin /home/jenet/jenet_appli.c
>From the shell prompt type:

> gec jenet_appli.c crate lib.c -o jenet_appli

Thiswill build a jenet_appli application

If your application's source codeis in a different folder you have to customize the
gcc command to reflect your settings.

Example 2 (Application and library files arein different folders)

1) Assuming that your source code application is in /home/jenet/jenet_appli.c

2) Assuming that the library sourceis in /home/jenet/library/crate lib.c

3) Assuming that the working directory of the shell is/home/jenet

>From the shell prompt type:

/home/jenet> gce jenet_appli.c /Thome/jenet/library/crate lib.c -1/home/jenet/library/ -o jenet_appli

Y ou can use the make tools and customize a Makefiles to build your project.

Example makefile:

#-*-makefile-*-
binaries = jenet appli

all: compile
compile: $(binaries)

CC = gcc
LINK = gcc

JENET APPLI SRC = crate lib.c jenet appli.c
JENET APPLI OBJ = $(JENET APPLI SRC:.c=.0)

jenet appli: $(JENET APPLI OBJ) $(addsuffix .o, $(common))
$(LINK) -o $@ $~ -L. -lpthread

clean:
rm -f core *.o $(binaries) $(addsuffix .gdb, $(binaries))

Using Windows platforms

In the default software distribution there is a Workspace file (crate_lib_win32.dsw) created with
Microsoft Visual Studio 6.0. The workspace includes some examples showing the correct use of
the C Library.

Defines

i
1 Return Values
i

#define CRATE_OK

#define CRATE_ERROR

#define CRATE_CONNECT_ERROR
#define CRATE_IRQ_ERROR
#define CRATE_BIN_ERROR
#define CRATE_CMD_ERROR
#define CRATE_ID_ERROR

#define CRATE_MEMORY_ERROR

T
1 BLK_TRANSF Opcode Defines
I T

#define OP_BLKSS
#define OP_BLKFS
#define OP_BLKSR
#define OP_BLKFR
#define OP_BLKSA
#define OP_BLKFA

T T
1 IRQ Type Defines
T T

#define LAM_INT
#define COMBO_INT
#define DEFAULT_INT

i
1 Miscellaneous
i

#define NO_BIN_RESPONSE

-1
-2
-3
-4
-5
-6
7

0x0
Ox1
0x2
0x3
0x4
0x5

Ox1
0x2
0x3

OxAO

Configuration Functions

short CROPEN (char *address);

Description:

Opens a connection with the C111C Contraller located at the IP address specified by the variable address.

This function performs an initiaization of the library’s internal variables and opens the socket connections available
between the Host PC and the C111C Controller (ASCII, bin and irg).

If executed successfully, it returns a crate identification number (indicated in all functions as crate id) that
identifies, in aunique way, asingle C111C Controller.

It is possible to control more than one C111C Controller at the same time, by smply calling this function multiple
times for any of the C111C Controllers available over the LAN with the appropriate | P addresses.

NB: Thisfunction must be called before any other operation.

Parameters:

address — array of chars, it specifies the Ethernet 1P address of the Controller, in the standard “dotted” form
(i.e XxXx.yyy.www.zzz)

Results:

If executed successfully, it returnsa crate_id that identifies, in a unique way, asingle C111C Controller.

That crate_id must be used asfirst parameter in al of the other library functions;

In case of error, it returns one of the following error code:

CRATE_MEMORY_ERROR if the library cannot connect with another C111C Controller (maximum number of
connection reached);

CRATE_CONNECT_ERROR, if no C111C controller responses at the specified ip address,

CRATE_BIN_ERROR, if an error occurs contacting the binary socket server of the specified C111C Controller;
CRATE_IRQ _ERROR, if an error occurs contacting the irq socket server of the specified C111C Contraller;

Example:

short crate id;
crate id = CROPEN(%“192.168.0.98");
if (crate_id < 0) {
printf (“"Error %d opening connection with CAMAC Controller \n”, crate id);

}

short CRCLOSE (short crate_id);

Description:

Close the connection with the C111C Controller identified by the parameter crate id (see CROPEN).
NB: Thisfunction must be called at the end of user application, for all connected controllers.

Parameters:
crate id—integer 16 hit, it specifies the C111C Controller (this value isreturned by the function CROPEN)

Results:

If executed successfully, it returns CRATE_OK, otherwise returns one of the following errors.
CRATE_ID_ERROR, if awrong crate id is specified as parameters,
CRATE_CONNECT_ERROR, if the specified controller cannot be disconnected in this moment;

Example:

short res, crate id;
crate id = CROPEN(%“192.168.0.98");
if (crate id < 0) {
printf (“Error %d opening connection with CAMAC Controller \n”, crate id);
}
res = CRCLOSE (crate_ id);
if (res < 0) {
printf (“"Error %d closing connection with CAMAC Controller \n”, crate id);}

short CRIRQ (short crate_id, IRQ_CALLBACK irg_callback);

Description:

Allowsto register a C function callback called by the library every time an IRQ event occurs on the C111C Contraller
specified by the parameter crate id.
The IRQ_CALLBACK isdefined asfollows:

typedef void (*IRQ_CALLBACK) (short crate id, shortirq _type, unsigned int irq_value);

Thefirst parameter of the C callback isthe crateid; the second parameter is theirq type and the third istheirg value
(itsmeaning isrelated to theirq type)
Irq type may be one of the following:

LAM_INT, if aLAM interrupt occurs on the C111C Controller, in this casethe irq valueis a 24-bit hexadecimal mask
in which any bit set to 1 indicates the dot of the card that has generated a Lam irq (i.e irq_value = 0x100 means
LAM irg from card in dot 9).
COMBO_INT, if an interrupt from combo occurs on the C111C Controller, in this case the irq value is a 4-bit
hexadecimal mask in which:

bit O set to 1 indicatesirg from combo 1,

bit 1 set to 1 indicatesirg from combo 2,

bit 2 set to 1 indicatesirg from dead time counter of combo 1,

bit 3 set to 1 indicatesirg from dead time counter of combo 2;
DEFAULT_INT, if the default button was pressed on the C111C Contraller, in this case the irq value must be ignored.

Parameters:

crate id—integer 16 hit, it specifies the C111C Controller (see function CROPEN)
irg_callback — function callback, it defines a C callback function, called by the library when an IRQ event is catched
by C111C Contraller.

Results:

If executed successfully, it returns CRATE_OK, otherwise returns one of the following errors.
CRATE_ID_ERROR, if awrong crate id is specified as parameters,
CRATE_CONNECT_ERROR, if the specified C111C controller is disconnected in this moment;

Example:

void IRQHandler (short crate id, short irg type, unsigned int irqg data)
{
switch (irg type) {
case LAM INT:
// Do something when a LAM event occurs
// Write your code here
// ..
LACK (crate id)
break;
case COMBO_INT:
// Do something when a COMBO event occurs
// Write your code here
/]
break;
case DEFAULT INT:
// Do something when the “DEFAULT” button is pressed
// Write your code here
/]

break;

return;

int main ()

short res, crate id;
crate id = CROPEN(%“192.168.0.98");
if (crate id < 0) |
printf (“Error %d opening connection with CAMAC Controller \n”, crate id);}
res = CRIRQ(crate id, IRQHandler);
if (res < 0) {
printf (“Error occurs registering callback: %d\n”, res);

}

short CRGET(short crate_id, CRATE_INFO *cr_info);

Description:

Allows to get some functional configuration parameters about the connection between the host and the C111C
Controller identified by the parameter crate_id (see CROPEN).
NB: thisfunction should be used only by expert users

The CRATE_INFO data struct is defined as follows:

typedef struct {
char connected;
int sock_ascii;
int sock_hin;
int sock_irg;
short no_bin_resp;
char tout_mode;
unsigned int tout_ticks;
IRQ_CALLBACK irq_callback;
pthread t irg_tid;

} CRATE_INFO;

connected — byte, itis1if controller is successfully connected, otherwiseitisset to 0.

sock_ascii — integer 32 bit, isthe ASCII socket handle (only for advanced users).

sock_hin —integer 32 hit, isthe binary socket handle (only for advanced users).

sock_irg — integer 32 hit, istheirq socket handle (only for advanced users).

no_hin_resp — integer 16 bit, used for sending binary commands without acknowledge from Controller (this
option improve performance when sending relevant block of data) (only for advanced users).

tout_mode — byte, specifies the timeout mode (actually isnot used by thelibrary).

tout_ticks— integer 32 bit, this value defines the maximum interval the system waits before going in atimeout status
(expressed in ms).

irq_callback — function callback, it defines a C callback function, called by the library when an IRQ event is catched
by Controller handle (only for advanced users).

irq_tid— integer 32 hit, istheinternal callback thread handle (only for advanced users).

Parameters:

crate_id— integer 16 hit, it specifies the C111C Controller (see function CROPEN)
cr_info — Pointer to CRATE_INFO sruct

Results:

If executed successfully, it returns CRATE_OK, otherwise returns one of the following errors.
CRATE_ID_ERROR, if awrong crate id is specified as parameters;
CRATE_CONNECT_ERROR, if the specified C111C contraller is disconnected in this moment;

Example:

short res, crate id;
CR_INFO cr_info;_
crate id = CROPEN(%“192.168.0.98");
if (crate_id < 0) {
printf (“"Error %d opening connection with CAMAC Controller \n”, crate id);

}
res = CRGET (crate id, &cr_info);
if (res < 0) {
printf (“Error occurs getting CRATE info: %d\n”, res);

}

short CRSET(short crate_id, CRATE_INFO *cr_info);

Description:

Allows to set some functional configuration parameters about the connection between the host and the C111C
Controller identified by the parameter crate id (see CROPEN).
NB must be used only by expert user

For the CRATE_INFO gructure, see function CRGET.

Parameters:

crate id—integer 16 hit, it specifies the C111C Controller (see function CROPEN)
cr_info — Pointer to CRATE_INFO gruct

Results:

If executed successfully, it returns CRATE_OK, otherwise returns one of the following errors:
CRATE_ID_ERROR, if awrong crate_id is specified as parameters;
CRATE_CONNECT_ERROR, if the specified controller is disconnected in this moment;

Example:

short res, crate id;
CR_INFO cr_ info;
crate id = CROPEN(%“192.168.0.98");
if (crate_id < 0) {
printf (“"Error %d opening connection with CAMAC Controller \n”, crate id);

}

res = CRGET (crate_id, &cr _info);
if (res < 0) {
printf ("Error occurs getting CRATE info: %d\n”, res);

}
cr_info. tout ticks = 100000;

res = CRSET (crate id, &cr info);
if (res < 0) {
printf (“Error occurs setting CRATE info: %d\n”, res);

}

short CRTOUT(short crate_id, unsigned int tout);

Description:

Allows to set the maximum interval the system waits before go in a timeout status (expressed in ms) and consider
the current operation aborted.

Parameters:

crate id— integer 16 hit, it specifies the C111C Controller (see function CROPEN)
tout — integer 32 hit, this value defines the maximum interval the system waits before go in a timeout status
(expressed in ms).

Results:

If executed successfully, it returns CRATE_OK, otherwise returns one of the following errors.
CRATE_ID_ERROR, if awrong crate id is specified as parameters,
CRATE_CONNECT_ERROR, if the specified controller is disconnected in this moment;

Example:

short res, crate id;
CR_INFO cr_info;
crate id = CROPEN(%“192.168.0.98");
if (crate id < 0) {
printf (“"Error %d opening connection with CAMAC Controller \n”, crate id);

}
res = CRTOUT (crate id, 100000);
if (res < 0) {
printf (“"Error occurs setting timeout: %d\n”, res);

}

short CBINR(short crate_id, short enable_resp);

Description:

Allows to enable/disabl e the response acknowl edge when a binary command is sent.
Disabling response improves the performance, but thisisano reliable way to send commands.
NB must be used only by expert user

Parameters:

crate_id — integer 16 hit, it specifiesthe C111C Controller (see function CROPEN)
enable resp — integer 16 hit, use NO_BIN_RESPONSE value (0xa0) to disable response over binary command
socket, any other value enables the response.

Results:

If executed successfully, it returns CRATE_OK, otherwise returns one of the following errors.
CRATE_ID_ERROR, if awrong crate id is specified as parameters;
CRATE_CONNECT_ERROR, if the specified controller is disconnected in this moment;

Example:

short res, crate id;
CR_INFO cr_info;_
crate id = CROPEN(%“192.168.0.98");
if (crate_id < 0) {
printf (“"Error %d opening connection with CAMAC Controller \n”, crate id);
}
res = CBINR(crate id, O0xAO0);
if (res < 0) {
printf (“Error occurs disabling response: %d\n”, res);

}

10

short CSCAN(short crate_id, unsigned int *scan_res)

Description:
Performs a scan of the crate and returns a 24-bit hexadecimal mask in which any bit
set to 1 indicates that the correspondent dot of the crate isfilled with a card.

Parameters:

crate id - integer 16 hit, it specifiesthe Controller (see function CROPEN)

scan_res- pointer to unsgned integer 32 hit, is a 24-bit hexadecimal mask in which any bit
set to 1 indicates that correspondent dot of the crateis filled with acard.

(i.e scan_res=0x101 meansacard ispresent in dot 9 and dot 1).

Results:

If executed successfully, it returns CRATE_OK, otherwise returns one of the following errors:
CRATE_ID_ERROR, if awrong crate id is specified as parameters;
CRATE_CONNECT_ERROR, if the specified controller is disconnected in this moment.

Example:

short res, crate id;
unsigned int scan_result;
crate id = CROPEN("192.168.0.98");
if (crate id < 0) {
printf (“Error %d opening connection with CAMAC Controller \n”, crate id);
}
res = CSCAN(crate id, &scan_result);
if (res != CRATE OK) {
printf ("Error occurs scanning the CRATE: %d\n", res);
}
for (1 = 0; 1 < 24;i++) |
if (scan_result & (1 << 1)) {
printf ("The slot %d is filled with a card.\n", 1 + 1);
}
}

11

ESONE functions

short CFSA(short crate_id, CRATE_OP *cr_op);

Description:

Executes a 24-bit CAMAC command; values of Q, X and DATA arereturned in the CRATE_OP sruct.
the CRATE_OP struct is defined as follows:
typedef struct {
char F;
char N;
char A;
char Q;
char X;
int DATA;
} CRATE_OP;

F — byte, function identifier (accepted values: 0..27) (write only)
N — byte, dot identifier (accepted values: 1..24) (write only)

A — byte, addressidentifier (accepted values: 0..15) (write only)
Q - byte, status of Q line (read only)

X — byte, status of X line (read only)

DATA —integer 32 hit, data value (max 24-bit) (read/write)

Parameters:

crate id—integer 16 hit, it specifiesthe Contraller (see function CROPEN)

cr_op — pointer to a CRATE_OP struct, the following itemsin the CRATE_OP struct must be set before calling this
function:

F.NA;

If the function specified by theitem F isawrite operation also item DATA must be set before calling this function.;
If the function specified by theitem F is aread operation then theitem DATA will be updated with the 24-bit value
returned from the card specified by theitem N.

The Q and X status bytes are always set by the controller.

Results:

If executed successfully, it returns CRATE_OK, otherwise returns one of the following errors.
CRATE_ID_ERROR, if awrong crate id is specified as parameters,
CRATE_CONNECT_ERROR, if the specified controller is disconnected in this moment;

Example:

short res, crate id;
CRATE OP cr_op;

crate id = CROPEN("192.168.0.98");
if (crate id < 0) |
printf (“Error %d opening connection with CAMAC Controller \n”, crate id);

}

17;
6;
0;

cr op.F
cr op.N
cCr Oop.A
cr_ op.DATA

0x3F0000;

res = CFSA(crate id, &cr_op);
if (res < 0) {
printf (“Error executing CFSA operation: %d\n”, res);

}

12

short CSSA(short crate_id, CRATE_OP *cr_op);

Description:

Executes a 16-bit CAMAC command; valuesof Q, X and DATA arereturned in the CRATE_OP struct.
For the CRATE_OP gruct see function CFSA:

Parameters:

crate id—integer 16 hit, it specifies the Controller (see function CROPEN)

cr_op — pointer to a CRATE_OP struct, the following itemsin the CRATE_OP struct must be set before calling this
function:

F.NA;

If the function specified by theitem F isawrite operation also item DATA must be set before calling this function.;
If the function specified by theitem F is aread operation then theitem DATA will be updated with the 16-bit value
returned from the card specified by the item N.

The Q and X status bytes are always set by the controller.

Results:

If executed successfully, it returns CRATE_OK, otherwise returns one of the following errors:
CRATE_ID_ERROR, if awrong crate id is specified as parameters,
CRATE_CONNECT_ERROR, if the specified controller is disconnected in this moment;

Example:

short res, crate id;
CRATE OP cr op;

crate id = CROPEN(%“192.168.0.98");
if (crate_id < 0) {
printf (“Error %d opening connection with CAMAC Controller \n”, crate id);

}

17;
6;
0;

cr op.F
cr op.N
Cr_Op.A
cr op.DATA

0x1234;

res = CSSA(crate_id, &cr_op);
if (res < 0) {
printf (“Error executing CSSA operation: %d\n”, res);

short CCCZ(short crate_id);

Description:
Performs a Dataway init operation.

Parameters:
crate_id — integer 16 hit, it specifiesthe Controller (see function CROPEN)

Results:

If executed successfully, it returns CRATE_OK, otherwise returns one of the following errors.
CRATE_ID_ERROR, if awrong crate id is specified as parameters,
CRATE_CONNECT_ERROR, if the specified controller is disconnected in this moment;

13

Example:

short res, crate id;

crate id = CROPEN(%“192.168.0.98");
if (crate id < 0) {
printf (“"Error %d opening connection with CAMAC Controller \n”, crate id);

}

res = CCCZ(crate id);
if (res < 0) {
printf (“Error executing CCCZ operation: %d\n”, res);

short CCCC(short crate_id);

Description:
Performs a CRATE clear operation.

Parameters:
crate id—integer 16 hit, it specifiesthe Controller (see function CROPEN)

Results:

If executed successfully, it returns CRATE_OK, otherwise returns one of the following errors.
CRATE_ID_ERROR, if awrong crate id is specified as parameters,
CRATE_CONNECT_ERROR, if the specified controller is disconnected in this moment;

Example:

short res, crate id;

crate id = CROPEN(%“192.168.0.98");
if (crate id < 0) {
printf (“"Error %d opening connection with CAMAC Controller \n”, crate id);

}
res = CCCC(crate id);

if (res < 0) {
printf (“Error executing CCCC operation: %d\n”, res);

short CTCI(short crate_id, char *res);

Description:
Performs a CAMAC Test Inhibit operation.

Parameters:

crate id—integer 16 hit, it specifiesthe Controller (see function CROPEN)
res— pointer to byte, if executed successfully containstheresult of operation (0 or 1)

14

Results:

If executed successfully, it returns CRATE_OK, otherwise returns one of the following errors:
CRATE_ID_ERROR, if awrong crate id is specified as parameters;
CRATE_CONNECT_ERROR, if the specified controller is disconnected in this moment;

Example:

short res, res op, crate id;

crate id = CROPEN(“192.168.0.98");
if (crate id < 0) {
printf (“"Error %d opening connection with CAMAC Controller \n”, crate id);

}

res = CICI (crate id, &res_op);
if (res < 0) {
printf (“Error executing CTCI operation: %d\n”, res);

}
printf (“"Test Inhibit results: %d\n”, res op);

short CCCI(short crate_id, char data_in);

Description:
Changes Dataway Inhihit to a specified value.

Parameters:

crate id—integer 16 hit, it specifiesthe Controller (see function CROPEN)
data in—byte, containsthenew Dataway inhibit value (0 or 1)

Results:

If executed successfully, it returns CRATE_OK, otherwise returns one of the following errors.
CRATE_ID_ERROR, if awrong crate id is specified as parameters,
CRATE_CONNECT_ERROR, if the specified controller is disconnected in this moment;

Example:

short res, res op, crate id;

crate id = CROPEN("192.168.0.98");
if (crate id < 0) {
printf (“Error %d opening connection with CAMAC Controller \n”, crate id);

}

res op = 1
res = CCCI(crate id, res_op);
if (res < 0) {
printf (“Error executing CCCI operation: %d\n”, res);

short CTLM(short crate_id, char slot, char *res);

Description:
Performs aCAMAC test LAM on specified dot. If dot =-1, it checksfor aLAM on any dot.

Parameters:

crate id—integer 16 hit, it specifiesthe Controller (see function CROPEN)
dot — byte, dot identifier (1..23)
res— pointer to byte, if executed successfully containsthe result of operation

Results:

If executed successfully, it returns CRATE_OK, otherwise returns one of the following errors:
CRATE_ID_ERROR, if awrong crate id is specified as parameters,
CRATE_CONNECT_ERROR, if the specified controller is disconnected in this moment;

Example:

short res, res op, crate id;

crate id = CROPEN("192.168.0.98");
if (crate id < 0) |
printf (“Error %d opening connection with CAMAC Controller \n”, crate id);

}

res = CTLM(crate id, 6, &res op);
if (res < 0) {
printf (“Error executing CTLM operation: %d\n”, res);

short CCLWT(short crate_id, char slot);

Description:
CAMAC waits for LAM event on specified dot; if N = -1, it waitsfor aLAM on any dot.

Parameters:

crate id—integer 16 hit, it specifiesthe Controller (see function CROPEN)
slot — byte, dot identifier (1..23)

Results:

If executed successfully, it returns CRATE_OK, otherwise returns one of the following errors:
CRATE_ID_ERROR, if awrong crate_id is specified as parameters;
CRATE_CONNECT_ERROR, if the specified controller is disconnected in this moment;

Example:

short res , crate id;
crate _id = CROPEN(“192.168.0.98");
if (crate_id < 0) {
printf (“"Error %d opening connection with CAMAC Controller \n”, crate id);

}

res = CCLWT (crate_id, 6);
if (res < 0) {
printf ("Error executing CTLM operation: %d\n”, res);

16

}

short LACK(short crate_id);

Description:
Performs a LAM acknowledge. Must be called in the IRQ Handler, see function CRIRQ.

Parameters:

crate id—integer 16 hit, it specifiesthe Controller (see function CROPEN)
dot — byte, dot identifier (1..23)

Results:

If executed successfully, it returns CRATE_OK, otherwise returns one of the following errors:
CRATE_ID_ERROR, if awrong crate id is specified as parameters,
CRATE_CONNECT_ERROR, if the specified controller is disconnected in this moment;

Example:

void IRQHandler (short crate id, short irg type, unsigned int irq data)
{
switch (irg_type) {
case LAM INT:
// Do something when a LAM event occurs
// Write your code here
/.
LACK (crate_ id)
break;
case COMBO INT:
// Do something when a COMBO event occurs
// Write your code here
/]
break;
case DEFAULT INT:
// Do something when the “DEFAULT” button is pressed
// Write your code here
/]
break;
}
return;

}

int main ()
{
short res, crate id;
crate id = CROPEN("192.168.0.98");
if (crate id < 0) {
printf (“Error %d opening connection with CAMAC Controller \n”, crate id);
}
res = CRIRQ(crate id, IRQHandler);
if (res < 0) {
printf ("Error occurs registering callback: %d\n", res);

}
}

17

short CLMR(short crate_id, unsigned int *reg);

Description:
Returns current LAM register, in hex.

Parameters:

crate id—integer 16 hit, it specifiesthe Controller (see function CROPEN)
reg — unsigned integer 32 hit, is a 24-bit hexadecimal mask in which any bit set to 1 indicates the dot of the card
that has generated a LAM request (i.e reg = 0x100 meansLAM from card in dot 9).

Results:

If executed successfully, it returns CRATE_OK, otherwise returns one of the following errors
CRATE_ID_ERROR, if awrong crate id is specified as parameters,
CRATE_CONNECT_ERROR, if the specified controller is disconnected in this moment;

Example:

short res, crate id;
unsigned int reg;

crate id = CROPEN("192.168.0.98");
if (crate id < 0) {
printf (“"Error %d opening connection with CAMAC Controller \n”, crate id);}

res = CLMR (crate id, ®);
if (res < 0) {
printf (“Error executing CLMR operation: %d\n”, res);

}

short CTSTAT(short crate_id, char *Q, char *X);

Description:
Returns Q and X values (from last access on bus)

Parameters:

crate id—integer 16 bit, it specifiesthe Controller (see function CROPEN)
Q — pointer to byte, status of Q line
X — pointer to byte, status of X line

Results:

If executed successfully, it returns CRATE_OK, otherwise returns one of the following errors:
CRATE_ID_ERROR, if awrong crate_id is specified as parameters;
CRATE_CONNECT_ERROR, if the specified controller is disconnected in this moment;

Example:

short res, crate id;
char q, x;

crate _id = CROPEN(“192.168.0.98");
if (crate_id < 0) {
printf (“"Error %d opening connection with CAMAC Controller \n”, crate id);

}

res = CTSTAT (crate id, &q, &x);
if (res < 0) {
printf (“Error executing CTSTAT operation: %$d\n”, res);

}

18

short NOSOS(short crate_id, char nimo, char value);

Description:
Performs afast single NIM out operation.

Parameters:

crate id—integer 16 hit, it specifiesthe Controller (see function CROPEN)
nimo — byte, NIM output to be modified
value — byte, value to be set on the NIM output

Results:

If executed successfully, it returns CRATE_OK, otherwise returns one of the following errors:
CRATE_ID_ERROR, if awrong crate_id is specified as parameters,
CRATE_CONNECT_ERROR, if the specified controller is disconnected in this moment;

Example:

short res, crate id;

crate id = CROPEN(%“192.168.0.98");
if (crate id < 0) |
printf (“Error %d opening connection with CAMAC Controller \n”, crate id);

}

res = NOSOS(crate id, 0, 1); //NIM output 0 is set to 1
if (res < 0) {
printf (“Error executing NOSOS operation: %d\n”, res);

}

19

Generic command functions

short CMDS (short crate_id, char *cmd, int size);

Description:

Sends a generic ASCII command to the ASCII command socket of the Controller identified by crate id.

A completelist of all ASCIlI commands can be found in the User’s Manual, Section “ASCIlI commands reference”.
The command CMDS simply sends a command without reading the answer. Please note that the Camac
controller always replies to any ASCIl command, even if the answer isnot read. This may cause timeout or TCP/IP
read buffer overrun on some hosts depending on their configuration and operating system.

Thereply can be read using the command CMDR. If there are no reasons for sending commands without reading the
reply, the use of the command CMDSR is suggested.

Parameters:

crate id—integer 16 bit, it specifiesthe Controller (see function CROPEN)
cmd — array of chars, defines the command to be sent
size — integer 32 hit, size of command (number of characters)

Results:

If executed successfully, it returns CRATE_OK, otherwise returns one of the following errors:
CRATE_ID_ERROR, if awrong crate_id is specified as parameter;
CRATE_CONNECT_ERROR, if the specified controller is disconnected in this moment;

Example:

short res, crate id;

crate id = CROPEN(%“192.168.0.98");
if (crate id < 0) {
printf (“"Error %d opening connection with CAMAC Controller \n”, crate id);

}

res = CMDS (crate id, “CFSA 17 6 0 1”7 , 13);
if (res < 0) {
printf (“Error executing CMDS operation: %d\n”, res);

}

short CMDR (short crate_id, char *resp, int size);

Description:

Allows to read a response to a single command sent to the ASCII command socket of the Controller identified
by crate id.

Parameters:

crate id—integer 16 hit, it specifies the Controller (see function CROPEN)
resp — array of chars, defines the buffer in which the responseis stored
size — integer 32 bit, maximum number of bytesto beread

Results:

If executed successfully, it returns CRATE_OK, otherwise returns one of the following errors.
CRATE_ID_ERROR, if awrong crate id is specified as parameters,
CRATE_CONNECT_ERROR, if the specified controller is disconnected in this moment;

20

Example:

short res, crate id;
char response[32];

crate id = CROPEN("192.168.0.98");
if (crate_id < 0) {
printf (“Error %d opening connection with CAMAC Controller \n”, crate id);

}

res = CMDS (crate id, "CFSA 17 6 0 1" , 13);
if (res < 0) {
printf ("Error executing CMDS operation: %d\n", res);

}

res = CMDR(crate id, response, 32);
if (res < 0) {
printf ("Error executing CMDR operation: %d\n", res);

}

printf ("Response: %$s\n", response);

short CMDSR (short crate_id, char *cmd, char *resp, int size);

Description:

Allows to send a command to the ASCII command socket and read the response from the Controller identified
by crate id.
A completelist of all ASCIlI commands can be found in the User’s Manual, section “ASCII commands reference”.

Parameters:

crate id—integer 16 hit, it specifiesthe Controller (see function CROPEN)
cmd — array of chars, defines the command to be sent

resp — array of chars, defines the buffer in which theresponseis stored
Size —integer 32 bit, maximum number of bytesto be read

Results:

If executed successfully, it returns CRATE_OK, otherwise returns one of the following errors:
CRATE_ID_ERROR, if awrong crate id is specified as parameters,
CRATE_CONNECT_ERROR, if the specified controller is disconnected in this moment;

Example:

short res, crate id;
char cmd[32], response[32];

crate id = CROPEN("192.168.0.98");
if (crate id < 0) |
printf (“Error %d opening connection with CAMAC Controller \n”, crate id);

}
strcpy(cmd, "CFSA 17 6 0 1");
res = CMDSR(crate id, cmd, response, 32);
if (res < 0) {
printf ("Error executing CMDSR operation: %d\n", res);

}

printf ("Response: %$s\n", response);

21

Block transfer functions

short BLKBUFFS (short crate_id, short value);

Description:

Set the current block transfer buffer size. This value affects the numbers of data-words transferred in a single
TCP/IP transaction. A low value will cause a great number of TCP/IP transactions. Default valueis 16.
A detailed description of Block Transfer operations can be found in [1].

Parameters:
crate id—integer 16 bit, it specifiesthe Controller (see function CROPEN)

value: integer 16 bit — block transfer buffer size (allowed values: 1 to 256)

Results:

CRATE_OK: Operation completed successfully;
CRATE_ERROR: Operation failed

short BLKTRANSF (short crate_id, BLK_TRANSF_INFO *blk_info,
unsigned int *buffer);

Description:

Performs ablock transfer operation.
A detailed description of Block Transfer operations can be foundin [1].

Parameters:
crate id—integer 16 bit, it specifies the Contraller (see function CROPEN)

blk_info - data structure:

opcode: gpecify the type of block transfer; can be one of the following:
OP_BLKSS to perform a 16 hit block transfer STOP mode;
OP_BLKFS to perform a 24 bit block transfer STOP mode;
OP_BLKSR to perform a 16 bit block transfer REPEAT mode;
OP_BLKFR to perform a 24 bit block transfer REPEAT mode;
OP_BLKSA to perform a 16 bit block transfer ADDRESS SCAN mode;
OP_BLKFA to perform a 24 bit block transfer ADDRESS SCAN mode;

F: function identifier (0..27)

N: dot identifier (1..23) (specifies the sart dot in ADDRESS SCAN mode)

A: address identifier (0..15) (non significant in ADDRESS SCAN mode)

totsize: totad number of datawords to be transferred

blksize: thecurrent block transfer buffer size

timeout : timeout in seconds (significant only in ADDRESS SCAN mode)

buffer: array of integer 32 hit: if the blk_info.opcode specify aread operation, buffer will be filled with the data read
during the block transfer operation. If the blk_info.opcode specify a write operation, buffer must be already filled
with the data being transferred during the block transfer operation. The application must provide a pointer to a

buffer referring a memory area with enough bytes allocated to perform the operation safely.

22

Results:

CRATE_OK: Operation completed successfully; in this case the blk_info.totsize will be filled with the actua data
size effectively transferred by the CAMAC Controller
CRATE_ERROR: Operation failed

Example:

int main(int argc, char *argv([])

{

short crate id;
int i, 3>
int resp;

// Block transfer operation sends 16-bit data separated in lines

// This parameter sets the amount of data per line

int block data size;

int total data size; // This is the total 16-bit data to be sent

char blk ascii buf([2048];
unsigned int blk transf buf[300];

BLK_TRANSF INFO blk info;
CRATE_OP op;

/*

*/

/*

*/

printf ("Block Transfer Test\n");

crate id = CROPEN("192.168.0.98");
if (crate_id < 0) {
printf (“"Error %d opening connection with CAMAC Controller \n”, crate_ id);

return 0;

printf ("Initializing communication parameters...\n");

Invoke Block transfer Q-stop mode

(write operation on Crate Module N address 0)

block data size = 16;
total data size (block data size * 5)

printf ("Start block transfer write\n");

// Prepare send test pattern
for (3 = 0; J < 5; j++) |
for (i = 0; 1 < block data size;
if (1 & 1)
blk transf buf[i +
else
blk transf buf[i +

}

blk info.opcode = OP BLKSS;

blk info.F = 16;

blk info.N = 6;

blk info.A = 0;

blk info.blksize block data size;
blk info.totsize = total data size;

’

//Sent 80 16-bit data items

i++) |
(J * block data size)]

(3 * block data size)]

0x5555;

OxAAAA;

23

/*

*/

blk info.timeout = 0;
resp = BLKTRANSF (crate id, &blk info, blk transf buf);

if (resp != CRATE OK) {

printf ("ERROR: Negative response from socket server\n");

return O;

}
printf ("Total data written: %d\n", blk _info.totsize);

printf ("End of block transfer write\n");

Invoke Block transfer Q-stop mode
(read operation on Crate Module N address 0)

block data size = 32;
total data size = (block data size * 5);

printf ("Start block transfer read\n");

blk info.opcode = OP BLKSS;

blk info.F = 0;

blk info.N = 6;

blk info.A = 0;

blk info.totsize = total data size;
blk info.blksize block data size;
blk info.timeout 0;

resp = BLKTRANSF (crate id, &blk info, blk transf buf);
if (resp != CRATE OK) {

printf ("ERROR: Negative response from socket server\n");

return O;

}

printf ("Total data read: %d\n", blk info.totsize);
for (1 = 0; 1 < blk info.totsize; i++) {

// Show received buffer

if ((1 > 0) && ((1 % 10) == 0)) {

printf ("\n");

}

printf ("%06X ", blk transf bufl[i]);
}
printf ("\nEnd of block transfer read\n");

return 0;

24

