
VxWorks/Tornado
BSP Rel. 3.x

for PPMC-280

Programmer’s Guide

P/N 221088 Revision AC
November 2003

The information in this publication is subject to change without notice. Force Computers reserves the right to make changes with-
out notice to this, or any of its products, to improve reliability, performance, or design.

Force Computers shall not be liable for technical or editorial errors or omissions contained herein, nor for indirect, special, inci-
dental, or consequential damages resulting from the furnishing, performance, or use of this material. This information is provid-
ed “as is” and Force Computers expressly disclaims any and all warranties, express, implied, statutory, or otherwise, including
without limitation, any express, statutory, or implied warranty of merchantability, fitness for a particular purpose, or non-in-
fringement.

This publication contains information protected by copyright. This publication shall not be reproduced, transmitted, or stored in
a retrieval system, nor its contents used for any purpose, without the prior written consent of Force Computers.

Force Computers assumes no responsibility for the use of any circuitry other than circuitry that is part of a product of Force
Computers. Force Computers does not convey to the purchaser of the product described herein any license under the patent
rights of Force Computers nor the rights of others.

Copyright 2003 by Force Computers. All rights reserved.

The Force logo is a trademark of Force Computers.

IEEE is a registered trademark of the Institute for Electrical and Electronics Engineers, Inc.
PICMG, CompactPCI, and the CompactPCI logo are registered trademarks and the PICMG logo is a trademark of the PCI Indus-
trial Computer Manufacturer’s Group.
MS-DOS, Windows95, Windows98, Windows2000 and Windows NT are registered trademarks and the logos are a trademark of
the Microsoft Corporation.
SolarisTM is a registered trademark and the logo is a trademark of Sun Microsystems, Inc.
Intel and Pentium are registered trademarks and the Intel logo is a trademark of the Intel Corporation.
PowerPC is a registered trademark and the PowerPC logo is a trademark of International Business Machines Corporation.
VxWorks, Wind River Systems, CrossWind, Tornado, VxMP, VxSim, VxVMI, wind, WindC++, WindConfig, Wind Foundation
Classes, WindNet, WindPower, WindSh, WindView and the Wind River Systems logo are registered trademarks of Wind River
Systems, Inc.

Other product names mentioned herein may be trademarks and/or registered trademarks of their respective companies.

Copyright

World Wide Web: www.forcecomputers.com
 24-hour access to on-line manuals, driver updates, and application
notes is provided via SMART, our SolutionsPLUS customer support
program that provides current technical and services information.

Headquarters
The Americas Europe Asia
Corporate Headquarters/CA
Force Computers
4211 Starboard Drive
Fremont, CA 94538

Tel.: +1 510 624-8274
Fax: +1 510 445-6007
Email: support@fci.com

Force Computers GmbH
Lilienthalstr. 15
D-85579 Neubiberg/München
Germany

Tel.: +49 (89) 608 14-0
Fax: +49 (89) 609 77 93
Email: support-de@fci.com

Force Computers Japan KK
Shibadaimon MF Building 4F
2-1-16 Shiba Daimon
Minato-ku, Tokyo 105-0012 Japan

Tel.: +81 (03) 3437 6221
Fax: +81 (03) 3437 6223
Email: support-de@fci.com
221088 410 000 AC

Contents
Using This Guide

Other Sources of Information

1 Introduction

System Architecture . 1-3

System Environment . 1-5

Board Settings . 1-6
Devices . 1-6
VxWorks BSP I/O Interface . 1-6

2 PPMC-280 BSP Features

BSP Features . 2-3
Supported Features . 2-3

Board Initialization . 2-3
Interrupt Routing . 2-4
Boot from PCI . 2-4
Monarch and Non-Monarch operation . 2-4
Memory Partitioning . 2-4
Loosely coupled Symmetric Multi-Processing operation . 2-4
PPMC-280 v

Serial Console . 2-5
Board Information . 2-5

Support for On-board Devices . 2-5
I2C . 2-5
Serial EEPROM . 2-5
Real Time Clock . 2-6
PCI . 2-6
MPSC . 2-6
Gigabit Ethernet . 2-6

3 Dual CPU Configuration

Dual CPU Configuration . 3-3
SDRAM Partitioning . 3-3

Single CPU BSP Defines . 3-3
Dual CPU BSP Defines . 3-4
Setting up of BAT registers . 3-4
Setting up of Page Table Entries . 3-5
MV64360/362 Resource Partitioning . 3-5
Exception handling . 3-5

4 Software Basics

System Software Preparation . 4-3
Installing the BSP . 4-3

Installation Procedure for Solaris and Windows NT . 4-3
Compile Source Code to Build Binaries . 4-4

5 API Call Reference

List of APIs . 5-3
MV-64360 General Driver . 5-3

Software Modules . 5-3
External Interface . 5-3

MV-64360 INTERRUPT CONTROLLER . 5-6
Software Modules . 5-7
Software Requirements . 5-7
Restrictions . 5-7
Execution Flow . 5-8
Driver Initialization . 5-8
ISR Connection . 5-9
vi PPMC-280

Interrupt Handling . 5-9
External Interface Data Structure . 5-9
External Interface APIs . 5-10
STATUS gtIntCntrlInit () . 5-10

System Interrupt Controller . 5-12
Supported Features . 5-12
Software Modules . 5-12
Software Requirements . 5-12
System Resource Usage . 5-13
Restrictions . 5-13
External Interface . 5-13

General Purpose Port Interrupt Controller . 5-14
Supported Features . 5-14
Software Modules . 5-14
Requirements . 5-15
Restrictions . 5-15
External Interface Data Structures . 5-15

PCI Scan Driver . 5-17
Driver Initialization . 5-18
PCI0 Scanning . 5-18
Debugging Facilities . 5-18
Software Modules . 5-19
Structures . 5-19
Variables . 5-19
Driver APIs . 5-19

Communication Unit Management Driver . 5-23
Software Modules . 5-24
Supported Features: . 5-24
Operation flow . 5-24

Communication Unit Serial Dynamic Memory Access Driver . 5-43
Supported features . 5-43
Operation . 5-43
Software Modules . 5-44
SDMA Low Level Driver Features . 5-45
System Resource Usage . 5-45
External Interface (Low Level Driver) . 5-45
Driver Introduction . 5-63
Software Modules . 5-63
Restriction . 5-64
System Resource Usage . 5-64
External Interface . 5-64

Communication Unit MPSC Driver . 5-67
Low Level Driver Introduction . 5-68
Software Modules . 5-68
Low Level Driver External Interface- Data Structure . 5-68
PPMC-280 vii

Driver Introduction . 5-82
Implementation Files . 5-82
Restriction . 5-83
Driver External Interface- Data Structure . 5-83

Ethernet Driver . 5-86
Supported Features . 5-86
Software Modules . 5-87
Operation Flow . 5-87
External Interface . 5-88
Target-specific Parameters . 5-88
External Interface-APIs . 5-89

BRG Driver . 5-96
Introduction . 5-96
Software Modules . 5-96

UART Over MPSC Port Driver . 5-98
Supported Features . 5-98
Software Modules . 5-98
External Interface -APIs . 5-98

Serial EEPROM Driver . 5-103
Supported Features . 5-104
Software Modules . 5-104
Software Requirements . 5-104
External Interface - External APIs . 5-104

Real Time Clock Driver . 5-107
Supported Features . 5-107
Software Modules . 5-107
External API's . 5-107

Board Information Block Driver . 5-108
Supported Features . 5-108
Software Modules . 5-108
External Interfaces- External APIs . 5-109

VPD Driver . 5-113
Supported Features . 5-113
Software Modules . 5-113
Software Requirements . 5-113
External Interface- External APIs . 5-114

Boot Flash Driver . 5-115
Supported Features . 5-115
Software Modules . 5-115
Software Requirements . 5-116
External Interface- External APIs . 5-116

User Flash Driver . 5-118
Supported features . 5-119
Software modules . 5-119
viii PPMC-280

Watchdog Timer Driver . 5-122
DoorBell Interrupt Support . 5-125

Software Modules . 5-126
External Apis . 5-126

DMA Driver . 5-130
Software Modules . 5-130
External Apis . 5-130

DMA Interrupt Controller . 5-135
PciBoot Feature . 5-139
SMP Driver . 5-139

Software modules . 5-139
External APIs . 5-139

Test Application Support . 5-141
Supported Features . 5-141
Software Modules . 5-141
Software Requirements . 5-141
To Test APIs for RTC . 5-141

A Appendix

Appendix Overview . A-3

Memory Map . A-4

Interrupt Routing on PPMC-280 . A-5
PCI Interrupts .A-5

PCI Boot Procedure on PPMC-280 . A-6
Case A: PPMC-280 is Monarch .A-6
Case B: When PPMC-280 is Non-Monarch .A-6

Using Test Tool . A-8
Invoking the Test Tool .A-8

Index of Functions

Product Error Report
PPMC-280 ix

x PPMC-280

Tables
Introduction

Table 1 Hardware Devices . 1-6
Table 2 I/O Interfaces for VxWorks BSP. 1-6

PPMC-280 BSP Features

Dual CPU Configuration

Software Basics

API Call Reference

Table 3 General Driver API Synopsis . 5-3
Table 4 Interrupt Controller Phases . 5-6
Table 5 Handlers. 5-8
Table 6 SDMA Driver Structure:RX_COMMAND . 5-45
Table 7 SDMA Driver Structure: TX_COMMAND . 5-46
Table 8 SDMA Driver Structure: RX_DESC . 5-48
Table 9 SDMA Driver Structure: TX_DESC . 5-50
Table 10 SDMA Driver Structure: MPSC_SDCMR . 5-52
Table 11 SDMA Driver Structure: SDMA_CONFIGURATION . 5-54
Table 12 SDMA Channel Structure: PortAllocStruct . 5-64
Table 13 SDMA Channel Structure: TX_PACKET . 5-65
Table 14 MPSC Main Structure: MPSC_MAIN_STRUCT . 5-69
Table 15 MPSC Channel Structures: MPSC_Channel_Chr 1 to 10 . 5-79
Table 16 MPSC Channel Structure: MPSC_CHANNEL_STRUCTURE 5-82
Table 17 Driver Data Structures: MPSC_PORT_CONFIG . 5-83
PPMC-280 xi

xii PPMC-280

Using This Guide

This Programmer’s Guide is intended for software developers writing
applications to run on PPMC-280. This manual describes board specific
information necessary to run VXWorks on PPMC-280.

This guide is to be referenced for PPMC-280 VxWorks BSP Rel. 3.x.

Throughout this guide, it is assumed that you are generally familiar with C
programming, VxWorks, and the Tornado Development Environment.

Conventions

Abbreviations

Notation Description

57 All numbers are decimal numbers except when used with the fol-
lowing notations:

0x0000000 Typical notation for hexadecimal numbers (digits are 0 through F),
e.g. used for addresses and offsets.

Bold Character format used to emphasize a word

Courier Character format used for on-screen output, user input/output

Italics Character format for references and for table and figure descrip-
tions.

Note: No danger encountered. Pay attention to important information
marked using this layout.

API Application Program Interface

BRG Baud Rate Generator

BSP Board Support Package

CPD (DMA) Current Descriptor Pointer

CPU Central Processing Unit

DMA Dynamic Memory Access
PPMC-280 xiii

DRAM Dynamic Random Access Memory

EEPROM Electrically Erasable Programmable Read-Only Memory

FDP (DMA) First Descriptor Pointer

FIFO First In First Out

GPP General Purpose Port

HDLC High-level Data Link Control

I2C Inter Integrated Circuit

ISR Interrupt Service Routine

LANHDLC Local Area Network HDLC

LSB Least Significant Bit

MAC Media Access Control

MPSC Multi Protocol Serial Controller

NIC Network Interface Card

PCI Peripheral Connect Interface

RISC Reduced Instruction Set Computer

RMII Reduced Media-Independent Interface

RTC Real Time Clock

SDMA Serial Dynamic Memory Access

SDRAM Synchronous DRAM

SFM Single Frame Mode

SIO Serial Input Output

UART Universal Asynchronous Receiver Transmitter

VPD Vital Product Data

VTS Validation Test Suite

WRS Wind River Systems
xiv PPMC-280

Revision History

Order Number Revision Date Description

221088 410 000 AA May 2003 Release 1.0
Release for Tornado 1.0.1

221088 410 000 AB July 2003 Release 2.0
Release for Tornado 2.2
Editorial Changes
Support for two Ethernet ports
added
Modified section “Ethernet
Driver” page 5-86.

221088 410 000 AC November
2003

Rel. 3.x
Release for Tornado 2.2
PPMC-280 xv

Other Sources of Information

For further information, refer to the following documents:

In addition, refer to PCI Local Bus Specifications Revision 2.2 for VPD Data
Structure.

Company Web Address Document

Marvell Technology
Group Ltd.

www.marvell.com MV-64360 Datasheet

Atmel Corporation www.Atmel.com ATMEL AT24C02A Serial
EEPROM Datasheet
ATMEL AT24C02A and AT24C64A
Serial EEPROM

Motorola www.motorola.com MPC7447 datasheet and user man-
ual

Maxim Integrated
Products

www.maxim-ic.com MAX6900 Datasheet
xvi PPMC-280

1
Introduction

Introduction System Architecture
System Architecture

The PPMC-280 board supports the following features:

• Motorola PowerPC® 7447 processor (single or dual depending on the
variant of the board).
– (1 GHz core) in a "loosely-coupled symmetric multi-processing

(SMP)" environment (applicable for dual CPU variants only).
– 133 MHz front-side bus

• Marvell MV64360/362 system controller

• Upto 1GB Dual Data Rate (DDR) Synchronous Dynamic Random
Access Memory (SDRAM)
– Up to 133 MHz bus frequency

• PCI2.2 interface
– Universal signaling
– 64-bit, 66 MHz

• PCI boot

• Two Gigabit Ethernet ports
– Accessible through PMC I/O (P4) connector.

• Two RS232 serial ports
– Accessible through PMC I/O (P4) connector.

• Y2K-compliant Real Time Clock (RTC)

• Serial E2PROMs for board configuration and identification

• Upto 64 MB of User flash

• BIB

• RTC

• Debug support through COP and JTAG ports

The function block diagram is shown in Figure 1.
PPMC-280 1 - 3

System Architecture Introduction
Figure 1: Functional Block Diagram
1 - 4 PPMC-280

Introduction System Environment
System Environment

PPMC-280 Board Support Package (BSP) supports VxWorks Operating sys-
tem. The BSP Rel. 3.x has been built under Tornado TM 2.2 on Windows and
Sun™ Solaris ™ host machines.

The Tornado configuration setup.log file which is automatically
generated while installing the tools is given below for reference.

Note: The BSP Rel. 3.x can be used with Tornado TM 2.2 in the SolarisTM
or Windows NT environment.

Setup.log file:
07-Mar-03.13:53SETUP detected the following warning, and
installation was continued:
"WARNING: SETUP has detected that this machine is running on Solaris
2.5.x. Tornado does not officially support Solaris 2.5.x and Solaris
2.6."
07-Mar-03.14:00CD manufacturing time: Thu Oct 03 16:55:33 PDT 2002
07-Mar-03.14:00TDK-14620-ZC-01SETUP-2.2/home3/champ/tor2_2Ppc
07-Mar-03.14:00Tornado 2.2/VxWorks 5.5 for PowerPC
07-Mar-03.14:00SunOS surya 5.5.1 Generic_103640-20 sun4m sparc
SUNW,SPARCstation-5
07-Mar-03.14:00100-22651-30Back End Developer's Toolkit
07-Mar-03.14:00100-22700-30Compiler - GNU: solaris x ppc
07-Mar-03.14:01100-22566-30Tornado Setup SDK
07-Mar-03.14:02100-22531-30Tornado Tools: solaris x ppc
07-Mar-03.14:35100-23549-30VxWorks: ppc40x
07-Mar-03.14:37100-23550-30VxWorks: ppc44x
07-Mar-03.14:37100-22535-30VxWorks: ppc6xx
07-Mar-03.14:38100-22537-30VxWorks: ppc74xx
07-Mar-03.14:39100-22536-30VxWorks: ppc7xx
07-Mar-03.14:40100-22539-30VxWorks: ppc82xx
07-Mar-03.14:40100-22538-30VxWorks: ppc8xx
07-Mar-03.14:41100-22533-30WindView: solaris x ppc
07-Mar-03.14:42
07-Mar-03.14:42licensed product: tornado 310
07-Mar-03.14:42licensed product: windview 320
07-Mar-03.14:42
PPMC-280 1 - 5

Board Settings Introduction
Board Settings

Refer to the respective Installation Guides of PPMC-280 and carrier card for
board configuration.

Devices

The various hardware devices and their description are provided in the fol-
lowing table.

VxWorks BSP I/O Interface

PPMC-280 provides two ways to connect VxWorks to the network interface
for network operations.

 Table 1: Hardware Devices

HW Device Description

System Clocks PPMC-280 features two clocks: TCLK and SysCLK. SysCLK
is used for the CPU, while TCLK is used for the MV-64360.
Both clocks are described as TCLK_RATE and
SYSCLK_RATE macros in the pmc280.h file. Make sure that
these frequencies are described correctly.
(SYSCLK_RATE = 133000000; TCLK_RATE = 133000000)

Serial Ports PPMC-280 supports two serial ports (Port0, Port1). For a sin-
gle CPU BSP Serial Port 0 is used, while in case of a Dual
CPU BSP, Serial Port 0 is the console for CPU0 and Serial Port
1 is the console for CPU1

PCI Bus PPMC-280 supports a 64-bit bus running at 33/66 MHz.

Ethernet Interfaces PPMC-280 contains one Ethernet controller, which can be
configured to the GMII interface.

Table 2: I/O Interfaces for VxWorks BSP

Interface Description

mgi
(Marvel Gigabit inter-
face)

The “mgi” interface utilizes a GMII Ethernet port.
1 - 6 PPMC-280

2
PPMC-280 BSP Features

PPMC-280 BSP Features BSP Features
BSP Features

This chapter details all the supported BSP features.

Supported Features

The supported features are detailed in the following sections.

Board Initialization

The board-specific initializations performed by the BSP are listed below:

• Initialize all the CPU registers (such as IBAT, DBAT, LR, MSR)

• Initialize CPU interface registers of MV-64360.

• Automatically configure on-board memory and Memory Controller
registers of MV64360/362.

• Set up initial stack pointer

• Sets up the board memory map by configuring MV-64360 decode
registers

• Configure PCI interface registers of MV-64360

• Detect PCI devices and assign memory and I/O resources as well as
interrupt numbers (depending upon whether the board operates as a
monarch or a non-monarch)

• Initialize and configure MV-64360 Interrupt controller to route PCI and
other device interrupts

• Initialize all on-board devices by calling the driver initialization func-
tions. This would include (but not limited to) initialization of MPSC
ports, and Gigabit Ethernet.

• Initialize and enable L1/L2 cache

• Enable bus pipelining on CPU0 and CPU1

• Enable Interrupts

CPU0 performs most of the system controller (MV-64360) initialization
while some initialization such as enabling cache, setting up stack pointer,
are performed by both CPU0 and CPU1.
PPMC-280 2 - 3

BSP Features PPMC-280 BSP Features
Interrupt Routing

The BSP will support masking-specific device interrupts from CPU0 or
CPU1. It is possible to enable PCI interrupts for CPU1 and mask it for CPU0
(by default, CPU0 receives all the PCI interrupts). MV64360/362 resources
such as Timers, DMA Engines, and MPSC ports are shared between the
CPUs and therefore need not be routed. Similarly, both the Gigabit Ether-
net ports on MV64360/362 are handled by CPU0 and need not be handled
by CPU1.

Boot from PCI

The BSP provides support for booting the board from the PCI. As this is not
a feature of the BSP, a feature supported by MV64360/362 is used, which is
the self configuration of registers by reading (register offset: data) pairs
from serial EEPROM on I2C.

Monarch and Non-Monarch operation

The BSP supports detection of its monarch/non-monarch status (through
MONARCH# pin of the PMC slot). The board configured to be the mon-
arch will enumerate the PCI bus devices (assigns memory, I/O and inter-
rupt numbers) and also configures itself to route PCI interrupts lines
(INTA#, INTB#, INTC# and INTD#) to the CPU. The non-monarch will not
perform PCI enumeration.

Memory Partitioning

The system memory will be partitioned into three regions, one for CPU0,
one for CPU1, and the third partition shared between the two CPUs for
inter-processor communication.

Loosely coupled Symmetric Multi-Processing operation

Each CPU will run a copy of the VxWorks independent of the other. Multi-
ple VxWorks images running on each of the CPUs on board will not mean
that there will be two different VxWorks images (one for each CPU). The
VxWorks image will be built from the same source tree (by a single compi-
lation) just as one would build the image for a board with a single CPU. .

Although by definition “loosely coupled” in multiprocessing systems
means each processor is assigned its own resources such as memory, I/O,
interrupts (processors do not share system resources), it is not so in the case
of PPMC-280. There are resources that belong to each CPU (like MPSC port
2 - 4 PPMC-280

PPMC-280 BSP Features BSP Features
or system memory portion identified as belonging to the CPU) while there
are resources that are shared (such as the partition identified as “shared” or
the registers of MV64360/362, etc.) The resource allocation or partitioning
is purely in software and there is no restriction from hardware, in other
words all the resources are accessible by both the CPUs and there is no
physical limitation imposed by hardware.

By definition, in a Symmetric Multi-Processing (SMP) system any processor
can run any kind of process (operating system as well as applications)
while ASMP means that one CPU is selected to run the operating system
while the other CPU would run all the user applications. In our implemen-
tation for PPMC-280, both CPUs run their own copies of the operating sys-
tem as well as user applications (in this sense, we have an SMP but with
two images of OS).

The case in PPMC-280 is a pseudo-loosely coupled, pseudo-SMP system.

Serial Console

Each CPU will have its own serial console for user interaction.

Board Information

Board related information such as revision information, processor informa-
tion, size of the on-board SDRAM is provided in a form as according to the
required specifications. The BSP will provide programming interfaces to
read and write the BIB information to the BIB device (which will be a serial
EEPROM on I2C bus).

Support for On-board Devices

The BSP supports the following on-board devices:

I2C

The driver for I2C bus supports reading from and writing to any of the
devices on I2C especially serial EEPROM and RTC.

Serial EEPROM

The Serial EEPROM driver supports read, write and erase operations to the
device based on the support provided by the I2C driver.
PPMC-280 2 - 5

BSP Features PPMC-280 BSP Features
Real Time Clock

The RTC driver supports reading from and writing to RTC registers as well
as scratch memory.

PCI

The PCI driver for MV64360/362 supports read and write PCI configura-
tion space registers (of MV64360/362 as well as other devices on PCI bus),
scan the bus to detect devices and configure them by assigning memory
and I/O resources. The driver will support the above functionality beyond
a PCI-to-PCI bridge also.

MPSC

The driver for MPSC ports supports read and write to the console as well as
functions to change the properties of the serial port such as baud rate, stop
bits. The driver will operate in the interrupt mode.

Gigabit Ethernet

Wind River END style driver for MV64360/362 Gigabit Ethernet(s) is sup-
ported by the BSP.
2 - 6 PPMC-280

3
Dual CPU Configuration

Dual CPU Configuration Dual CPU Configuration
Dual CPU Configuration

VxWorks support for Dual CPU in PPMC-280 varies from the normal (sin-
gle CPU) VxWorks. The areas of difference are:

• SDRAM Partitioning

• Setting up of BAT registers

• Setting up of Page Table Entries

• MV64360/362 resource partitioning

• Exception handling

SDRAM Partitioning

In a Single CPU system, the entire SDRAM is accessible through BSP. How-
ever in a Dual CPU system, it is necessary to partition the SDRAM into
three regions:

• Region belonging to CPU0

• Region belonging to CPU1

• Shared memory region (seen by both CPUs)

Although both the CPUs have the same virtual address map, the configura-
tion of the Memory Management Unit has to be done in such a way that it
will map it to different physical regions.

Single CPU BSP Defines

In a single CPU BSP, the following defines in config.h are usually used
to declare the amount of memory on-board.

LOCAL_MEM_SIZE Total memory available on-board

USER_RESERVED_
MEM

Memory reserved for serial/MPSC drivers.
PPMC-280 3 - 3

Dual CPU Configuration Dual CPU Configuration
Dual CPU BSP Defines

The following definitions are used:

BOARD_MEM_SIZE Total memory size, if it is hard-coded. However, if auto-sizing is enabled, it
is not used.

APP_SHMEM_SIZE Memory reserved for shared memory applications

SYS_PGT_SIZE Memory reserved for the page table

SYS_DRV_SIZE Memory reserved for drivers like MPSC, etc.

SYS_SHMEM_SIZE System Shared memory (SYS_PGT_SIZE + SYS_DRV_SIZE)

USER_RESERVED_
MEM

Total memory reserved for drivers, page table entries and shared memory
application (SYS_SHMEM_SIZE + APP_SHMEM_SIZE)

These defines are critical for the boot to happen. It is recommended that
these be changed with utmost care.

Setting up of BAT registers

Normally, in a Single CPU BSP, sysBatDesc (defined in sysLib.c) is
used to by usrMmuInit() (called from usrConfig.c) to set up the
Block Address Translation (BAT) registers of CPU. However in the Dual
CPU BSP this is done in romInit.s using the earlysysBatDescCPU0
and earlysysBatDescCPU1 defined in frcmmu.c. The default is to map
PCI memory regions and the MV64360/362 internal register space BATs.

Setting up of these tables is critical for the boot to happen. It is recom-
mended that these be changed with utmost care.
3 - 4 PPMC-280

Dual CPU Configuration Dual CPU Configuration
Setting up of Page Table Entries

Normally, in a Single CPU BSP, sysMemPhysDesc (defined in sysLib.c)
is used to by usrMmuInit() (called from usrConfig.c) to set up the
page table in memory. However in the Dual CPU BSP this is done in boo-
tInit.c (romStart) using earlysysPhysMemDescCPU0 and
earlysysPhysMemDescCPU1 defined in frcmmu.c. The default is to
map in SDRAM and Internal SRAM through page tables.

Setting up of these tables is critical for the boot to happen. It is recom-
mended that these be changed with utmost care.

MV64360/362 Resource Partitioning

In a single CPU BSP, all the resources on the system controller such as PCI,
DMA engines, timers, serial ports, Ethernet ports belong to the CPU. How-
ever in the dual CPU BSP these common resources are partitioned. This list
below provides details of the partitioning:

• Serial Ports: MPSC0 belongs to CPU0 and MPSC1 belongs to CPU1

• DMA Engines: Two DMA engines belong to CPU0 and two to CPU1

• Timers: Timers are split between the two CPUs

• Ethernet: Both the Ethernet Ports belong to CPU0

• PCI: PCI belongs to CPU0

All the files related to these units such as sysLib.c, vxDmaIntCtrl.c,
vxCntmrIntCtrl.c, etc. handle partitioning.

Exception handling

Although exception-handling code is not included as a part of the BSP, dual
CPU BSP handles exception is a different way. It is necessary to know that
in this BSP, MMU is turned on as soon as the exception handler is called (as
against enabling MMU only before calling the interrupt service routine).
This causes a latency of a few instructions.
PPMC-280 3 - 5

Dual CPU Configuration Dual CPU Configuration
3 - 6 PPMC-280

4
Software Basics

Software Basics System Software Preparation
System Software Preparation

To perform System Software Preparation, do the following:

• Install the BSP

• Compile source code to build binaries

Installing the BSP

The default packaging of the BSP is a compressed tar file or zip file. You can
download the zip file or tar file from the Force Computers SMARTTM page
at http://splus.forcecomputers.com/cgi-bin/user/account/services.

The BSP Rel. 3.x has been built under Tornado 2.2 on Windows and Sun
Solaris ™ host machines. The tar file has the following directory:

• PMC280: this is the main target BSP directory

Installation Procedure for Solaris and Windows NT

To install the BSP, use the compressed tar file.

The following procedure explains how to install a BSP contained in a file
named, for example, bspFile.tar:

1. Uncompress the tar file to a temporary directory. For example, to
uncompress the tar file to a temporary directory in a Solaris
environment, use the following command.

tar -xvf <bspFile>.tar.

2. Copy the PMC280 directory to $(WIND_BASE)/target/con-
fig where WIND_BASE is the directory where Tornado is installed.

Setup.log file The Tornado configuration setup.log file which is automatically generated
while installing the tools is shown below for reference.

07-Mar-03.13:53SETUP detected the following warning, and
installation was continued:
"WARNING: SETUP has detected that this machine is running on Solaris
2.5.x. Tornado does not officially support Solaris 2.5.x and Solaris
2.6."
07-Mar-03.14:00CD manufacturing time: Thu Oct 03 16:55:33 PDT 2002
07-Mar-03.14:00TDK-14620-ZC-01SETUP-2.2/home3/champ/tor2_2Ppc
07-Mar-03.14:00Tornado 2.2/VxWorks 5.5 for PowerPC
PPMC-280 4 - 3

System Software Preparation Software Basics
07-Mar-03.14:00SunOS surya 5.5.1 Generic_103640-20 sun4m sparc
SUNW,SPARCstation-5
07-Mar-03.14:00100-22651-30Back End Developer's Toolkit
07-Mar-03.14:00100-22700-30Compiler - GNU: solaris x ppc
07-Mar-03.14:01100-22566-30Tornado Setup SDK
07-Mar-03.14:02100-22531-30Tornado Tools: solaris x ppc
07-Mar-03.14:35100-23549-30VxWorks: ppc40x
07-Mar-03.14:37100-23550-30VxWorks: ppc44x
07-Mar-03.14:37100-22535-30VxWorks: ppc6xx
07-Mar-03.14:38100-22537-30VxWorks: ppc74xx
07-Mar-03.14:39100-22536-30VxWorks: ppc7xx
07-Mar-03.14:40100-22539-30VxWorks: ppc82xx
07-Mar-03.14:40100-22538-30VxWorks: ppc8xx
07-Mar-03.14:41100-22533-30WindView: solaris x ppc
07-Mar-03.14:42
07-Mar-03.14:42licensed product: tornado 310
07-Mar-03.14:42licensed product: windview 320
07-Mar-03.14:42

Compile Source Code to Build Binaries

1. Compile the source code to build binaries. Ensure that you have
made the necessary changes in the Makefile as mentioned in the
Installation guide for the PCI bootable image.

2. Download the PCI bootable image using the procedure as men-
tioned in the appendix.
4 - 4 PPMC-280

5
API Call Reference

API Call Reference List of APIs
List of APIs

This chapter provides a detailed description of all functions.

Note:

• The term Input used in this chapter is a parameter that must
be passed to the function.

• The term Output used in this chapter is the result of the func-
tion.

• The term Return used in this chapter is the value returned by
the function.

MV-64360 General Driver

This driver functions as the lowest software interface to the MV-
64360 registers and SDRAM accesses. All hardware register
accesses and SDMA readings are completed by this API. To
achieve better performance, most accesses are implemented using
macro definition

Software Modules

The driver is implemented in:

• gtCore.c: Data block read/write and register write mask bits.

• gtCore.h: Macro for read/write cacheable/non-cacheable
char/short/word.

External Interface

The APIs for the external interface are listed here.

Table 3:General Driver API Synopsis

Macro Description

REG_ADDR(offset) Returns the full address of a given register offset.

REG_CONTENT(offset) Returns the register’s content.

VIRTUAL_TO_PHY(ad
dress)

Meaningless for PPC CPUs.
PPMC-280 5 - 3

List of APIs API Call Reference
PHY_TO_VIRTUAL(ad
dress)

Meaningless for PPC CPUs.

GT_REG_READ(offset,
pData)

Reads and byte swaps an MV64360/362 internal
register into pData.

GT_REG_WRITE(offset,
data)

Writes and byte swaps data into an MV64360/362
internal register.

WRITE_CHAR(address,
data)

Writes a character into an address.

GT_WRITE_SHORT(ad
dress, data)

Writes a short into an address.

GT_WRITE_WORD(add
ress, data)

Writes a word into an address.

Writes a word into an
address.

Same as WRITE_CHAR for PPC CPUs

GT_WRITE_SHORT_CA
CHEABLE(address,
data)

Same as WRITE_SHORT for PPC CPUs.

GT_WRITE_WORD_CA
CHEABLE(address,
data)

Same as WRITE_WORD for PPC CPUs.

GT_READ_CHAR(addr
ess, pData)

Reads a character from address into pData.

GT_READ_SHORT(add
ress, pData)

Reads a short from address into pData.

GT_READ_WORD(addr
ess, pData)

Reads a word from address into pData.

GT_READ_CHAR_CAC
HEABLE(address,
pData)

Same as READ_CHAR for PPC CPUs.

GT_READ_SHORT_CA
CHEABLE(address,
pData)

Same as READ_SHORT for PPC CPUs.

GT_READ_WORD_CA
CHEABLE(address,
pData)

Same as READ_WORD for PPC CPUs.

GT_READCHAR(addre
ss)

Returns a char from an address.

Table 3:General Driver API Synopsis

Macro Description
5 - 4 PPMC-280

API Call Reference List of APIs
GT_READSHORT(addr
ess)

Returns a short from an address.

GT_READWORD(addre
ss)

Returns a word from an address.

GT_READCHAR_CAC
HEABLE(address)

Same as READCHAR for PPC CPUs.

GT_READSHORT_CAC
HEABLE(address)

Same as READSHORT for PPC CPUs.

GT_READWORD_CAC
HEABLE(address)

Same as READWORD for PPC CPUs.

GT_SET_REG_BITS(off-
set, bits)

Sets the specified bits in the given register.

GT_RESET_REG_BITS(o
ffset, bits)

Resets the specified bits in the given register.

GT_REGREAD(offset) Returns a swapped value of a register.

GT_WORD_SWAP(32bit
Word)

Changes the endianess of a given word.

GT_SHORT_SWAP(16bi
tShort)

Changes the endianess of a given short.

GT_LONG_SWAP(64bit
Dword)

Changes the endianess of a given long word.

Table 3:General Driver API Synopsis

Macro Description
PPMC-280 5 - 5

List of APIs API Call Reference
MV-64360 INTERRUPT CONTROLLER

An interrupt controller is necessary because numerous MV-64360
interrupts share the same physical line. Hooking an Interrupt Ser-
vice Routine (ISR) to this controller requires knowledge of the var-
ious GT interrupt causes. This Interrupt Controller supports a
connection to the CPU interrupt line.

The MV-64360 Interrupt Controller system introduces two layers
of Cause registers:

• First Layer

• Second Layer

FIRST LAYER This layer includes the Main High Interrupt Cause and Main Low
Interrupt Cause registers. (The Select register reflects both High
and Low Cause registers). This layer summarizes the interrupts
generated by each MV-64360 subunit. Each bit set in these registers
implies that a non-masked interrupt has occurred in a subunit.

SECOND LAYER This layer includes all MV-64360 subunit's Cause registers. Each
subunit has its own Cause and Mask registers. Once an interrupt
event occurs, its corresponding bit in the cause register is set to "1".
If the interrupt is not masked, it is also marked in the Main Inter-
rupt Cause register (First layer). This architecture implies a unique
interrupt controller for each MV-64360 subunit.

Note: This interrupt controller introduces support only for First
Layer interrupts and consists of three phases. The controller
interface also provides MV64360/362 interrupt masking ability
for the First Layer.

INTERRUPT
CONTROLLER PHASES

Table 4:Interrupt Controller Phases

Phase Description

Driver Initialization This phase includes hooking the driver’s ISR to
the CPU interrupt vector.
5 - 6 PPMC-280

API Call Reference List of APIs
This controller prevents halt of the CPU caused by an interrupt
that was enabled while no service routine was connected. In addi-
tion, there is full interrupt masking control over the MV First
Layer interrupts.

Software Modules

The software modules are:

• gtIntControl.c

• gtIntControl.h

Software Requirements

The software requirements are:

• WindRiver VxWorks Operating System, Version 5.3.1 or later

• MV General Driver

Restrictions

This Interrupt Controller driver supports the First layer of the MV-
64360 Interrupt Controller. Thus each of the Second Layer
interrupts should be handled in its own unit.

Interrupt acknowledgement is NOT the responsibility of this
driver. The First Layer Cause registers are Read Only. To acknowl-
edge an interrupt, the software needs to clear (write 0) the active
bit(s) in the Second Layer Cause register.

ISR Connecting This phase includes the gathering of information
about user/subunit ISR and interrupt priority.

Interrupt handling This includes the handling of an interrupt by the
Interrupt Handlers (driver's ISR).

Table 4:Interrupt Controller Phases

Phase Description
PPMC-280 5 - 7

List of APIs API Call Reference
Execution Flow

This interrupt controller introduces full support for the CPU inter-
rupt lines driven by the MV-64360. It also supports the Select Reg-
ister used by the MV-64360 for minimizing the interrupt
identification process to a single read cycle. This support is pro-
vided by an individual ISR for each MV-64360 interrupt output
pin. As the Power PC architecture is restricted to only one external
interrupt pin, this driver has the following handlers:

Each of these handlers has its own data structure, which holds a
list of ISRs to invoke in case of an interrupt pending on its corre-
sponding pin. As the Power PC architecture restrict only one exter-
nal interrupt pin, this driver uses the gtIntCpuSelect() handler.

Driver Initialization

The driver's handlers are connected to the Power PC external
exception vector 0x500 using the VxWorks connecting routine
excIntConnect(). The user can decide which ISR to connect to the
CPU interrupt pin (gtIntCpuHigh, gtIntCpuLow or gtIntCpuse-
lect). As the Power PC architecture is restricted to only one exter-
nal interrupt pin, and this driver handles all MV interrupts (High
and Low), this driver makes use of the gtIntCpuSelect() handler.

Table 5:Handlers

Handler Description

GtIntCpuHigh() Handles the interrupts asserted by the CPU pin
and interrupt events which are generated by the
CPU High Interrupt Cause register.

GtIntCpuLow() Handles the interrupts asserted by the CPU pin
and interrupt events which are generated by the
CPU Low Interrupt Cause register.

GtIntCpuSelect() Handles the interrupts asserted by the CPU pin
and interrupt events which are generated by the
CPU High or the Low Interrupt Cause registers
(or both), using one read cycle.
5 - 8 PPMC-280

API Call Reference List of APIs
ISR Connection

This stage fills each driver's ISR data structure with the informa-
tion regarding the connected user ISR. The Interrupt Controller
driver decides which user ISR to connect to which data structure
according to its enumerated macro that defines the interrupt cause
distribution (High or Low Cause registers).

Interrupt Handling

When an interrupt is pending, the connected driver's ISR (con-
nected in initialization phase) is invoked to search its data struc-
ture for the interrupt cause which initiated the interrupt. After the
initiating interrupt has been identified, the appropriate user ISR is
invoked.

External Interface Data Structure

The external interface data structure is provided here.

ENUM GT_INT_CAUSE {The list of High and Low Interrupt causes (Total of 64 causes)}
This enumerator creates the Global Cause register out of Main
High and Low Interrupt Cause registers. When the High Cause
register is first, each interrupt cause is represented by an integer.
To hook a C routine to the MV Interrupt Controller, use this enum
type to describe the MV cause that you would like to hook to (this
is done for improved code readability).

CAUSE DISTRIBUTOR
MACROS

This driver defines Cause distribution macros. Each MV-64360
interrupt pin is represented by a macro (or two). This macro
defines which cause bits are active in each interrupt pin:
∙ CPU_INT_HIGH_CAUSE CPU interrupt pin
∙ CPU_INT_LOW_CAUSE CPU interrupt pin

For example:
#define CPU_INT_LOW_CAUSE (cause >=00 && cause <=31)

CPU INT[0/1]* MASK
SELECTION

Not Applicable
PPMC-280 5 - 9

List of APIs API Call Reference
External Interface APIs

The external interface APIs are detailed here.

STATUS gtIntCntrlInit ()

DESCRIPTION As the Power PC architecture is restricted to only one external
interrupt pin, and this driver handles all MV interrupts (High and
Low), this driver makes use of the gtIntCpuSelect() handler. The
driver connects to the CPU external interrupt vector (0x500) by
using VxWorks excIntConnect() routine.

INPUT Not Applicable

OUTPUT Attaches the interrupt handler to the CPU external interrupt vector
(by using VxWorks routine excIntConnect()).

RETURN

OK If the output was successful.

ERROR If the output failed.

STATUS gtIntConnect(GT_INT_CAUSE cause, VOIDFUNCPTR ISRptr, int ISRarg, int prio)

DESCRIPTION Hooks a user's C routine to one of the GT interrupt causes speci-
fied by cause (use GT_INT_CAUSE enumerated type). The user's
C routine is given by ISRptr and the ISRarg is an argument to this
routine. This connection can be given a priority in case of simulta-
neous multiple interrupts. The highest priority is 0.

INPUT

GT_INT_CAUSE Cause Interrupt cause as defined in CAUSE data structure.

VOIDFUNCPTR
ISRptr

Pointer to User ISR.

int ISRarg A Parameter to the user ISR.

int prio Interrupt priority

OUTPUT Addresses the infrastructure of the driver and creates the connec-
tion according to its given priority.
5 - 10 PPMC-280

API Call Reference List of APIs
RETURN

OK If the output was successful.

ERROR If the output failed.

STATUS gtIntEnable(GT_INT_CAUSE cause)

DESCRIPTION Enables a given interrupt cause described by cause.

INPUT

UINT cause Description of interrupt cause (See enum GT_INT_CAUSE).

OUTPUT Changes the corresponding bits in the Mask registers according to
the cause bit distribution macros.

RETURN

OK If the output was successful.

ERROR If the output failed.

STATUS gtIntDisable(GT_INT_CAUSE cause)

DESCRIPTION Disables a given interrupt cause described by cause.

INPUT

UINT cause Description of interrupt cause (See enum GT_INT_CAUSE).

OUTPUT Changes the corresponding bits in the Mask registers according to
the cause bit distribution macros.
PPMC-280 5 - 11

List of APIs API Call Reference
RETURN

OK If the output was successful.

ERROR If the output failed.

System Interrupt Controller

A system interrupt controller is necessary because of the Power PC
architecture restriction concerning interrupts. Since the Power PC
has only one external interrupt exception (vector 0x500), it is
essential to have an interrupt controller on board. This interrupt
controller provides the support for the following routines:

• intConnect()

• intDisable()

• intenable()

The system interrupt controller uses the General Purpose Port
(GPP) Interrupt Controller services to implement those functional-
ities.
This driver is fully compatible with VxWorks. Thus, to connect an
interrupt routine to one of the above external interrupts, use the
standard VxWorks intConnect() routine.

Supported Features

This driver is fully compatible with the VxWorks interrupt API.
For example, to connect an interrupt routine to an external inter-
rupts event, use the standard VxWorks intConnect() routine.

Software Modules

The following software modules are available:

• sysIntCtrl.c

• sysIntCtrl.h

Software Requirements

The software requirements are:

• WindRiver VxWorks Operating system, Version 5.3.1 or later

• GPP Interrupt Controller driver.
5 - 12 PPMC-280

API Call Reference List of APIs
System Resource Usage

System interrupt sources are connected to a GPP pin. Make sure
the GPP pin is configured to act as interrupt.

Restrictions

Interrupt acknowledgement is completed by the device driver that
triggered the interrupt (not by the System Interrupt Controller).

External Interface

GPP pin descriptions Use the following macros as interrupt vectors intConnect routine
(located in pmc280.h file)

• CARRIER_INT0 Describes interrupt input from carrier card
(GPP pin 6)

• CARRIER_INT1 Describes interrupt input from carrier card
(GPP pin 7)

• WD_NMI Describe watchdog NMI interrupt (GPP pin 18)

• PHY0_INT Describes Interrupt from Ethernet PHY0 (GPP pin
12)

• PHY0_INT Describes Interrupt from Ethernet PHY0 (GPP pin
13)

• PCI_INTA Describes PCI interrupt A (GPP pin 27)

• PCI_INTB Describes PCI interrupt B (GPP pin 29)

• PCI_INTC Describes PCI interrupt C (GPP pin 16)

• PCI_INTD Describes PCI interrupt D (GPP pin 17)

Driver's API This driver provides function pointers to VxWorks, thus interrupt
control (Connect, Enable and Disable) is performed using the
VxWorks interface.

STATUS gtIntCtrlInit ()

DESCRIPTION This driver initializes the GPP Interrupt Controller and assigns the
VxWorks interrupt control routines pointers to the system inter-
rupt controller. This function is called in the system initialization
routine sysHwInit2() of sysLib.c.

INPUT Not Applicable
PPMC-280 5 - 13

List of APIs API Call Reference
OUTPUT Driver's routines are connected to the Vxworks Interrupt control
pointers.

RETURN Not Applicable

General Purpose Port Interrupt Controller

The General Purpose Port (GPP) input pins can be used to register
external interrupts. An assertion of a GPP input pin (toggle from
"0" to "1" in case of active high pin, from high to low in case of
active low pin), results in setting the corresponding bit in the GPP
Interrupt Cause register.
This VxWorks driver has full control over the GPP interrupt sys-
tem:

• User Interrupt Service Routine connection for each GPP pin
interrupt.

• Enable/Disable a GPP pin interrupt.

Note: The GPP cause bit must be unmasked prior to receiving
an interrupt.

Supported Features

The supported features are listed here:

• The controller provides an easy way to hook a C Interrupt Ser-
vice Routine (ISR) to a specific interrupt caused by the GPP.

• The controller interrupt mechanism provides a way for the pro-
grammer to set an interrupt priority.

• Full interrupt control over the GPP Interrupt facility.

• This driver auto acknowledges interrupts and you are not
required to acknowledge the interrupt in ISR.

Software Modules

The software modules are:

vxGppIntCtrl.c GPP interrupt controller implementation file

vxGppintCtrl.h GPP interrupt controller header file
5 - 14 PPMC-280

API Call Reference List of APIs
Requirements

The requirements are listed here:

• GT General Driver

• GT Interrupt Controller

Restrictions

This driver does not auto-acknowledge GPP interrupts. You must
acknowledge the initiating interrupt in the hooked ISR. Use vxGp-
pIntAck (GPP_CAUSE cause) for this purpose.

External Interface Data Structures

The external interface data structures are listed here.

GPP_CAUSE ENU-
MERATOR

This enumerator describes the GPP interrupt causes to which the
user attaches the ISR. For example, to connect an ISR to watchdog
NMI (GPP pin 18) event, use:

frcGppIntConnect (GPP_PIN6_WD_NMI, ISRptr,
ISRparameter, ISRpriority)

This enumerator is defined in frcGppIntCntl.h file.

External API The external APIs are detailed here.

STATUS frcGppCPU1IntEnable(GPP_CAUSE cause)

DESCRIPTION This routine makes a specified GT GPP interrupt cause available to
the CPU.

INPUT

cause GPP interrupt cause (0-31).

OUTPUT The appropriate bit in GPP mask register is reset.

RETURN OK
PPMC-280 5 - 15

List of APIs API Call Reference
STATUS frcGppCPU1IntDisable(GPP_CAUSE cause)

DESCRIPTION This routine makes a specified GT GPP interrupt cause unavail-
able to the CPU.

INPUT

cause GPP interrupt cause (0-31).

OUTPUT The appropriate bit in GPP mask register is reset.

RETURN OK.

void frcGppIntCtrlInit ()

DESCRIPTION This routine connects the driver's interrupt handlers, each to its
corresponding bit in the GT Interrupt Con-troller using the
gtIntConnect() routine.

INPUT Not Applicable

OUTPUT Driver's ISRs are connected to the GT Interrupt Controller and
interrupts are unmasked.

RETURN Not Applicable

STATUS frcGppIntConnect (GPP_CAUSE cause, VOIDFUNCPTR routine, int parameter, int
prio)

DESCRIPTION This routine connects a specified user ISR to a specified GPP inter-
rupt cause.

INPUT

GPP_CAUSE cause GPP interrupt cause.

VOIDFUNCPTR
routine

User ISR.

int parameter User ISR parameter.
5 - 16 PPMC-280

API Call Reference List of APIs
int prio Interrupt handling priority where 0 is highest.

OUTPUT An internal data structure is filled with the connection details.

UINT 32 frcGppIntDisable (GPP_CAUSE cause)

DESCRIPTION This routine masks a specified GPP interrupt cause on the GPP
mask register.

INPUT

GPP_CAUSE cause GPP interrupt cause.

OUTPUT The appropriate bit in the GPP mask register is reset (0xf10c).

RETURN The former GPP interrupt mask register value.

UINT 32 frcGppIntEnable (GPP_CAUSE cause)

DESCRIPTION This routine unmasks a specified GPP interrupt cause on the GPP
mask register.

INPUT

GPP_CAUSE cause GPP interrupt cause.

OUTPUT The appropriate bit in the GPP mask register is set (0xf10c).

RETURN The former GPP interrupt mask register value.

PCI Scan Driver

This driver includes routines that execute the PCI scanning and
basic initialization of the PCI devices -Network Interface Card NIC
and Galileo's GalNet PCI devices for any future use. Moreover, to
comply with Galileo's GalNet drivers, the driver delivers an array
Gal-NetMappingArray in which each entry describes a GalNet
device's PCI information, including:

• Device and Vendor ID

• Internal register base address

• IDSel
PPMC-280 5 - 17

List of APIs API Call Reference
• PCI number (0)
The driver flow of execution is divided into four phases:

• Driver initialization

• PCI0 scanning

• PCI0 MEM1 address spacing remap

• PCI devices configuration

Driver Initialization

In this phase, the driver:

• initializes the pciConfigLib with PCI read/write routines.

• scans for Monarch or Non-Monarch Mode and performs
initialization accordingly.

• cleans both GalNetMappingArray and pciDeviceArray data
structures.

PCI0 Scanning

If the Monarch pin is asserted then the driver waits till EREADY
Signal goes to HIGH and then does PCI Scan by the pciGoScan()
routine. The EREADY signal assures all other PCI devices are
ready for initialization. In case of Monarch the pciGoScan routine
fills up the GalNet device table's GalNetMappingArray, with
information on the GalNet devices in PCI0 and the pciDeviceAr-
ray table with information on any other PCI devices located in
PCI0 (NIC).
In Non-Monarch mode it pulls down the EREADYOUT signal of
the MV-64360, which in turn causes the EREADY signal to be
pulled high so that an external monarch can initiate PCI Bus enu-
meration.

Debugging Facilities

Add the -DDEBUG_PCI flag to compilation flags to obtain the
debug information.
The debugging information includes:

• A list of the PCI scan, for each IDSel on the PCI bus, regarding
the device and vendor ID found.

• A full detailed print of each PCI configuration write and read
whenever performed.
5 - 18 PPMC-280

API Call Reference List of APIs
Software Modules

The software modules are detailed here.

pciScan The main PCI scan routine, including some read/write PCI and
internal registers functions.

pciConfigLib Based on a the pciConfigLib module provided by WindRiver,
includes a library containing device configuration and search func-
tions for PCI bus.

Note: To use this library's functions, the pciConfigLibInit func-
tion must be called, with the PCI_MECHANIZM0 flag. This al-
low the usage of a user defined read/write routines. Those user
routines are delivered in the pciConfigLib initialization rou-
tine.

Structures

pciDeviceStruct This struct is delivered to GalNet drivers for further processing.
typedef struct
{
UINT32 type; /* Device and Vendor id */
UINT32 InternalRegistersBaseAddress; /* Internal Register
Base Address */
int IDSel; /* IDsel */
int pciNo; /* PCI number (0 or 1) */
} pciDeviceStruct;

Variables

GalNetMappingArray pciDeviceStruct GalNetMappingArray[MAX_DEV_NUM]
This variable holds the GalNet devices information collected in the
PCI scanning.

pciDeviceArray pciDeviceStruct pciDeviceArray[MAX_DEV_NUM]
This variable holds the other PCI devices information collected in
the PCI scanning.

Driver APIs

The APIs are listed here.
PPMC-280 5 - 19

List of APIs API Call Reference
void frcPciShow(void)

DESCRIPTION This displays information such as device number, device ID, Ven-
dor ID and other resource related to all the PCI devices found.

unsigned int frcPci0ReadConfigReg (unsigned int regOffset,unsigned int pciDevNum)

DESCRIPTION The GT holds two registers to support configuration accesses as
defined in the PCI Specifications Rev 2.2: Configuration Address
and Configuration Data registers. The mechanism for accessing
configuration space is to write a value into the Configuration
Address register that specifies the PCI bus number (this function
use the value of 0 by default for this parameter), Device number on
the bus, Function number within the device (will be combined
with the register offset) and Configuration register offset within
the device/function being accessed. A subsequent read to the PCI
Configuration Data register causes the GT to translate that Config-
uration Address value to the requested cycle on the PCI bus (in
this case - read) or internal configuration space. This function
reads from an agent’s configuration register at any of the eight
possible function in its Configuration Space Header.

EXAMPLE The value 0x004 is combined from the function number (bits[11:8])
and the register offset (bits[7:0]) in the Configuration Space
Header. In this case, the fuction number is 0 and the register offset
is 0x04.
...
 data = frcPci0ReadConfigReg(0x004,6);
 ...
The configuration address register (0xCF8) fields are:

INPUT

regOffset The register offset PCI configuration Space Header combined with
the function number as shown in the example above.

pciDevNum The agent’s device number.

OUTPUT PCI write configuration cycle.
5 - 20 PPMC-280

API Call Reference List of APIs
RETURN 32 bit read data from the agent's configuration register. if the data
= 0xffffffff check the master abort bit in the cause register to make
sure the data is valid.

void frcPci0WriteConfigReg(unsigned int regOffset,unsigned int pciDevNum, unsigned int
data)

DESCRIPTION The MV holds two registers to support configuration accesses as
defined in the PCI spec Rev 2.2: Configuration Address and
Configuration Data registers. The mechanism for accessing
configuration space is to write a value into the Configuration
Address register that specifies the PCI bus number (this function
use the value of 0 by default for this parameter), Device number on
the bus, Function number within the device (will be combined
with the register offset) and Configuration register offset within
the device/function being accessed. A subsequent write to the PCI
Configuration Data register causes the MV to translate that
Configuration Address value to the requested cycle on the PCI bus
(in this case - write) or internal configuration space. This function
writes to an agent’s configuration register at any of the 8 possible
function in its Configuration Space Header.

EXAMPLE The value 0x004 is combined from the function number (bits[11:8])
and the register offset (bits[7:0]) in the Configuration Space
Header. In this case, the fuction number is 0 and the register offset
is 0x04.
...

frcPci0WriteConfigReg(0x004,6,PCI_MASTER_ENABLE);
 ...

 The configuration address register (0xCF8) fields are:

INPUT

regOffset The register offset PCI configuration Space Header combined with
the function number as shown in the example above.

pciDevNum The agent’s device number.

data The data to be written.
PPMC-280 5 - 21

List of APIs API Call Reference
OUTPUT PCI write configuration cycle.

RETURN None.

STATUS frcPciConfigRead (int bus, int dev, int func, int RegNum, UINT32 *RegData)

DESCRIPTION The function makes a PCI configuration register read.
It reads the data from a register number (offset) -RegNum, of
device number - dev, on the active PCI bus number -bus, and puts
the data into RegData. The function locks interrupts before read-
ing, and unlocks them after reading, using the OS functions
intLock() and intUnlock(). The reading is 32 bit wide (long).

INPUT

int bus PCI bus number.

int dev PCI device number.

int func Device’s function (must be NULL).

int RegNum PCI configuration register’s offset.

UINT32 *RegData A pointer to a variable in which the read data must be returned.

OUTPUT Not Applicable

RETURN

OK On success.

Error On failure.

STATUS frcPciConfigWrite (int bus, int dev, int func, int RegNum, UINT32 RegData)

DESCRIPTION The function makes a PCI configuration write (PCI0 or PCI1
depending on which is the active). It writes the data in RegData
into a register number (offset) -RegNum, of device number -dev,
on PCI bus number -bus. The function locks interrupts before
writing, and unlocks them after writing, using the OS functions
intLock() and intUnlock(). The writing is 32 bit wide (long).
5 - 22 PPMC-280

API Call Reference List of APIs
INPUT

int bus PCI bus number.

int dev PCI device number.

int func Device's function (must be NULL).

int RegNum PCI configuration register's offset.

UINT32 RegData Data to write into the register.

OUTPUT Not Applicable

RETURN

OK On success.

Error On failure.

Communication Unit Management Driver

The BSP includes a Communication Unit Management driver that
utilizes the MV-64360 Communication Unit's basic drivers to dom-
inate
the flow of data in the various ports in the MV-64360. This
driver also determines the Communication Unit configuration and
initializes the MV-64360 accordingly. This driver uses the Commu-
nication
Unit driver's APIs to operate the MV-64360 Communication Unit.
This application layer is responsible for the initialization and con-
figuration
of the various communication units as defined by the
user. This application layer is also responsible for handling all
events (interrupts) generated by the communication units. This
driver can be replaced by a user-defined management unit driver
that manages the communication units in a different way. The
driver also includes a switching table that determines where to
switch the packets received in each communication port (Repeater
functionality).
PPMC-280 5 - 23

List of APIs API Call Reference
Software Modules

This driver is implemented in the following:

• Ethernet.c

• Ethernet.h

Supported Features:

• This low level driver is OS independent. Allocating memory
for the descriptor rings and buffers are not within the scope of
this driver.

• The user is free from Rx/Tx queue managing.

• This low level driver introduce functionality API that enable
the to operate Marvell's Gigabit Ethernet Controller in a conve-
nient way.

• Simple Gigabit Ethernet port operation API.

• Simple Gigabit Ethernet port data flow API.

• Data flow and operation API support per queue functionality.

• Support cached descriptors for better performance.

• Enable access to all four DRAM banks and internal SRAM
memory spaces.

• PHY access and control API.

• Port control register configuration API.

• Full control over Unicast and Multicast MAC configurations.

Operation flow

Initialization phase This phase complete the initialization of the ETH_PORT_INFO
struct. User information regarding port configuration has to be set
prior to calling the port initialization routine. For example, the
user has to assign the portPhyAddr field which is board depended
parameter. In this phase any port Tx/Rx activity is halted, MIB
counters are cleared, PHY address is set according to user parame-
ter and access to DRAM and internal SRAM memory spaces.
5 - 24 PPMC-280

API Call Reference List of APIs
Driver ring initialization Allocating memory for the descriptor rings and buffers is not
within the scope of this driver. Thus, the user is required to allo-
cate memory for the descriptors ring and buffers. Those memory
parameters are used by the Rx and Tx ring initialization routines
in order to curve the descriptor linked list in a form of a ring.

Note: Pay special attention to alignment issues when using
cached descriptors/buffers. In this phase the driver store infor-
mation in the ETH_PORT_INFO struct regarding each queue
ring.

Driver start This phase prepares the Ethernet port for Rx and Tx activity. It
uses the information stored in the ETH_PORT_INFO struct to
initialize the various port registers.

Data flow All packet references to/from the driver are done using
PKT_INFO struct. This struct is a unified struct used with Rx and
Tx operations. This way the user is not required to be familiar with
neither Tx or Rx descriptors structures.The driver's descriptors
rings are management by indexes. Those indexes control the ring
resources and used to indicate a SW resource error

current This index points to the current available resource for use. For
example in Rx process this index will point to the descriptor that
will be passed to the user upon calling the receive routine.In Tx
process, this index will point to the descriptor that will be assigned
with the user packet info and transmitted.

used This index points to the descriptor that need to restore its
resources. For example in Rx process, using the Rx buffer return
API will attach the buffer returned in packet info to the descriptor
pointed by 'used'. In Tx process, using the Tx descriptor return will
merely return the user packet info with the command status of the
transmitted buffer pointed by the 'used' index. Nevertheless, it is
essential to use this routine to update the 'used' index.

first This index supports Tx Scatter-Gather. It points to the first descrip-
tor of a packet assembled of multiple buffers. For example when in
middle of Such packet we have a Tx resource error the 'curr' index
get the value of 'first' to indicate that the ring returned to its state
before trying to transmit this packet.
PPMC-280 5 - 25

List of APIs API Call Reference
Receive operation The ethPortReceive API set the packet information struct, passed
by the caller, with received information from the 'current' SDMA
descriptor. It is the user’s responsibility to return this resource
back to the Rx descriptor ring to enable the reuse of this source.
Return Rx resource is done using the ethRxReturnBuff API.

Transmit operation The ethPortSend API supports Scatter-Gather which enables to
send a packet spanned over multiple buffers. This means that for
each packet info structure given by the user and put into the Tx
descriptors ring, will be transmitted only if the 'LAST' bit will be
set in the packet info command status field. This API also consider
restriction regarding buffer alignments and sizes.

EXTERNAL SUPPORT
REQUIREMENTS

This driver requires the following external support:

D_CACHE_FLUSH_L
INE (ADDRESS, AD-
DRESS OFFSET)

This macro applies assembly code to flush and invalidate cache
line.

• address - address base.

• address offset - address offset

External Interface -Api's

void ethPortInit(ETH_PORT_INFO *pEthPortCtrl)

DESCRIPTION This function prepares the ethernet port to start its activity:

• Completes the ethernet port driver struct initialization toward
port start routine.

• Resets the device to a quiescent state in case of warm reboot.

• Enables SDMA access to all four DRAM banks as well as inter-
nal SRAM.

• Cleans MAC tables. The reset status of those tables is
unknown.

• Sets PHY address.

Note: Call this routine prior to ethPortStart routine and after
setting user values in the user fields of Ethernet port control
struct (portPhyAddr).
5 - 26 PPMC-280

API Call Reference List of APIs
INPUT

ETH_PORT_INFO
*pEthPortCtrl

Ethernet port control struct

OUTPUT See description.

RETURN None.

bool ethPortStart(ETH_PORT_INFO *pEthPortCtrl)

DESCRIPTION This routine prepares the Ethernet port for Rx and Tx activity:

• Initialize Tx and Rx Current Descriptor Pointer for each queue
that has been initialized a descriptor's ring (using etherInitTx-
DescRing for Tx and etherInitRxDescRing for Rx)

• Initialize and enable the Ethernet configuration port by writing
to the port's configuration and command registers.

• Initialize and enable the SDMA by writing to the SDMA's con-
figuration and command registers.

 After completing these steps, the ethernet port SDMA can starts
to perform Rx and Tx activities.

Note: Each Rx and Tx queue descriptor's list must be initialized
prior to calling this function (use etherInitTxDescRing for Tx
queues and etherInitRxDescRing for Rx queues).

INPUT

ETH_PORT_INFO
*pEthPortCtrl

Ethernet port control struct

OUTPUT Ethernet port is ready to receive and transmit.
PPMC-280 5 - 27

List of APIs API Call Reference
RETURN

False If the port PHY is not up.

True Otherwise.

void ethPortUcAddrSet(ETH_PORT ethPortNum, unsigned char *pAddr,ETH_QUEUE queue)

DESCRIPTION This function Set the port Ethernet MAC address.

INPUT

ETH_PORT
ethPortNum

Port number.

char *
pAddr

Address to be set

ETH_QUEUE queue Rx queue number for this MAC address.

OUTPUT Set MAC address low and high registers. Also calls ethPor-
tUcAddr() to set the unicast table with the proper information.

 RETURN Not Applicable

static bool ethPortUcAddr(ETH_PORT ethPortNum, unsigned char ucNibble, ETH_QUEUE
queue, int option)

DESCRIPTION This function sets the Port Unicast address table and locates the
proper entry in the Unicast table for the specified MAC nibble and
sets its properties according to function parameters.

INPUT

ETH_PORT
ethPortNum

Port number.

unsigned char
ucNibble

Unicast MAC Address last nibble.

ETH_QUEUE queue Rx queue number for this MAC address.
5 - 28 PPMC-280

API Call Reference List of APIs
int option 0 = Add
1 = remove address.

OUTPUT This function add/removes MAC addresses from the port unicast
addresstable.

RETURN

True If output succeeded.

False If option parameter is invalid.

void ethPortMcAddr(ETH_PORT ethPortNum, unsigned char *pAddr, ETH_QUEUE queue, int
option)

DESCRIPTION This API controls the MV device MAC multicast support. The MV
device supports multicast using two tables:

1. Special Multicast Table for MAC addresses of the form 0x01-00-
5E-00-00-XX (where XX is between 0x00 and 0xFF). The MAC
DA[7:0] bits are used as a pointer to the Special Multicast Table
entries in the DA-Filter table. In this case, the function calls eth-
PortSmcAddr() routine to set the Special Multicast Table.

2. Other Multicast Table for multicast of another type. A CRC-8bit
is used as an index to the Other Multicast Table entries in the
DA-Filter table. In this case, the function calculates the CRC-
8bit value and calls ethPortOmcAddr() routine to set the Other
Multicast Table.

INPUT

ETH_PORT
ethPortNum

Port number.

unsigned char
*pAddr

Unicast MAC Address.

ETH_QUEUE queue Rx queue number for this MAC address.

int option 0 = Add,
1 = remove address.
PPMC-280 5 - 29

List of APIs API Call Reference
OUTPUT Not Applicable

RETURN

True If output succeeded

False If addAddressTableEntry() failed.

static bool ethPortSmcAddr(ETH_PORT ethPortNum, unsigned char mcByte, ETH_QUEUE
queue, int option)

DESCRIPTION This routine controls the MV device special MAC multicast sup-
port. The Special Multicast Table for MAC addresses supports
MAC of the form 0x01-00-5E-00-00-XX (where XX is between 0x00
and 0xFF). The MAC DA[7:0] bits are used as a pointer to the Spe-
cial Multicast Table entries in the DA-Filter table.This function set
the Special Multicast Table appropriate entry according to the
argument given.

INPUT

ETH_PORT
ethPortNum

Port number.

unsigned char
mcByte

Multicast addr last byte (MAC DA[7:0] bits).

ETH_QUEUE queue Rx queue number for this MAC address.

int option 0
= Add, 1 = remove
address.

 OUTPUT See description.
5 - 30 PPMC-280

API Call Reference List of APIs
RETURN

True If output succeeded.

False If option parameter is invalid.

static bool ethPortOmcAddr(ETH_PORT ethPortNum, unsigned char crc8, ETH_QUEUE
queue, int option)

DESCRIPTION This routine controls the MV device Other MAC multicast sup-
port. The Other Multicast Table is used for multicast of another
type. A CRC-8bit is used as an index to the Other Multicast Table
entries in the DA-Filter table.The function gets the CRC-8bit value
from the calling routine and set the Other Multicast Table appro-
priate entry according to the CRC-8 argument given.

INPUT

ETH_PORT
ethPortNum

Port number.

unsigned char
crc8

A CRC-8bit (Polynomial: x^8+x^2+x^1+1).

ETH_QUEUE queue Rx queue number for this MAC address.

int option 0 = Add,
1 = remove address.

OUTPUT See description.

RETURN

True If output succeeded.

False If option parameter is invalid.

void ethPortInitMacTables(ETH_PORT ethPortNum)

DESCRIPTION Go through all the DA filter tables (Unicast, Special Multicast &
Other Multicast) and set each entry to 0.
PPMC-280 5 - 31

List of APIs API Call Reference
INPUT

ETH_PORT
ethPortNum

Ethernet Port number. See ETH_PORT enum.

OUTPUT Multicast and Unicast packets are rejected.

RETURN None.

void ethClearMibCounters (ETH_PORT ethPortNum)

This function clears all MIB counters of a specific ethernet port. A
read from the MIB counter will reset the counter.

 INPUT

ETH_PORT
ethPortNum

Ethernet Port number. See ETH_PORT enum.

 OUTPUT After reading all MIB counters, the counters resets.

 RETURN MIB counter value.

static void ethernetPhySet(ETH_PORT ethPortNum, int phyAddr)

ethernetPhySet Set the ethernet port PHY address.

This routine set the ethernet port PHY address according to given
parameter.

INPUT

ETH_PORT
ethPortNum

Ethernet Port number. See ETH_PORT enum.

OUTPUT Set PHY Address Register with given PHY address parameter.

RETURN None.
5 - 32 PPMC-280

API Call Reference List of APIs
static int ethernetPhyGet(ETH_PORT ethPortNum)

This routine returns the given ethernet port PHY address.

INPUT

ETH_PORT
ethPortNum

Ethernet Port number. See ETH_PORT enum.

 OUTPUT None.

 RETURN PHY address.

bool ethernetPhyReset(ETH_PORT ethPortNum)

This routine utilize the SMI interface to reset the ethernet port
PHY. The routine waits until the link is up again or link up is time-
out.

INPUT

ETH_PORT
ethPortNum

Ethernet Port number. See ETH_PORT enum.

OUTPUT The ethernet port PHY renew its link.

RETURN None.

void ethPortReset(ETH_PORT ethPortNum)

This routine resets the chip by aborting any SDMA engine activity
and clearing the MIB counters. The Receiver and the Transmit unit
are in idle state after this command is performed and the port is
disabled.

INPUT

ETH_PORT
ethPortNum

Ethernet Port number. See ETH_PORT enum.

OUTPUT Channel activity is halted.

RETURN None.
PPMC-280 5 - 33

List of APIs API Call Reference
void ethernetSetConfigReg(ETH_PORT ethPortNum, unsigned int value)

This function sets specified bits in the given ethernet configuration
register.

INPUT

ETH_PORT
ethPortNum

Ethernet Port number. See ETH_PORT enum.

 unsigned
int value

32 bit value.

OUTPUT The set bits in the value parameter are set in the configuration reg-
ister.

RETURN None.

void ethernetResetConfigReg(ETH_PORT ethPortNum, unsigned int value)

This function resets specified bits in the given Ethernet configura-
tion register.

INPUT

ETH_PORT
ethPortNum

Ethernet Port number. See ETH_PORT enum.

unsigned int
value

32 bit value.

OUTPUT The set bits in the value parameter are reset in the configuration
register.

RETURN None.

unsigned int ethernetGetConfigReg(ETH_PORT ethPortNum)

This function returns the configuration register value of the given
ethernet port.

INPUT

ETH_PORT
ethPortNum

Ethernet Port number. See ETH_PORT enum.
5 - 34 PPMC-280

API Call Reference List of APIs
OUTPUT None.

RETURN Port configuration register value.

bool etherInitRxDescRing(ETH_PORT_INFO *pEthPortCtrl, ETH_QUEUE rxQueue,int
rxDescNum, int rxBuffSize,unsigned int rxDescBaseAddr,unsigned int
rxBuffBaseAddr)

This function prepares a Rx chained list of descriptors and packet
buffers in a form of a ring. The routine must be called after port
initialization routine and before port start routine. The Ethernet
SDMA engine uses CPU bus addresses to access the various
devices in the system (i.e. DRAM). This function uses the ethernet
struct 'virtual to physical' routine (set by the user) to set the ring
with physical addresses.

INPUT

ETH_PORT_INFO
*pEthPortCtrl

Ethernet Port Control struct.

ETH_QUEUE
rxQueue

Number of Rx queue.

int rxDescNum Number of Rx descriptors

 int
rxBuffSize

Size of Rx buffer

unsigned int
rxDescBaseAddr

Rx descriptors memory area base addr.

unsigned int
rxBuffBaseAddr

Rx buffer memory area base addr.

OUTPUT The routine updates the Ethernet port control struct with informa-
tion regarding the Rx descriptors and buffers.
PPMC-280 5 - 35

List of APIs API Call Reference
RETURN

False If the given descriptors memory area is
not aligned according to Ethernet SDMA
specifications.

True Otherwise.

bool etherInitTxDescRing(ETH_PORT_INFO *pEthPortCtrl, ETH_QUEUE txQueue, int
txDescNum,int txBuffSize,unsigned int txDescBaseAddr,unsigned int xBuffBaseAddr)

This function prepares a Tx chained list of descriptors and packet
buffers in a form of a ring. The routine must be called after port
initialization routine and before port start routine. The Ethernet
SDMA engine uses CPU bus addresses to access the various
devices in the system (i.e. DRAM). This function uses the ethernet
struct 'virtual to physical' routine (set by the user) to set the ring
with physical addresses.

INPUT

ETH_PORT_INFO
*pEthPortCtrl

Ethernet Port Control struct.

 ETH_QUEUE
txQueue

Number of Tx queue.

int txDescNum Number of Tx descriptors

int txBuffSize Size of Tx buffer

unsigned int
txDescBaseAddr

Tx descriptors memory area base addr.

unsigned int
txBuffBaseAddr

Tx buffer memory area base addr.

 OUTPUT The routine updates the Ethernet port control struct with informa-
tion regarding the Tx descriptors and buffers.
5 - 36 PPMC-280

API Call Reference List of APIs
RETURN

False If the given descriptors memory area is not
aligned according to Ethernet SDMA
specifications.

True Otherwise.

ETH_FUNC_RET_STATUS ethPortSend(ETH_PORT_INFO *pEthPortCtrl, ETH_QUEUE
txQueue, PKT_INFO *pPktInfo)

This routine send a given packet described by pPktinfo parameter.
It supports transmitting of a packet spanned over multiple buffers.
The routine updates 'curr' and 'first' indexes according to the
packet segment passed to the routine. In case the packet segment is
first, the 'first' index is update. In any case, the 'curr' index is
updated. If the routine get into Tx resource error it assigns 'curr'
index as 'first'. This way the function can abort Tx process of multi-
ple descriptors per packet.

INPUT

ETH_PORT_INFO
*pEthPortCtrl

Ethernet Port Control struct.

ETH_QUEUE
txQueue

Number of Tx queue.

PKT_INFO
*pPktInfo

User packet buffer.

OUTPUT Tx ring 'curr' and 'first' indexes are updated.
PPMC-280 5 - 37

List of APIs API Call Reference
RETURN

ETH_QUEUE_FULL In case of Tx resource error.

 ETH_ERROR In case the routine can not access Tx
desc ring.

ETH_QUEUE_LAST_RESOURCE If the routine uses the
last Tx resource.

ETH_OK Otherwise.

ETH_FUNC_RET_STATUS ethTxReturnDesc(ETH_PORT_INFO *pEthPortCtrl, ETH_QUEUE
txQueue, PKT_INFO *pPktInfo)

This routine returns the transmitted packet information to the
caller. It uses the 'first' index to support Tx desc return in case a
transmit of a packet spanned over multiple buffer still in process.
In case the Tx queue was in "resource error" condition, where there
are no available Tx resources, the function resets the resource error
flag.

 INPUT

ETH_PORT_INFO
*pEthPortCtrl

Ethernet Port Control struct.

ETH_QUEUE
txQueue

Number of Tx queue.

PKT_INFO
*pPktInfo

User packet buffer.

OUTPUT Tx ring 'first' and 'used' indexes are updated.
5 - 38 PPMC-280

API Call Reference List of APIs
RETURN

ETH_ERROR In case the routine can not access Tx
desc ring.

ETH_RETRY In case there is transmission in
process.

ETH_END_OF_JOB If the routine has nothing to
release.

ETH_OK Otherwise.

ETH_FUNC_RET_STATUS ethPortReceive(ETH_PORT_INFO *pEthPortCtrl, ETH_QUEUE
rxQueue, PKT_INFO *pPktInfo)

This routine returns the received data to the caller. There is no data
copying during routine operation. All information is returned
using pointer to packet information struct passed from the caller.
If the routine exhausts Rx ring resources then the resource error
flag is set.

INPUT

ETH_PORT_INFO
*pEthPortCtrl

Ethernet Port Control struct.

ETH_QUEUE
rxQueue

Number of Rx queue.

PKT_INFO
*pPktInfo

User packet buffer.

OUTPUT Rx ring current and used indexes are updated.
PPMC-280 5 - 39

List of APIs API Call Reference
RETURN

ETH_ERROR In case the routine can not access Rx
desc ring.

ETH_QUEUE_FULL If Rx ring resources are
exhausted.

ETH_END_OF_JOB if there is no received data.

ETH_OK Otherwise.

ETH_FUNC_RET_STATUS ethRxReturnBuff(ETH_PORT_INFO *pEthPortCtrl, ETH_QUEUE
rxQueue, PKT_INFO *pPktInfo)

This routine returns a Rx buffer back to the Rx ring. It retrieves the
next 'used' descriptor and attached the returned buffer to it. In case
the Rx ring was in "resource error" condition, where there are no
available Rx resources, the function resets the resource error flag.

INPUT

ETH_PORT_INFO
*pEthPortCtrl

Ethernet Port Control struct.

ETH_QUEUE
rxQueue

Number of Rx queue.

PKT_INFO
*pPktInfo

Information on the returned buffer.

OUTPUT New available Rx resource in Rx descriptor ring.

RETURN

ETH_ERROR In case the routine can not access Rx
desc ring.

ETH_OK Otherwise.
5 - 40 PPMC-280

API Call Reference List of APIs
void ethPortSetRxCoal (ETH_PORT ethPortNum, unsigned int tClk, unsigned int linkSpeed,
unsigned int numPackets)

This routine sets the RX coalescing interrupt mechanism parame-
ter. This parameter is a timeout counter, that counts in 64 tClk-
chunks ; that when timeout event occurs a maskable interrupt
occurs.The parameter is calculated using the tCLK frequency of
the MV-643xx chip, the interface speed (10/100/1000 MBps)and
the required number of 64 bytes packets the RX SDMA has
received.

INPUT

ETH_PORT
ethPortNum

Ethernet port number

unsigned int
tClk

tClk of the MV-643xx chip in HZ units

unsigned int
linkSpeed

Can get values of 10/100/1000 which is the link speed in MBps
units.

unsigned int
numPackets

Number of packets required to be seen on RX queue upon receiv-
ing the coalescing interrupt.

OUTPUT Interrupt coalescing mechanism value is set in MV-643xx chip.

RETURN None.

void ethPortSetTxCoal (ETH_PORT ethPortNum, unsigned int tClk, unsigned int linkSpeed,
unsigned int numPackets)

This routine sets the TX coalescing interrupt mechanism parame-
ter.This parameter is a timeout counter, that counts in 64 tClk-
chunks ; that when timeout event occurs a maskable interrupt
occurs.The parameter is calculated using the tCLK frequency of
the MV-643xx chip, the interface speed (10/100/1000 MBps) and
the required number of 64 bytes packets the TX SDMA has trans-
mitted.
PPMC-280 5 - 41

List of APIs API Call Reference
 INPUT

ETH_PORT
ethPortNum

Ethernet port number

unsigned int
tClk

tClk of the MV-643xx chip in HZ units

unsigned int
linkSpeed

Can get values of 10/100/1000 which is the link speed in MBps
units.

unsigned int
numPackets

Number of packets required to be seen on TX queue upon receiv-
ing the coalescing interrupt.

 OUTPUT Interrupt coalescing mechanism value is set in MV-643xx chip.

 RETURN None.

void ethBCopy(unsigned int srcAddr, unsigned int dstAddr, int byteCount)

This function supports the eight bytes limitation on Tx buffer size.
The routine will zero eight bytes starting from the destination
address followed by copying bytes from the source address to the
destination.

INPUT

unsigned int
srcAddr

32 bit source address.

unsigned int
dstAddr

32 bit destination address.

int
byteCount

Number of bytes to copy.

OUTPUT See description.

RETURN None.
5 - 42 PPMC-280

API Call Reference List of APIs
Communication Unit Serial Dynamic Memory Access Driver

There are two Serial Dynamic Memory Access (SDMA) channels
on the MV-64360 that are dedicated to moving data between the
serial communications channels (MPSCs) and memory buffers.
Each SDMA channel consists of one Dynamic Memory Access
(DMA) engine for receiving and one for transmitting. Each SDMA
channel has two dedicated First In First out (FIFOs) for data buff-
ering (for a total of four FIFOs). All FIFOs are 256 bytes deep. The
SDMA channel descriptors use a chained data structure. They
work without CPU interference after appropriate initialization.
SDMA channels can be programmed to generate interrupts on
buffer or frame boundaries. The SDMA low level driver supplies
the Current Descriptor Pointer (CDP) and First Descriptor Pointer
(FDP) initialization routines for the Rx and Tx descriptors per com-
munication port (MPSC, Ethernet). The driver allocates a chain of
packet descriptors in system memory for each of the ports. Each
chain's starting pointer is stored in a table which is used by the low
level driver in order to initiate the DMA.

Supported features

• The driver practices zero copy where no data copying is done
during receive operation.

• The driver supports Tx Scatter-Gather where no copying is
done when transmitting a packet that is spanned over multiple
descriptors.

• Self data structure built and management. The driver carves
the Rx and Tx descriptor linked list (in a form of a ring) accord-
ing to parameters passed by the SDMA struct.

• The driver is protocol oriented. It considers the protocols
restrictions for Tx buffer alignments and size.

Operation

The driver curves the Tx/Rx descriptor linked list in a form of a
ring using the parameters in the SDMA channel struct. Those
parameters are filled by the user prior to calling the sdmaCha-
nInit() routine which initiates the drivers descriptors rings in
memory. The driver's descriptors rings are managed by indexes.
Those indexes controls the ring resources and are used to indicate
a SW resource error:'current'. This index points to the current
available resource for use. For example in Rx process this will be
PPMC-280 5 - 43

List of APIs API Call Reference
the descriptor passed to the sdmaChanReceive caller containing
received information from the MPSC channel. In Tx process, this
will be the descriptor that will be assigned with the user packet
info and transmitted.

'used' This index points to the descriptor that need to restore its
resources. For example in Rx process, using sdmaRxReturnBuff
will attach the buffer returned in packet info to the descriptor
pointed by 'used'. In Tx process, using sdmaTxReturnDesc will
merely return the user packet info with the command status of the
transmitted buffer pointed by the 'used' index. Nevertheless, it is
essential to use this routine to update the 'used' index.

'first' This index supports Tx Scatter-Gather. It points to the first descrip-
tor of a packet assembled of multiple buffers. For example when in
middle of such packet we have a Tx resource error the 'curr' index
get the value of 'first' to indicate that the ring returned to its state
before trying to transmit this packet.

Receive operation The sdmaChanReceive API return the caller the packet informa-
tion struct pointer describing the current SDMA descriptor con-
taining the received information. It is the user responsibility to
return this resource back to the Rx descriptor ring to enable the
reuse of this source. Return Rx resource is done using the
sdmaRxReturnBuff API.

Transmit operation The sdmaChanSend API supports Scatter-Gather which enables to
send a packet spanned over multiple buffers. This means that for
each packet info structure given by the user and put into the Tx
descriptors ring, will be transmitted only if the 'LAST' bit will be
set in the packet info command status field. This API also consid-
ers the protocol used and its restriction regarding buffer align-
ments and sizes. The user must return a Tx resource after ensuring
the buffer has been transmitted to enable the Tx ring indexes to
update.

Software Modules

This driver is implemented in:

• sdma.c

• sdma.h
5 - 44 PPMC-280

API Call Reference List of APIs
sdma.c SDMA register manipulation.

sdma.h SDMA function and structure declaration.

SDMA Low Level Driver Features

The SDMA Low Level Driver Features are:

• Full control over SDMA configuration registers

• Changing ports configuration before and after initialization

• SDMA engines initialization

• The driver is Operating System Independent

System Resource Usage

The driver uses the two SDMA channels.

External Interface (Low Level Driver)

This section details the External Interface (Low Level Driver).

Low Level Driver Data
Structure

The following tables details the Low Level Driver Data structure.

Table 6:SDMA Driver Structure:RX_COMMAND

Macro Field Description

OWNER_BY_GT O When set to ‘1’ the buffer is
is “owned” by the device.
When set to ‘0’ the buffer is
owned by the CPU.

AM Auto Mode
When set, the DMA does
not clear the Ownership bit
at the end of buffer process-
ing.

reserved1
PPMC-280 5 - 45

List of APIs API Call Reference
ENABLE_INTER
RUPT

EI The device generates a
maskable interrupt upon
closing the descriptor.
NOTE: To limit the num-
ber of interrupts and pre-
vent an interrupt per buffer
situation, set the EI bits in
all the Rx descriptors and
set RIFB bit in the DMA
Configuration register. The
RxBuffer interrupt is set
only on frame (rather than
buffer) boundaries.

reserved2

FIRST F Indicates first buffer of a
packet.

LAST L Indicates last buffer of a
packet.

ERROR_SUMM
ARY

ES ES = CE or COL or LC or
OR or MFL or SF
NOTE: Valid only if F (bit
17) is set. These bits have
different meanings for each
protocol. See the MV-64360
datasheet for details.

bites14_0

Table 6:SDMA Driver Structure:RX_COMMAND

Macro Field Description

Table 7:SDMA Driver Structure: TX_COMMAND

Macro Field Description

OWNER_BY_
GT

O When set to ‘1’ the buffer is
is “owned” by the device.
When set to ‘0’ the buffer is
owned by the CPU. Buffers
owned by the CPU are not
processed by the DMA.

AM Auto Mode
When set, the DMA does not
clear the Ownership bit
at the end of buffer process-
ing.
5 - 46 PPMC-280

API Call Reference List of APIs
reserved1

ENABLE_INT
ERRUPT

EI The device generates a
maskable interrupt upon
closing the descriptor.

Note: To limit the
number of interrupts
and prevent an inter-
rupt per buffer situa-
tion, set this bit only
in descriptors associat-
ed with LAST buffers.
If this is done, Tx
Buffer interrupt is set
only when transmis-
sion of a frame is com-
pleted.

GC Generate CRC
When set, CRC is generated
and appended to this
packet.

Note: Valid only if L
(bit16) is set.

reserved2

PADDING P Padding
When set, zero bytes are
appended to the packet if
the packet is smaller than 60
bytes. Use this feature to
prevent transmission of
fragments.
NOTE: Valid only if L (bit
16) is set.

FIRST F Indicates first buffer of a
packet.

Table 7:SDMA Driver Structure: TX_COMMAND (cont.)

Macro Field Description
PPMC-280 5 - 47

List of APIs API Call Reference
LAST L Indicates last buffer of a
packet.

ERROR_SUM
MARY

ES ES = LC or UR or RL
Set by the device to indicate
an error event that occurred
during packet transfer.
NOTE: Valid only if L (bit
16) is set. These bits have
different meanings for each
protocol. See the MV-64360
specifications for details.

bites14_0

Table 7:SDMA Driver Structure: TX_COMMAND (cont.)

Macro Field Description

Table 8:SDMA Driver Structure: RX_DESC

Macro Field Bit Width Description

UINT Bufsize 16 When set to ‘1’ the buffer is
“owned” by the device.
When set to ‘0’ the buffer is
owned by the CPU.

UINT bytecnt 16 When the descriptor is
closed this field is written
by the device with a value
indicating number of bytes
actually written by the
DMA in to the buffer.

RX_COMMAND cmd_sts 32

UINT next_desc
_ptr

32 32-bit Next Descriptor
Pointer to the Beginning of
Next Descriptor Bits [3:0]
must be set to 0. DMA
operation is stopped when
a NULL value in the Next
Descriptor Pointer field is
encountered.
5 - 48 PPMC-280

API Call Reference List of APIs
UINT buf_ptr 32 32-bit Pointer to The Begin-
ning of the Buffer Associ-
ated with The Descriptor
RX buffers has to be 64-bit
aligned, so bits [2:0] must
be set to 0.

UINT Index-
ToRx
Queue

4 An extra field that deter-
mines the queue number
to release a descriptor after
it has been used.

Table 8:SDMA Driver Structure: RX_DESC (cont.)

Macro Field Bit Width Description
PPMC-280 5 - 49

List of APIs API Call Reference
Table 9:SDMA Driver Structure: TX_DESC

Macro Field Bit
Width

Description

UINT bytecnt 16 Byte count is the number
of bytes to be transmit-
ted. Zero byte counters
are not supported with
retransmission. Do not
use zero byte buffers
with LAP-D protocol.

UINT Shadow 16 The CPU must initialize
this field with a value
identical to the Byte
Count field. The MV-
64360 subtracts the num-
ber of bytes actually
transmitted from this
parameter.
Usually the MV-64360
writes “0” in this field
when closing a descrip-
tor. However, when the
transmit SDMA halts due
to a transmit error, this
number can be used to
determine the number of
bytes that were fetched
into the MV-64360. Set-
ting both the Byte Count
and Shadow Byte Count
to “0” will cause the
SDMA to close the
descriptor and move to
the next descriptor, if
both or neither of the F
and L bits are set. Setting
Byte Count and Buffer
Size to “0” in transmit
descriptors with one of
the F or L bits set will
lead to unpredictable
behavior.

TX_COMMAND cmd_sts 32
5 - 50 PPMC-280

API Call Reference List of APIs
UINT next_desc_
ptr

32 32-bit pointer that points
to the beginning of next
descriptor. Bits [3:0] must
be set to 0. DMA opera-
tion is stopped when a
NULL (all zero) value in
the Next Descriptor
Pointer field is encoun-
tered.UINT buf_ptr 32
32-bit pointer to the
beginning of the buffer
associated with this
descriptor.

Note: The align-
ment restrictions for
buffers that have
Byte-Count smaller
than 8 bytes

UINT Pointer to
Rx Queue

32 An extra field to deter-
mine the source queue
where the packet was
taken from. Release the
source descriptor after
receiving TxEnd Inter-
rupt.

UINT shad-
owOwner

1 An extra field to help
manage the Tx descrip-
tors.

Table 9:SDMA Driver Structure: TX_DESC (cont.)

Macro Field Bit
Width

Description
PPMC-280 5 - 51

List of APIs API Call Reference
Table 10:SDMA Driver Structure: MPSC_SDCMR

Macro Field Description

AT Abort Transmit
The CPU sets the TRD bit
to ‘1’ when it needs to
abort a transmit SDMA
channel operation. When
the TRD bit is set, the
SDMA aborts its operation
and goes to IDLE state. No
descriptor is closed. The
MV-64360 clears both the
TRD and TXD bits when
entering IDLE state.
The CPU must poll bit 31.
When it is ‘0’ the MV-
64360 has completed the
abort sequence. After an
abort, the CPU must write
the first descriptor address
and than set TXD bit to ‘1’.

reserved4

TX_DEMAND TXD Tx Demand
When this bit is set to ‘1’,
the Tx DMA will fetch the
first descriptor and will
start the transmission pro-
cess. The MV-64360 clears
TXD when it successfully
ends an SDMA transmit
process. It also clears TXD
when a resource error
occurs, when the transmit
process is halted due to
channel error (i.e. CTS#
lost), or when the CPU
issues an abort command.

reserved3
5 - 52 PPMC-280

API Call Reference List of APIs
STD Stop Tx
The SDMA stops transmis-
sion at the end of frame
(i.e. at the end of buffer
with L bit set to ‘1’). After
transmitting the last
buffer, the transmit SDMA
goes to IDLE state.
The MV-64360 clears the
TXD bit when entering
IDLE state. After the
SDMA stops, the CPU
must write the first
descriptor address and
than set the TXD bit to ‘1’.
The MV-64360 signals the
CPU with
Interrupt when the stop
procedure is accom-
plished.

ABORT_RECEIVE AR Abort Receive
The CPU sets the AR bit
when it needs to abort a
receive SDMA channel
operation. When the AR
bit is set, the SDMA aborts
its operation and goes to
IDLE state. No descriptor
is closed. The MV-64360
clears both the AR and
ERD bits when entering
IDLE state. The CPU must
poll bit 15. When it is ‘0’,
the MV-64360 has com-
pleted the abort sequence.
After an abort the CPU
should write the 1st
descriptor address and
then set ERD bit to ‘1’.

reserved2

Table 10:SDMA Driver Structure: MPSC_SDCMR (cont.)

Macro Field Description
PPMC-280 5 - 53

List of APIs API Call Reference
ENABLE_RX_DMA ERD Enable Rx DMA
When set to ‘1’, the Rx
SDMA will fetch the 1st
descriptor and will be
ready for a receive frame.
The MV-64360 clears ERD
when the MV-64360
receive SDMA has a
resource error or when the
CPU issues an abort com-
mand.

reserved1

Table 10:SDMA Driver Structure: MPSC_SDCMR (cont.)

Macro Field Description

Table 11:SDMA Driver Structure: SDMA_CONFIGURATION

Macro Field Description

reserved0

BURST_SIZE BSZ Burst Size
Sets the maximum burst size for
SDMA transactions:
00 - Burst is limited to 1 64bit
words.
01 - Burst is limited to 2 64bit
words.
10 - Burst is limited to 4 64bit
words.
11 - Burst is limited to 8 64bit
words.

reserved1

RIFB RIFB Receive Interrupt on
Frame Boundaries
When set, the SDMA Rx gener-
ates interrupts only on frame
boundaries (i.e. after writing the
frame status to the descriptor).

POVR PCI Override
When set, causes the SDMA to
direct all its accesses in PCI_0
direction, overriding normal
address decoding process.
5 - 54 PPMC-280

API Call Reference List of APIs
BLMT Tx Big/Little Endian Transmit
Mode
The MV-64360 supports big or
little endian configuration per
channel for maximum system
flexibility. The BLMT bit only
affects data movements.
0 - Big Endian convention.
1 - Little Endian convention.

BLMR Rx Big Little/Endian Receive
Mode
The MV-64360 supports big or
little endian configuration per
channel for maximum system
flexibility. The BLMR bit only
affects data movements.
0 - Big Endian convention.
1 - Little Endian convention

RC Retransmit Count
In collision modes (LAP-D),
after executing a backoff proce-
dure RC times, the Tx SDMA
will close the buffer with a
Retransmit Limit (RL) error, a
maskable interrupt will be gen-
erated, and the SDMA will go to
OFF state. A new Transmit
Demand command should be
issued in order to start a new
transmission process. When RC
field is 0000, the MV-64360 tries
to retransmit forever. The CPU
needs to issue an abort com-
mand in order to stop the
retransmit process.

Table 11:SDMA Driver Structure: SDMA_CONFIGURATION (cont.)

Macro Field Description
PPMC-280 5 - 55

List of APIs API Call Reference
SINGLE_FRAME_MODE SFM 0 - Multi frame mode
1 - Single frame mode

Note:

• The SFM bit must be
set to ‘1’ for HDLC
Collision mode, and
BISYNC protocols. It
is also recommended
for UART.

• When the SFM bit is
set to ‘0’, CTS Lost
cannot be reported in
the correct descrip-
tor/frame. In LAN-
HDLC mode SFM
must be set for proper
operation.

RECEIVE_FIFO_THRESH
OLD

RFT 0 - 8 bytes
1 - Half FIFO (128 bytes)

Note: When working
with an 8-bit data path,
the threshold is always
one byte regardless of the
RFT value. It is recom-
mended that RFT bit be
set to ‘0’ in this case.
When RFT is set to ‘0’, the
SDMA will not burst. It
will transfer one word (64
bits) on each transfer.

Table 11:SDMA Driver Structure: SDMA_CONFIGURATION (cont.)

Macro Field Description
5 - 56 PPMC-280

API Call Reference List of APIs
External Interface APIs

void sdmaChanInit(SDMA_CHANNEL *sdmaChan)

DESCRIPTION This function completes the SDMA channel struct initialization
and carves the Rx and Tx descriptor/buffers data structures in
memory according to user parameters passed by the SDMA chan-
nel struct.

INPUT

SDMA_CHANNEL

*sdmaChan SDMA channel struct

OUTPUT SDMA channel struct initialized and SDMA channel descriptors
are ready.

RETURN None.

void sdmaChanStart(SDMA_CHANNEL *sdmaChan)

DESCRIPTION This function start the SDMA activity. The routine assigns the
SDMA struct values to the SDMA channel registers and enables
the Rx.

INPUT

SDMA_CHANNEL

*sdmaChan SDMA channel struct

OUTPUT SDMA channel register are initiated and Rx is enabled.

RETURN None.

void sdmaChanStopRx(SDMA_CHANNEL *sdmaChan)

DESCRIPTION This function halts SDMA Rx activity.
PPMC-280 5 - 57

List of APIs API Call Reference
INPUT

SDMA_CHANNEL

*sdmaChan SDMA channel struct

OUTPUT If Rx enabled is set in SDMA command register, an abort Rx com-
mand is issued and register is polled until the abort command is
complete.

RETURN None.

void sdmaChanStopTx(SDMA_CHANNEL *sdmaChan)

DESCRIPTION This function halts SDMA Tx activity.

INPUT

SDMA_CHANNEL

*sdmaChan SDMA channel struct

OUTPUT If Tx demand is set in SDMA command register, a stop Tx com-
mand is issued and register is polled until the stop command is
complete.

RETURN None.

void sdmaChanStopTxRx(SDMA_CHANNEL *sdmaChan)

This routine halts both Rx and Tx activities of a given SDMA chan-
nel.

INPUT

SDMA_CHANNEL

*sdmaChan SDMA channel struct

OUTPUT Rx and Tx activity are stopped.

RETURN None.
5 - 58 PPMC-280

API Call Reference List of APIs
bool sdmaInitRxDescRing(SDMA_CHANNEL *sdmaChan, int rxDescNum, int rxBuffSize,

 unsigned int rxDescBaseAddr, unsigned int rxBuffBaseAddr)

DESCRIPTION This function prepares a Rx chained list of descriptors and packet
buffers in a form of a ring.

INPUT

SDMA_CHANNEL

*sdmaChan SDMA channel struct

int rxDescNum Number of Rx descriptors

int rxBuffSize Size of Rx buffer

unsigned int
rxDescBaseAddr

Rx descriptors memory area base addr.

unsigned int
rxBuffBaseAddr

Rx buffer memory area base addr.

 OUTPUT The routine updates the SDMA channel struct with the informa-
tion regarding the Rx descriptors and buffers.

RETURN

False If the given descriptors memory area is
not aligned according to SDMA specifications.

True When given descriptors memory area is
aligned according to SDMA specifications

bool sdmaInitTxDescRing(SDMA_CHANNEL*sdmaChan, int txDescNum, int txBuffSize,
unsigned int txDescBaseAddr, unsigned int txBuffBaseAddr)

DESCRIPTION This function prepares a Tx chained list of descriptors and packet
buffers in a form of a ring.
PPMC-280 5 - 59

List of APIs API Call Reference
INPUT

SDMA_CHANNEL

*sdmaChan SDMA channel struct

int txDescNum Number of Tx descriptors

int txBuffSize Size of Tx buffer

unsigned int
txDescBaseAddr

Tx descriptors memory area base addr.

unsigned int
txBuffBaseAddr

Tx buffer memory area base addr

OUTPUT The routine updates the SDMA channel struct with the informa-
tion regarding the Tx descriptors and buffers.

RETURN

False If the given descriptors memory area is not
aligned according to SDMA specifications.

 True If the given descriptors memory area is
aligned according to SDMA specifications.

SDMA_STATUS sdmaChanSend(SDMA_CHANNEL *sdmaChan, PKT_INFO *pPktInfo)

DESCRIPTION This routine send a given packet described by pPktinfo parameter.
It support a packet span over multi buffers. The routine updates
'curr' and 'first' indexes according to the descriptor given. In case
the descriptor is "first", the 'first' index is update. In any case, the
'curr' index is updated. If the routine get into Tx resource error it
assigns 'curr' index as 'first'. This way the function can abort Tx
process of multiple descriptors per packet.

INPUT

SDMA_CHANNEL
*sdmaChan

SDMA channel struct pointer
5 - 60 PPMC-280

API Call Reference List of APIs
 PKT_INFO
*pPktInfo

Packet struct pointer.

OUTPUT Tx ring 'curr' and 'first' indexes are updated.

RETURN

SDMA_QUEUE_FULL In case of Tx resource error.

SDMA_ERROR In case the routine can not access Tx
desc ring.

SDMA_QUEUE_LAST_RESOURCE If the routine uses the
last Tx resource.

 SDMA_OK Otherwise.

SDMA_STATUS sdmaTxReturnDesc(SDMA_CHANNEL *sdmaChan, PKT_INFO *pPktInfo)

DESCRIPTION This routine returns the transmitted packet information to the
caller. It updates the 'used' Tx ring index. In case the Tx queue was
in "resource error" condition, where there are no available Tx
resources, the function resets the resource error flag.

INPUT

SDMA_CHANNEL
*sdmaChan

SDMA channel struct pointer

 PKT_INFO
*pPktInfo

Packet struct pointer.

 OUTPUT Tx ring current and used indexes are updated.
PPMC-280 5 - 61

List of APIs API Call Reference
 RETURN

SDMA_ERROR In case the routine can not access Tx
desc ring.

 SDMA_RETRY In case the routine could not release
descriptor.

SDMA_END_OF_JOB‘If the routine has nothing to
release.

 SDMA_OK Otherwise.

SDMA_STATUS sdmaChanReceive(SDMA_CHANNEL *sdmaChan, PKT_INFO *pPktInfo)

This routine returns the received data to the caller. There is no
data copying during routine operation. All information is returned
using pointer to packet information struct. If the routine exhausts
the Rx ring resources the resource error flag is set.

INPUT

 SDMA_CHANNEL
*sdmaChan

SDMA channel struct pointer

 PKT_INFO
*pPktInfo

Packet struct pointer.

OUTPUT Rx ring current and used indexes are updated.

RETURN

SDMA_ERROR In case the routine can not access Rx
desc ring.

SDMA_QUEUE_FULL If Rx ring resources are
exhausted.

SDMA_END_OF_JOB If there is no received data.

SDMA_OK Otherwise.
5 - 62 PPMC-280

API Call Reference List of APIs
SDMA_STATUS sdmaRxReturnBuff(SDMA_CHANNEL *sdmaChan, PKT_INFO *pPktInfo)

DESCRIPTION This routine returns a Rx buffer back to the Rx ring. It retrieves the
next 'used' descriptor and attached the returned buffer to it. In case
the Rx queue was in "resource error" condition, where there are no
available Rx resources, the function resets the resource error flag.

 INPUT

SDMA_CHANNEL
*sdmaChan

SDMA channel struct pointer

PKT_INFO
*pPktInfo

Packet struct pointer.

 OUTPUT New available Rx resource in Rx descriptor ring.

 RETURN

SDMA_ERROR In case the routine can not access Rx
desc ring.

 SDMA_OK Otherwise.

Driver Introduction

This module allocates the descriptors for each MPSC and each
Ethernet port (separate chain for each priority) depending on the
protocol programmed for this port. The descriptors allocating
method defines the minimum and maximum number of descrip-
tors per port protocol. Each protocol allows a limited number of
descriptors to avoid one port consuming all the resources. Each
descriptor chain allocation results in the addition of the chain's
first pointer to a table of pointers that is used by the Low Level
Driver to initialize the DMA.
Tx descriptors are allocated for each port (four Tx DMA exist) with
Buffer Pointer NULL.

Software Modules

This driver is implemented in:
PPMC-280 5 - 63

List of APIs API Call Reference
• sdma.c

• sdma.h

sdma.c SDMA memory allocation and transmit packet routines.

sdma.h SDMA structs and function declaration.

Restriction

The memory is limited in size and hence there is a limit to the
number of descriptors.

System Resource Usage

This driver uses the user memory pool for descriptors and buffers
allocation.

External Interface

This section details the external interface.

Driver Data Structure After system initialization, the sdmaAllocationTable structure has
the first allocation of the first descriptor of each queue.

Driver External Interface
APIs

The following tables detail the SDMA channel structures.

Table 12:SDMA Channel Structure: PortAllocStruct

Type Field Bit Width Description

UINT32 portNumber 4 The number of the
port.

UINT32 protocolType 3 ETHERNET_PROTO
COL or
MPSC_PROTOCOL.

UINT32 priority 2 The queue priority
PRIO0-PRIO3.

UINT32 numberOfDescrip-
tors

The number of
descriptors to allocate
5 - 64 PPMC-280

API Call Reference List of APIs
STATUS sdmaAllocateDescriptorsForOnePort (PORT_ALLOCATION_STRUCT*
portAllocationStruct)

DESCRIPTION Allocates descriptors for each port. It writes the first descriptor
pointer to a table that is used by the low level for DMA initializa-
tion.

INPUT

PORT_ALLOCATION_
STRUCT*
portAllocationSt
ruct

PORT_ALLOCATION_STRUCT*

OUTPUT Writes the first allocated descriptor pointer to a table that is used
by the low level for DMA initialization

UINT32 bufferSize The size of the buffer
to allocate.

UINT32 rx Or Tx 1 The allocation for
RX_DESCRIPTOR or
TX_DESCRIPTOR.

Table 12:SDMA Channel Structure: PortAllocStruct

Type Field Bit Width Description

Table 13:SDMA Channel Structure: TX_PACKET

Type Field Bit width Description

UINT32 portNumber 4 The Port number.

UINT32 PacketSize 12 Packet Size

UINT32 appendCrc 1

UINT32 priority 1

UINT32 destHigh 16

UINT32 destLow

UINT32 srcHigh 16

UINT32 srcLow

UINT32 pattern
PPMC-280 5 - 65

List of APIs API Call Reference
RETURN

OK On success.

ERROR On failure to make the assignment.

STATUS sdmaSendPackets (UINT32 protocolType,UINT32 priority,UINT32 portNumber,
UINT32*cmdAddress)

DESCRIPTION Sends packets from the CPU to any port in any MPSC protocol (or
ethernet). Before calling this function, you must point to a valid
buffer and set the byte count and packet description in the linked
descriptors.

Note: Set the descriptors before calling this function.

INPUT

UINT32
ProtocolType

ETHERNET_PROTOCOL or MPSC_PROTOCOL.

UINT32 Priority 0 for low, 1 for high.

UINT32
PortNumber

The number of the port, ETHERNET(0,1,2), MPSC(0-1).

OUTPUT Packet sending.

RETURN

OK On success.

ERROR On failure to make the assignment.

STATUS sdmaReleaseRxDesc (RX_DESC* rxDescStruct)

DESCRIPTION Called by the application after a packet is received and was pro-
cessed. Return the used descriptor back to the descriptors chain
and puts it at the end.
5 - 66 PPMC-280

API Call Reference List of APIs
INPUT

RX_DESC*
rxDescStruct

Pointer to descriptor struct to be released.

OUTPUT Descriptor is returned to the end of descriptor chain.

RETURN

OK On success.

ERROR On failure to make the assignment.

STATUS sdmaTransmitPackets (TX_PACKET packetDetails, int numberofPackets)

DESCRIPTION Sends the programmed number of MAC packets to the port speci-
fied in packetsDetails.

INPUT

TX_PACKET Packet Details

OUTPUT Packets sent out.

RETURN

OK On success.

ERROR On failure to make the assignment.

Communication Unit MPSC Driver

The MV-64360 system controller includes two MPSCs that sup-
port:

• Bit oriented protocols (for example HDLC)

• Byte oriented protocols (for example BISYNC)

• Transparent protocols

• The Universal Asynchronous Receiver Transmitter (UART)

• (Start/Stop) mode
PPMC-280 5 - 67

List of APIs API Call Reference
• All two MPSCs can operate simultaneously and can be routed
out via serial interface ports which implement interfaces such
as EIA-232 and V.34.

Low Level Driver Introduction

The MPSC Low Level Driver routines initialize the MPSC main
configuration registers, channel registers, and protocol configura-
tion registers.

Software Modules

This driver is implemented in:

• mpsc.c

• mpsc.h

Low Level Driver External Interface- Data Structure

MPSC Main Structure: MPSC_MAIN_STRUCT

The table details the MPSC Main structure.

Note: This structure consists of two UINT32s (High and Low)
because it combines the Low and High registers. The
manipulated bits are identified through macros.
5 - 68 PPMC-280

API Call Reference List of APIs
Table 14:MPSC Main Structure: MPSC_MAIN_STRUCT

Bits Field Bit
Width

Description

Low

31 GDE 1 Glitch Detect Enable
0 - Normal mode. No glitch detect.
(Default)
1 - When glitch is detected, a maskable
interrupt is generated.

When this bit is set the MPSC looks for
glitches in the external receive and
transmit clocks.

Note: The MV-64360 tries to
clean the input clocks by re-
ceiving them via a Schmitt trig-
ger input buffer.

30 reserved3 1

29 RRVD 1 Receive Reverse Data
0 - Normal Mode. (Default)
1 - Reverse Data Mode. MSB is shifted
in first.

28 TRVD 1 Transmit Reverse Data
0 - Normal Mode. (Default)
1 - Reverse Data Mode. MSB is shifted
out first.

27:26 reserved4 2

25:23 CRCM 3 CRC Mode
000 - CRC16-CCITT (HDLC based pro-
tocols, e.g. X.25) (Default)
001 - CRC-16 (BISYNC)
010 - CRC32-CCITT (HDLC based pro-
tocols, e.g. LAP-D. Identical to the
Ethernet CRC)
011 - Reserved
1XX- Reserved
PPMC-280 5 - 69

List of APIs API Call Reference
22 CDM 1 CD* Operating Mode
0- Normal mode. (Envelop Mode). CD*
should envelop the frame. Deassertion
of CD* during reception will cause a CD
lost error.
1- Pulse Mode. Once CD* is sampled
low, synchronization has been
achieved. Further transitions of CD*
have no effect.

21 CTSM 1 CTS* Operating Mode
0 - Normal mode. (Envelop Mode).
CTS* should envelop the frame. Deas-
sertion of CTS* during transmission
will cause a CTS lost error.
1- Pulse Mode. Once CTS* is sampled
low, synchronization has been
achieved. Further transitions of CTS*
have no effect. CTS* synchronization
will be lost when RTS* is deasserted.

20 CDS 1 CD* Sampling mode
0 - Asynchronous CD*. CD* is synchro-
nized internally in the MV-64360 and
then data is received. (Default)
1 - Synchronous CD*. CD* is synchro-
nized to the Rx clock. This mode is rec-
ommended when connecting an MPSC
to a Flex-TDM.

19 CTSS 1 CTS* Sampling Mode
0 - Asynchronous CTS*. CTS* is syn-
chronized inside the MV-64360. Trans-
mission starts after synchronization is
achieved with a few cycles delay to the
external CTS*. (Default)
1 - Synchronous CTS*. CTS* is synchro-
nized to the Rx clock. This mode is rec-
ommended when connecting an MPSC
to a FlexTDM. Synchronous CTS* must
be used for ISDN D channels.

18 reserved5 1

Table 14:MPSC Main Structure: MPSC_MAIN_STRUCT (cont.)

Bits Field Bit
Width

Description
5 - 70 PPMC-280

API Call Reference List of APIs
17 RTSM 1 RTS* Mode
This bit may be changed on the fly.
0 - Send IDLE between frames. RTS* is
negated between frames. IDLE pattern
is defined by the protocol and TIDL bit.
1- Send flags/syncs between frames
according to the protocol. RTS* is
always asserted.

16 TIDL 1 Transmit Idles
0 - TxD is encoded during data trans-
mission (including preamble and
flags/sync patterns). TxD is in MARK
during idle. (Default.)
1 - TxD is encoded all the time, even
when idles are transmitted.

15:14 TSNS 2 Transmit Sense.
Defines the number of bit times the
internal sense signal will stay active
after last transition on the RXD line
occurs. It is useful for AppleTalk proto-
col to avoid the spurious CD* change
interrupt that would otherwise occur
during the frame synchronization
sequence that precedes the opening
flag. The delay is a function of RCDV
(clock divider) setting.
00 (RCDV = 0) - Infinite (Carrier Sense
is always active - default)
00 (RCDV _ 0) - Infinite (Carrier Sense is
always active - default)
01 (RCDV = 0) - 14 bit times
01 (RCDV _ 0) - 6.5 bit times
10 (RCDV = 0) - 4 bit times (normal
AppleTalk)
10 (RCDV _ 0) - 2.5 bit times (normal
AppleTalk)
11 (RCDV = 0) - 3 bit times
11 (RCDV _ 0) - 1 bit time

13 reserved6 1

Table 14:MPSC Main Structure: MPSC_MAIN_STRUCT (cont.)

Bits Field Bit
Width

Description
PPMC-280 5 - 71

List of APIs API Call Reference
12 TSYN 1 Transmitter Synchronize to Receiver
Setting this bit synchronizes the trans-
mitter to receiver byte boundaries. This
is particularly important in the X.21
protocol.
0 - No synchronization assumed.
1 - Transmit bit stream is synchronized
to the receive bit stream. This bit affects
only a transparent transmitter.
Transmitter will start transmission nx8
bit period after the receive data arrives.
If CTS* is already asserted, the transpar-
ent transmitter will start transmit 8
clocks after the receiver starts to receive
data.

Note: Only this bit when
transmit and receive clocks are
equal and TCDV and RCDV
are set to ‘00’.

11 reserved7 1

10 NLM 1 Null Modem
0 - Normal operation. The MPSC uses
the CD* and CTS* inputs to control the
data flow
1 - Null Modem. The MPSC CD* and
RTS* internal signals are always
asserted. The external pin status can be
still read from the Event Register.

Table 14:MPSC Main Structure: MPSC_MAIN_STRUCT (cont.)

Bits Field Bit
Width

Description
5 - 72 PPMC-280

API Call Reference List of APIs
9:8 LPBK 2 Loop Back (for diagnostic) mode
00 -Normal Operation, no loopback
(Default)
01 -Loopback
10 -Echo
11 -Loop Back + Echo
In loopback mode, transmitted data on
TxD is also fed into
RxD, mainly for diagnostic purposes. In
this mode, the same clock source should
be used for both Rx and TX. Echo mode
re-transmits received data on RxD (with
one clock delay) on TxD. If CD* is
asserted, the receiver also receives the
incoming data.

7 ER 1 Enable Receive
0 - Disabled. The Rx channel is in Low
Power Mode.
1 - Enable. The Rx controller is ready to
receive data.

6 ET 1 Enable Transmit
0 - Disabled. The Tx channel is in Low
Power Mode.
1 - Enable. The Tx controller is ready for
data.
When the SDMA has data to transmit it
loads the data to the Tx controller, that
will transmit the data in the selected
protocol.

5 reserved8 1

4 TRX 1 Transparent Receiver
0 - Normal Mode (default)
1 - Transparent Mode. (Transparent
Mode overrides the program mode in
MODE bits)

3 TTX 1 Transparent Transmitter
0 - Normal Mode. (default)
1 - Transparent Mode. (Transparent
Mode overrides the program mode in
MODE bits)

Table 14:MPSC Main Structure: MPSC_MAIN_STRUCT (cont.)

Bits Field Bit
Width

Description
PPMC-280 5 - 73

List of APIs API Call Reference
2:0 MODE 3 Mode
000 -HDLC (default)
001 -Reserved
010 -Reserved
011 -Reserved
100 -UART
101 -BISYNC
110 -Reserved
111 -Reserved

High

31:30 SEDG 2 Synchronization Clock Edge
The clock edge used by the DPLL for
adjusting the receive
sample point due to drift in the receive
signal.
00 - Both rising and falling edges.
(Default.)
01 - Rising edge
10 - Falling edge
11 - No adjustment

29:27 RENC 3 Receive Encoder
Specifies the encoding method for the
dedicated Rx channel DPLL.
000 - NRZ (default)
001 - NRZI (Mark, can be set to Space by
setting RINV bit)
010 - FM0 (can be set to FM1 by setting
the RINV bit)
011 - Reserved
100 - Manchester
101 - Reserved
110 - Differential Manchester
111 - Reserved

Table 14:MPSC Main Structure: MPSC_MAIN_STRUCT (cont.)

Bits Field Bit
Width

Description
5 - 74 PPMC-280

API Call Reference List of APIs
26:25 RCDV 2 Receive Clock Divider
Defines the receive clock divider. The
receive bit rate is the rate of the clock
entering the MPSC Rx machine (from
external pin or a BRG) divided by the
RCDV field. For FM0, FM1, Manchester,
and Differential Manchester, one of the
8x, 16x, or 32x options must be set.
00 - 1x clock mode (Default. For NRZ
and NRZI only.)
01 - 8x clock mode
10 - 16x clock mode
11 - 32x clock mode

24:23 RSYL 2 Receive Sync Length (BISYNC and
Transparent Modes)
00 - External sync (CD* assertion)
01 - 4-bit sync
10 - 8-bit sync (MonoSYNC)
11 - 16-bit sync (BISYNC)

Table 14:MPSC Main Structure: MPSC_MAIN_STRUCT (cont.)

Bits Field Bit
Width

Description
PPMC-280 5 - 75

List of APIs API Call Reference
22 RDW 1 Receive Data Width
0 - Normal mode. The MPSC data path
is 16 bits wide. Upon receiving 16 bits,
the data is transferred into the SDMA
FIFOs. Buffers must be 64-bit word
aligned. DMA bursts are enabled.

Note:

• Normal Mode must be used
for HDLC based protocols. 1
- Low latency operation.
Data is transferred to the
FIFOs after 8 bits are
received. Logical FIFO
width is one byte.

• This mode allows byte
aligned buffers. This mode
must be chosen for BISYNC
and UART modes. DMA
bursts are disabled. The
SDMA writes one byte per
DRAM access. Setting RDW
also bypasses the receive
FIFO threshold. The SDMA
arbitrates for DMA access as
soon as the FIFO has one
byte in it.

21 reserved1 1

20:17 GDW 4 Clock Glitch Width
When the GDE bit is set, the MPSC will
consider Tx/Rx clock pulses that are
narrower than GDW system clocks as a
glitch.

Table 14:MPSC Main Structure: MPSC_MAIN_STRUCT (cont.)

Bits Field Bit
Width

Description
5 - 76 PPMC-280

API Call Reference List of APIs
16 RINV 1 Receive Bit Stream Inversion.
0 - No invert.
1 - Inverts the data before it is sent from
the DPLL to the MPSC data path. Set-
ting RINV to ‘1’ decodes FM1 and NRZI
mark when the RENC field is pro-
gramed to FM0 and NRZI space etc. It
also inverts the received bit stream in
NRZ mode.

15:14 reserved2 2

13:11 TDEC 3 Transmit Encoder
Specifies the encoding method for the
dedicated Tx channel DPLL.
000 - NRZ (default)
001 - NRZI (mark, can be set to Space by
setting TINV bit)
010 - FM0 (can be set to FM1 by setting
the TINV bit)
011 - Reserved
100 - Manchester
101 - Reserved
110 - Differential Manchester
111 - Reserved

10:9 TCDV 2 Transmit Clock Divider
Defines the transmit clock divider. The
transmit bit rate is the rate of the clock
entering the MPSC Tx machine (from
external pin or a BRG) divided by the
TCDV field. For FM0, FM1, Manchester,
and Differential Manchester, one of the
8x, 16x, or 32x options must be set.
00 - 1x clock mode (Default. For NRZ
and NRZI only.)
01 - 8x clock mode
10 - 16x clock mode
11 - 32x clock mode

8:5 TPPT 4 TPPT 4 Transmit Preamble Pattern
Defines a character sent as a preamble
sequence. Two TPPT characters form a
preamble byte. The number of pream-
ble bytes sent is defined by the TPL
field. The receiving DPLL uses the pre-
amble pattern to lock on the receiving
signal.

Table 14:MPSC Main Structure: MPSC_MAIN_STRUCT (cont.)

Bits Field Bit
Width

Description
PPMC-280 5 - 77

List of APIs API Call Reference
4:2 TPL 3 Transmit Preamble Length
Determines the number of preamble
bytes the transmitter sends before it
starts to transmit data. The send pattern
is defined by the TPPT bits.
000 - No Preamble (Default)
001 - 1 byte
010 - 2 bytes
011 - 4 bytes
100 - 6 bytes
101 - 8 bytes
110 - 16 bytes
111 - Reserved

1 TINV 1 1 TINV 1 Transmit bit stream inversion
0 - No invert.
1 - Invert the data before it is sent to the
DPLL.
Setting TINV to ‘1’ generates FM1 from
FM0, NRZI mark from NRZI space, etc.
It also inverts the bit stream in NRZ
mode.

0 TCL 1 Transmit Clock Invert
0 - Normal operation - Data is shifted
out on the falling edge. (Default.)
1 -The internal transmit clock is
inverted by the MPSC before it is used.
This allows the MPSC to clock data out
half a cycle earlier on the rising edge of
the clock.

Table 14:MPSC Main Structure: MPSC_MAIN_STRUCT (cont.)

Bits Field Bit
Width

Description
5 - 78 PPMC-280

API Call Reference List of APIs
Table 15:MPSC Channel Structures: MPSC_Channel_Chr 1 to 10

Macro Field Description

CHR1

reserved

abort

reserved2

SYNC Holds the synchronization pattern
for the receive machine and
opening/closing flag/sync-pattern
for the transmit machine.
The abort pattern is transmitted
upon receiving an abort command.
This is an HDLC flag so no addi-
tional programing is needed for the
HDLC protocol. After reset it holds
the value of 7E in the SYNC field

CHR2

ENTER_HUNT EH Upon receiving the Enter Hunt
command, the receive machine
moves to HUNT state and continu-
ously searches for an opening flag.
If the enter hunt mode command is
issued during frame reception, the
current descriptor is closed with
CRC error 1. The EH bit is cleared
upon entering Hunt state.

reserved1

ABORT_RECEPTI
ON

AbortReception Abort receive immediately and go
to IDLE. The descriptor is not
closed or incremented. The proces-
sor must issue enter hunt com-
mand after abort command in
order to enable reception. The bit is
cleared upon entering IDLE state.

reserved2

A

reserved3

CHR3

reserved1
PPMC-280 5 - 79

List of APIs API Call Reference
FLBR Frame Length Buffer Register
Holds the maximum allowed
frame length. When a frame
exceeds the number written in the
FLBR, the remainder of the frame is
discarded. The HDLC controller
waits for a closing flag and then
Return the frame status with bit 7
(MFLE) set to ‘1’.

CHR4

B Broadcast Enable
Enables the reception of HDLC
broadcast address (0xFFFF or 0xFF,
depending on the BCE setting).

reserved1

N Null Enable
Enables the reception of HDLC
NULL address (0x0000 or 0x00
depending on the BCE setting)

reserved

BCE BCE Bit Comparison Enable Bits
Setting ‘1’ in one of the BCE bits
enables the address comparison for
this bit:
² For 16-bit LAP-D like address rec-
ognition, write 0xFFFF in ADFR.
² For 8-bit HDLC/LAP-B like
address recognition, write 0x00FF
in ADFR.
² For reception of a predefined
address group, write ‘0’ to the
appropriate bits to disable address
comparison on these bits.

CHR5

reserved

SHFR SHFR Short Frame Register
Setting SHFR to ‘1’ enables the
Short Frame Error report. Short
Frames are frames with byte count
less than 3+SHFR.

Table 15:MPSC Channel Structures: MPSC_Channel_Chr 1 to 10 (cont.)

Macro Field Description
5 - 80 PPMC-280

API Call Reference List of APIs
CHR6

AD2 Address 2
A 16-bit address used for receive
address recognition.

AD1 Address 1
A 16-bit address that can be used
for receive address recognition.

CHR7

AD4 Address 4
A 16-bit address used for receive
address recognition.

AD3 Address 3
A 16-bit address that can be used
for receive address recognition.

CHR8

reserved1

CHR9

reserved1

CHR10

reserved1

RRF 1 = Rx Receiving Flags.

DPCS 1 = DPLL Carrier Sense.

RLIDL 1 = Rx IDLE Line

reserved2

RX_ENTER_HUN
T_STATE

RHS Rx in HUNT state.

reserved3

TIDLE Tx in IDLE state.
An interrupt is generated upon
entering IDLE state.

Table 15:MPSC Channel Structures: MPSC_Channel_Chr 1 to 10 (cont.)

Macro Field Description
PPMC-280 5 - 81

List of APIs API Call Reference
Driver Introduction

This module initializes the MPSC according to the user demand
and the protocol assigned to the port. If a BRG facility is in use,
BRG initialization is completed. The driver supports all MPSC
working configurations. The default is HDLC protocol.

Implementation Files

This driver is implemented in:

• mpsc.c

• mpsc.h

mpsc.c Initialize MPSC port engines.

reserved4

CD Carrier Detect Signal
An interrupt is generated when
this signal is deasserted during
receive.

Table 15:MPSC Channel Structures: MPSC_Channel_Chr 1 to 10 (cont.)

Macro Field Description

Table 16:MPSC Channel Structure: MPSC_CHANNEL_STRUCTURE

Type Field

CHR1 chr1

CHR2 chr2

CHR3 chr3

CHR4 chr4

CHR5 chr5

CHR6 chr6

CHR7 chr7

CHR8 chr8

CHR9 chr9

CHR10 chr10
5 - 82 PPMC-280

API Call Reference List of APIs
Restriction

Setting the MPSC protocol to UART restricts the network band-
width that can be used. This is a result of the UART protocol
design.

Driver External Interface- Data Structure

Driver Data Structures: MPSC_PORT_CONFIG

External Interface APIs

void mpscChanInit(MPSC_CHANNEL *mpscChan)

This function completes the MPSC SW struct initialization
towards the mpscChanStart() phase. It also initiates the MPSC
interrupt controller.

 INPUT

MPSC_CHANNEL
*mpscChan

MPSC channel struct.

 OUTPUT MPSC Interrupt controller initiated.

 RETURN N/A.

Table 17:Driver Data Structures: MPSC_PORT_CONFIG

Type Description

UINT protocol Bit
Width: 3

Protocol Type

MPSC_MAIN_STRUCT
main

Main structure as
defined in the low level.

UINT32 portconf Protocol Configuration -
union of all protocols

MPSC_CHANNEL_STR
UCT channel

MPSC Channel Register
PPMC-280 5 - 83

List of APIs API Call Reference
bool mpscChanStart(MPSC_CHANNEL*mpscChan)

DESCRIPTION This function starts the MPSC channel activity by writing to the
MPSC registers the values needed for its operation. Some of the
values are given by the user and some are calculate in the mpsc-
ChanInit() phase.

INPUT

MPSC_CHANNEL
*mpscChan

MPSC channel struct.

 OUTPUT All MPSC register are assigned. The channel enters hunt state.

RETURN

False If the MPSC channel fails to enter hunt
state within a given timeout.

True If the MPSC channel enters hunt state within
a given timeout.

void mpscChanStopTx(MPSC_CHANNEL *mpscChan)

This function stops any Tx activity of a given MPSC channel.

Note: In order to stop a complete serial channel Tx, the MPSC
channel Tx should be stopped only after the SDMA channel Tx
already stopped.

INPUT

MPSC_CHANNEL
*mpscChan

MPSC channel struct.

 OUTPUT MPSC Tx activity is stopped. MPSC channel register 10 (Event Sta-
tus Register) should mark that the Tx is in idle state.

RETURN Not Applicable.

void mpscChanStopRx(MPSC_CHANNEL *mpscChan)

This function stops any Rx activity of a given MPSC channel.
5 - 84 PPMC-280

API Call Reference List of APIs
Note: In order to stop a complete serial channel Rx, the MPSC
channel Rx should be stopped before the SDMA channel Rx.

INPUT

MPSC_CHANNEL
*mpscChan

MPSC channel struct.

 OUTPUT MPSC Rx activity is stopped. MPSC channel register 2 (Command
Register) should clear the Rx abort bit upon entering Rx IDLE
state.

RETURN Not Applicable.

void mpscChanStopTxRx(MPSC_CHANNEL *mpscChan)

This function stops Tx and Rx activity of a given MPSC channel
simultaneously.

INPUT

MPSC_CHANNEL
*mpscChan

MPSC channel struct.

 OUTPUT MPSC Tx and Rx activity are stopped. MPSC channel register 10
(Event Status Register) should mark that the Tx and Rx are in idle
state.

 RETURN Not Applicable

bool mpscChanSetCdv(MPSC_CHANNEL *mpscChan, int mpscCdv)

This function sets the MPSC Tx and Rx clock divider according to
a given parameter.

Note: This function sets TCDV and RCDV with the same value.
PPMC-280 5 - 85

List of APIs API Call Reference
INPUT

MPSC_CHANNEL
*mpscChan

MPSC channel struct.

 int
mpscCdv

Clock divider. Can be 1, 8, 16, 32.

 OUTPUT Set MPSC Main configuration register fields TCDV and RCDV.

 RETURN

False If the mpscCdv argument is neither of the
following 1, 8, 16, 32

True otherwise.

Ethernet Driver

This driver implements a Gigabit Ethernet Controller network
interface driver. It utilize the Gigabit Ethernet Controller low level
driver tointroduce VxWorks END interface driver.

Supported Features

• Zero Copy Buff. This driver implements the Zero Copy Buff
methodology. This means no data copy is done during either
Rx nor Tx process.

• Scatter-Gather. When the driver gets a chain of mBlks to trans-
mit it is able to perform Gather-write. It does not need to do
any data copying.

• Supports cached buffers and descriptors for better perfor-
mance. This driver utilize the internal device SRAM for
descriptor memory area. This reduce access time to the descrip-
tor thus increase overall performance.

• This driver supports multicasting.

• Easy to use API to manipulate the MAC address (using boot-
line).
5 - 86 PPMC-280

API Call Reference List of APIs
Software Modules

• mgiEnd.c

• mgiEnd.h

Operation Flow

This driver establishes a shared memory for the communication
system, which is divided into two parts:

• Descriptors area (Tx and Rx)

• Receive buffer area.

The descriptors area consists of a linked list of descriptors through
which packet are received and transmitted. Both Tx and Rx linked
lists are created using the low level driver in a form of a ring.

The receive buffer area is where the device received packet data is
stored. This area is curved by the netBufLib to be the END pool of
clusters. Those clusters pointers are set to be the Rx descriptors
buffers pointers. This means that the received Rx packet is stored
directly into the netBufLib clusters with no need to copy data (See
netBufLib).

Upon receive event, the driver creates a mBlk-clBlk-cluster tuple
using netBuffLib API and low level receive routine to get a cluster
pointer. As the driver manage cluster by itself it assigns release
information to the clBlk structure. The mBlk is then sent to the
upper layers. This driver manages the cluster memory pool by
itself. netBuffLib 'get' and 'free' routine are not used in case of clus-
ter return. Release of cluster by upper layers will result calling to
local free routine. This saves expensive pool management time.
The clusters and descriptors must comply to alignment restriction
and CPU data cache line alignment restrictions. Thus the cluster
and descriptors size are calculated in such way the base address is
32bytes aligned.
PPMC-280 5 - 87

List of APIs API Call Reference
External Interface

The driver provides the standard external interface, mgiEnd-
Load(), which takes a string of colon separated parameters. The
parameters should be specified in hexadecimal, optionally pre-
ceded by "0x" or a minus sign "-". The parameter string is parsed
using strtok_r() and each parameter is converted from a string rep-
resentation to binary by a call to strtoul(parameter, NULL, 16). The
format of the parameter string is:
0
"<portNum>:<portMacAddr>:<memBase>:<memSize>:<nCFDs>:
<nRFDs>:<flags>"

In addition, the two global variables 'bspEndIntConnect' and
'bspEndIntDisconnect' specify respectively the interrupt connect
routine and the interrupt disconnect routine to be used depending
on the BSP. The former defaults to intConnect() and the user can
override this to use any other interrupt connect routine such as
pciIntConnect()) in sysHwInit() or any device specific initialization
routine called in sysHwInit(). Likewise, the latter is set by default
to NULL, but it may be overridden in the BSP in the same way.

Target-specific Parameters

<portNum> Describes the MV-643xx Ethernet port number (integer).

<portMacAddr> This is a default MAC address to assign the MV-643xx Ethernet
port . The MAC address is given in the following form: 11-22-33-
44-55-66. One can override this MAC address using the bootline
which finally saved in the system NVRAM.

<memBase> This parameter is used to inform the driver about the shared mem-
ory region. This parameter should always be NONE to inform the
driver to allocate the shared memory from the system. Any other
value for this parameter is not supported.

<memSize> This parameter is used to check that this region is large enough
with respect to the provided values of both transmit/receive
frames. Because the <memBase> parameter is always NONE, this
parameter should always be 0.

<nTfds> This parameter specifies the number of transmit descriptors to be
allocated. If this parameter is less than two, a default of 0x32 is
used.
5 - 88 PPMC-280

API Call Reference List of APIs
<nRfds> This parameter specifies the number of receive descriptor/buffers
to be allocated. If this parameter is less than two, a default of0x32
is used. In addition, the number of 10 loaning buffers are created.
These buffers are loaned up to the network stack.

External Interface-APIs

END_OBJ* mgiEndLoad(char *initString)

DESCRIPTION This routine initializes both, driver and device to an operational
state using device specific parameters specified by <initString>.
The parameter string, <initString>, is an ordered list of parameters
each separated by a colon. The format of <initString> is, "<port-
Num>:<portMacAddr>:<memBase>:<mem-
Size>:<nCFDs>:<nRFDs>:<flags>"

<portNum> The Ethernet port number.

<portMacAddr> A MAC address to assign the Ethernet port. The MAC address is
given in the following form: 11-22-33-44-55-66

<memBase> This parameter is used to inform the driver about the shared mem-
ory region. This parameter should always be NONE to inform the
driver to allocate the shared memory from the system. Any other
value for this parameter is not supported.

<memSize> This parameter is used to check that this region is large enough
with respect to the provided values of both transmit/receive
frames. Because the <memBase> parameter is always NONE, this
parameter should be always 0.

INPUT

char *initString Parameter string

OUTPUT • Ethernet Port data structures are initialized.

• The driver memory pool is ready.

• Ethernet devices driver is loaded to the MUX.

RETURN An END object pointer, or NULL on error.
PPMC-280 5 - 89

List of APIs API Call Reference
LOCAL STATUS mgiUnload(DRV_CTRL *pDrvCtrl)

DESCRIPTION This function unloads the ethernet port END driver from the
MUX.

 INPUT

DRV_CTRL
*pDrvCtrl

Pointer to DRV_CTRL structure

OUTPUT • Driver memory allocated is freed.

• Driver is disconnected from the MUX.

RETURN OK.

LOCAL STATUS memoryInit(DRV_CTRL *pDrvCtrl)

DESCRIPTION This function allocates the necessary memory space for the Tx/Rx
descriptors as well as Rx buffers. Both Tx/Rx descriptor memory
space and Rx buffers allocated using the malloc() routine which
defines this memory space cacheable as the low level driver
supports cacheable descriptors. This is done to allow better packet
process performance. The function assigns the Rx buffer memory
space to be the network pool cluster memory space which means
that the network pool clusters and the Gigabit Ethernet Controller
buffers are the same. This allow the zero copy in Rx where the Rx
data is placed into the network pool clusters with no copying. This
function also makes sure the descriptor and cluster addresses are
cache line size aligned in order to avoid data loss when
performing data cache flush or invalidate.

After memory allocation the driver creates and initializes netBu-
fLib, the pool of mBlk and clBlk is created. The pool of clusters is
defined to be the Rx buffers. This way the driver can practice the
Zero Copy Buff methodology.

Tx/Rx
descriptors

Call low level routine to create Tx descriptor data structure.
Call low level routine to create Rx descriptor data structure.
Assign each Rx descriptor with netBufLib cluster.
5 - 90 PPMC-280

API Call Reference List of APIs
 INPUT

DRV_CTRL
*pDrvCtrl

Pointer to DRV_CTRL structure

OUTPUT Driver memory is ready for Rx and Tx operation.

RETURN

OK If output succeeded.

ERROR If driver failed to allocate one of the
address spaces.

<memBase>
Parameter was not NONE.
- failure to initialize netBufLib pools.
- fail to retrieve cluster from pool for all Rx descriptors.

LOCAL STATUS mgiStart(DRV_CTRL *pDrvCtrl)

DESCRIPTION This routine prepare the ethernet port and system for operation:

• Connects the driver ISR.

• Enables interrupts.

• Start the Gigabit ethernet port using the low level driver.

• Marks the interface as active.

 INPUT

DRV_CTRL
*pDrvCtrl

Pointer to DRV_CTRL structure

 OUTPUT See description.

 RETURN OK always.

LOCAL STATUS mgiStop(DRV_CTRL * pDrvCtrl)
PPMC-280 5 - 91

List of APIs API Call Reference
DESCRIPTION This routine marks the interface as inactive, disables interrupts
and resets the Gigabit Ethernet Controller port. It brings down the
interface to a non-operational state. To bring the interface back up,
mgiStart() must be called.

 INPUT None.

 OUTPUT

DRV_CTRL
*pDrvCtrl

Pointer to DRV_CTRL structure

 RETURN

OK Always.

LOCAL STATUS mgiSend(DRV_CTRL *pDrvCtrl, M_BLK *pMblk)

DESCRIPTION This routine takes a M_BLK and sends off the data using the low
level API. The buffer must already have the addressing informa-
tion properly installed in it. This is done by a higher layer. The
routine calls low level Tx routine for each mblk possibly reside in
the M_BLK struct passed as a parameter.
The routine has to be familiar with Tx command status field of the
low-level Tx descriptor in order to signal the low level driver on
the location of the transmitted buffer in the packet (for packet
spanned over multiple buffers). This way the routine supports
Scatter-Gather. When the driver gets a chain of mBlks it is able to
perform Gather-write where it does not need to do any data copy-
ing. muxSend() calls this routine each time it wants to send a
packet.

 INPUT

DRV_CTRL
*pDrvCtrl

Pointer to DRV_CTRL structure

M_BLK * pMblk Pointer to the mBlk/cluster pair
5 - 92 PPMC-280

API Call Reference List of APIs
 OUTPUT The packet described by pMblk is sent to the Ethernet low level
driver for transmission.

 RETURN OK, END_ERR_BLOCK in case there are no Tx descriptors avail-
able.

LOCAL void rxInt(DRV_CTRL *pDrvCtrl)

DESCRIPTION This routine is the Rx interrupt handler. When this routine is
called (by the Ethernet interrupt controller handler) the Rx inter-
rupt event are already acknowledged, so that the device will de-
assert its interrupt signal. The amount of work done here is kept to
a minimum; the bulk of the work is deferred to the netTask.

 INPUT

DRV_CTRL
*pDrvCtrl

Pointer to DRV_CTRL structure

 OUTPUT Activating netJobAdd to registrate the Rx events.

 RETURN None.

LOCAL void recvIntHandle(DRV_CTRL *pDrvCtrl)

DESCRIPTION Service task-level interrupts for receive frames.This routine is run
in netTask's context. The ISR scheduled this routine so that it
could handle receive packets at task level.

INPUT Pointer to DRV_CTRL structure

 RETURNS None
PPMC-280 5 - 93

List of APIs API Call Reference
LOCAL void mgiReceive(DRV_CTRL * pDrvCtrl, ETH_RX_DESC * pRxDesc)

DESCRIPTION This passes a received frame to the upper next layer.

INPUT Pointer to DRV_CTRL structure
pointer to a RFD

RETURNS None

LOCAL void rxRsrcReturn(DRV_CTRL *pDrvCtrl, char *pCluster, int dataSize)

DESCRIPTION This routine returns the Rx resource back to the low level driver

INPUT

DRV_CTRL
*pDrvCtrl

Pointer to DRV_CTRL structure

 ETH_RX_DESC *
pRxDesc

Pointer to a RFD

OUTPUT Rx resource is cache invalidated and returned to low level driver.

RETURN None.

LOCAL void txRsrcReturn(DRV_CTRL *pDrvCtrl)

DESCRIPTION This routine runs in netTask's context. The ISR scheduled this
routine so that it could handle Tx packet resource release at task
level. This routine free used Tx descriptors as well as mBlks. mBlks
to release are located in the PKT_INFO returnInfo field. The
mgiSend routine places the mBlk pointer in that field only in case
the Tx desc is a packet last buffer. In case the Tx process was in
'stall' situation, the routine returns the Tx process to normal and
notified the upper layers that the 'stall' situation is over. This
routine is active as long as there are Tx resources to release.

 INPUT

DRV_CTRL
*pDrvCtrl

Pointer to DRV_CTRL structure

OUTPUT Return Tx resources to low level driver and release mBlk struct.
5 - 94 PPMC-280

API Call Reference List of APIs
RETURN None.

LOCAL int mgiIoctl(DRV_CTRL *pDrvCtrl, int cmd, caddr_t data)

DESCRIPTION Process an interface ioctl request.

INPUT

DRV_CTRL
*pDrvCtrl

Pointer to DRV_CTRL structure

int
cmd

Command to process

caddrt data Pointer to data

OUTPUT None.

RETURN

OK Upon success.

ERROR If the config command failed.

LOCAL STATUS mgiMCastAddrAdd(DRV_CTRL *pDrvCtrl, char *pAddr)

DESCRIPTION This routine adds a multicast address to whatever the driver is
already listening for.

INPUT

DRV_CTRL
*pDrvCtrl

Pointer to DRV_CTRL structure

char * pAddr Address to be added

OUTPUT Multicast address will be accepted.

RETURN OK or ERROR.
PPMC-280 5 - 95

List of APIs API Call Reference
LOCAL STATUS mgiMCastAddrDel(DRV_CTRL *pDrvCtrl, char *pAddr)

DESCRIPTION This routine deletes a multicast address from the current list of
multicast addresses.

 INPUT

DRV_CTRL
*pDrvCtrl

Pointer to DRV_CTRL structure

char * pAddr Address to be added

OUTPUT Multicast address will be rejected.

RETURN OK or ERROR.

BRG Driver

Introduction

This driver implements the low level BRG engine. The MPSC ports
can operate over a range of clock frequencies. The ports exploit the
MV-64360 BRG facility for that purpose.

Software Modules

This driver is implemented in:

• brg.c BRG Register manipulation.

• brg.h BRG function and structure declaration.

brg.c BRG Register manipulation.

brg.h BRG function and structure declaration.

void brgInit(BRG_ENGINE *pBrg)

DESCRIPTION Initiate the BRG engine SW struct.
5 - 96 PPMC-280

API Call Reference List of APIs
INPUT

BRG_ENGINE *pBrg Pointer to BRG struct.

OUTPUT None.

RETURN Not Applicable

void brgStart(BRG_ENGINE *pBrg)

DESCRIPTION This routine starts the BRG engine.

INPUT

BRG_ENGINE *pBrg Pointer to BRG struct.

OUTPUT None.

RETURN Not Applicable.

void brgDbg(BRG_ENGINE *pBrg)

DESCRIPTION Display the BRG engine struct.

INPUT

BRG_ENGINE *pBrg Pointer to BRG struct.

OUTPUT None.

RETURN Not Applicable.

void brgSetCdv(BRG_ENGINE *pBrg, unsigned short brgCdv)

DESCRIPTION This function Set CDV field in the BRG Control register.

INPUT

BRG_ENGINE *pBrg Pointer to BRG struct.

unsigned short
brgCdv

New CDV value.
PPMC-280 5 - 97

List of APIs API Call Reference
OUTPUT Set Only CDV value in BRG config register.

RETURN Not Applicable

UART Over MPSC Port Driver

The PPMC-280 board offers MV-64360 MPSC port configured as
UART for serial communication that is supported by this BSP.This
UART Over MPSC Port driver (vxMpscUart.c) is VxWorks compli-
ant and functions as a standard VxWorks SIO driver. This section
describes how to install/uninstall the UART Over MPSC feature,
which uses a MV-64360 MPSC port as UART.

Supported Features

This driver supports Baud rates 9600,19200,38400,57600 and
115200.

Software Modules

This driver is implemented in:

• vxMpscUart.c (UART Over MPSC Port drive)

• vxMpscUart.h

External Interface -APIs

void vxMpscUartDevInit(MV_SIO_CHAN *pChan)

DESCRIPTION This routine fills most of the channel's data structure in order for
each of the channel components to be initiated properly. It also
allocates memory areas for the driver operation in case the caller
defined the Tx number of descriptors as zero. This function initial-
ize the various interrupt controllers.

Note: The driver allocates memory from the
USER_RESERVED_MEM area in order to be able to operate the
serial channel prior to VxWorks memory initialization.
5 - 98 PPMC-280

API Call Reference List of APIs
INPUT

MV_SIO_CHAN
*pChan

MV serial channel struct.

OUTPUT See description.

RETURN None.

void vxMpscUartDevReset(MV_SIO_CHAN *pChan)

DESCRIPTION This function resets the UART channel. It halts any of the channel
Tx/Rx operation, clears and mask any pending interrupts.

INPUT

MV_SIO_CHAN
*pChan

MV serial channel struct.

OUTPUT See description.

RETURN None.

LOCAL void vxMpscUartStartChannel(MV_SIO_CHAN *pChan)

DESCRIPTION This routine resets the serial channel and start it.

INPUT

MV_SIO_CHAN
*pChan

MV serial channel struct.

OUTPUT The serial channel is ready to operate.

RETURN None.

LOCAL STATUS vxMpscUartIoctl(MV_SIO_CHAN *pChan, int request, int arg)

DESCRIPTION This routine controls the device basic functionality like baud rate
and mode (polling or interrupt).
PPMC-280 5 - 99

List of APIs API Call Reference
INPUT

*pChan MV serial channel struct, device to control.

request Request code

arg Some argument

OUTPUT See description.

RETURN

OK On success.

EIO On device error.

ENOSYS On unsupported request.

void vxMpscUartRxInt(MV_SIO_CHAN *pChan)

DESCRIPTION This routine is called when there is an Rx packet ready to be pro-
cessed. The data with in the Rx packet is then passed to the
VxWorks IO buffers using the Rx callback routine.

INPUT

*pChan MV serial channel struct.

OUTPUT Received data is transferred to the IO layer.

RETURN: None.
5 - 100 PPMC-280

API Call Reference List of APIs
void vxMpscUartTxInt(MV_SIO_CHAN *pChan)

DESCRIPTION This routine transmits characters taken from the VxWorks IO
buffer by Tx callback function. The characters are copied into the
driver Tx buffer. This buffer and other information creates the
packet information passed to the channel transmitting routine.
This routine continues the Tx process which started by vxMp-
scUartStartup () routine and ends when there are no more charac-
ters to transmit.

INPUT

*pChan MV serial channel struct.

OUTPUT Calling the channel transmit routine with the proper packet infor-
mation.

RETURN None.

LOCAL void vxMpscUartStartup(MV_SIO_CHAN *pChan)

DESCRIPTION This routine transmits characters taken from the VxWorks IO
buffer by Tx callback function. The characters are copied into the
driver Tx buffer. This buffer and other information creates the
packet information passed to the channel transmitting routine.
This routine invokes Tx process which continues in vxMpscUart-
TxInt() and ends when there are no more characters to transmit.

INPUT

*pChan MV serial channel struct.

OUTPUT Calling the channel transmit routine with the proper packet infor-
mation.

RETURN None.
PPMC-280 5 - 101

List of APIs API Call Reference
LOCAL int vxMpscUartPollInput(SIO_CHAN *pSioChan, char *thisChar)

DESCRIPTION This function receives a character using the given serial channel.
The routine fills the given char buffer with the received char.

INPUT

*pSioChan SIO channel struct.

*thisChar Rx character buffer.

OUTPUT Calling the channel receive routine with the proper packet infor-
mation.

RETURN

OK If a character arrived

ERROR On device error

EAGAIN If the output buffer if full.

LOCAL int vxMpscUartPollOutput(SIO_CHAN *pSioChan, char outChar)

DESCRIPTION This function transmits a character using the given serial channel.
The routine fills the packet information struct with the proper
information for the given character.

INPUT

*pSioChan SIO channel struct.

outChar The transmitted character.

OUTPUT Calling the channel transmit routine with the proper packet infor-
mation.
5 - 102 PPMC-280

API Call Reference List of APIs
RETURN

OK If a character arrived

ERROR On device error

EAGAIN If the output buffer if full.

LOCAL int vxMpscUartCallbackInstall(SIO_CHAN *pSioChan, intcallbackType,STATUS (*
callback)(), void *callbackArg)

DESCRIPTION This function installs ISR callbacks that transfers the data to and
from the OS serial buffers.

INPUT

*pSioChan SIO channel struct.

callbackType Rx or Tx type of callback routine.

(* callback)() Callback routine.

*callbackArg Callback routine argument.

OUTPUT Calling Rx callback will deliver the received data to the OS layer.
Calling Tx callback will retrieve data from the OS layer.

RETURN

OK If callback installation succeeded

ENOSYS On wrong callbackType.

Serial EEPROM Driver

This driver supports the reading and writing into on-board Serial
Electrically Erasable Programmable Read Only Memory
(EEPROM) Device through I2C Bus. ATMEL AT24C64 Serial
EEPROM device that supports 8192 Bytes or 64 Kbits is used in
PPMC-280 board. The ATMEL AT24C64 device provides 256
pages each of 32 bytes length thus making it as 256*32 = 8192
Bytes. The end locations of the third EEPROM device is used
PPMC-280 5 - 103

List of APIs API Call Reference
To store the MAC addresses of the MGI ports ,the starting loca-
tions of which are used to store the BIB related information.

Note: The first 128 bytes EEPROM1 and EEPROM2 are reserved
for the storage of PCI Boot Data and the first 512 bytes and the
last 12 bytes are reserved for the storage of BIB information and
MAC addresses respectively on the BIBEEPROM.

Supported Features

The details of supported features are:

• The page rollover that is a device feature of ATMEL AT24C64
has been excluded to prevent page-rollover.

• When the offset for the data write is not at the starting location
of the page and the number of data bytes is equal to or greater-
than the page size, then the data is written in the sequence of
incrementing memory locations without page-rollover.

• If the data to be written or read is more than 8 bytes for a 2
KBEEPROM or 32 bytes for a 64 KB EEPROM length then it
automatically goes to next page and fetches data.

Software Modules

This driver is implemented in:

• i2cDrv.c: Located in the BSP directory.

• I2cDrv.h

Software Requirements

WindRiver VxWorks Operating System, Version 5.4 or higher.

External Interface - External APIs

bool frcEEPROMWrite16(UINT8 devAdd, UINT16 writeoffset, unsigned int noBytes, UINT8
*regFile1)

DESCRIPTION This routine does a slave write to the slave EEPROM. The
EEPROM is divided into 256 pages of 32 bytes each. For example:
0x0000, 0x0020,0x0040 etc.
5 - 104 PPMC-280

API Call Reference List of APIs
INPUT

devAdd Slave EEPROM device's hardware address.
UINT16

writeoffset A -byte offset in the EEPROM slave where the data has to be
written.

noBytes Number of bytes to be written.

regFile Array of data that has to be written to the EEPROM.

OUTPUT Not Applicable

RETURN

True If the write was successful.

False If the write was not successful.

bool frcEEPROMRead16(UINT8 devAdd, UINT16 readoffset, unsigned int noBytes,
UINT8*regFile1)

DESCRIPTION This routine does a slave write to the slave EEPROM. The
EEPROM is divided into 256 pages of 32 bytes each. For example:
0x0000, 0x0020,0x0040 etc.

INPUT

devAdd Slave EEPROM device's hardware address.

UINT16

readoffset A 2-Byte offset in the EEPROM slave where the data has to be read
from.

noBytes Number of bytes to be read.

regFile Array where the read data that has to be stored.

OUTPUT Not Applicable.
PPMC-280 5 - 105

List of APIs API Call Reference
RETURN

True If the read was successful.

False If the read was not successful.

bool frcEEPROMWrite8(UINT8 devadd, UINT8 writeoffset,unsigned int noBytes,
UINT8*regfile1)

DESCRIPTION This routine does a write to the slave EEPROM specified. The
EEPROM is divided into number of pages each of size 8 bytes. A
page's address is 8 bytes aligned. For example, 0x00,0x08,0x10 ..
etc.

INPUT

devAdd Slave EEPROM device's hardware address.

writeoffset Byte offset in the EEPROM slave where the data has to be written.
noBytes Number of bytes to be written.

regFile Array of data that has to be written to the EEPROM.

OUTPUT Not Applicable

RETURN

True If the write was successful.

False If the write was not successful.

bool frcEEPROMRead8(UINT8 devadd, UINT8 readoffset,unsigned int noBytes,
UINT8*regfile1)

DESCRIPTION This routine does a read from the slave EEPROM specified. The
EEPROM is divided into number of pages each of size 8 bytes. A
page's address is 8 bytes aligned. For example, 0x00,0x08,0x10 ..
etc.

INPUT

devAdd Slave EEPROM device's hardware address.
5 - 106 PPMC-280

API Call Reference List of APIs
readoffset Byte offset in the EEPROM slave where the data has to be read
from.

noBytes Number of bytes to be read.

regFile Array where the read data that has to be stored.

OUTPUT Not Applicable.

RETURN

True If the read was successful.

False If the read was not successful.

Real Time Clock Driver

The driver supports reading from and writing into the RTC device
through an I2C bus. The MAXIM MAX6900 that supports realtime
clock counts seconds, minutes, hours, date, month day and year is
present on the PPMC-280.

Supported Features

The driver supports read and write from and to the RTC device

Software Modules

The software modules supported are:

• i2cDrv.c

• i2cDrv.h

• rtcsupport.c

External API's

void frcRTCWrite(UINT8 *buffer)

This command writes to the RTC device, the contents of buffer that
is passed to it.
PPMC-280 5 - 107

List of APIs API Call Reference
INPUT Contents of the buffer which indicate the time.

OUTPUT Not Applicable

RETURNS Not Applicable

void frcRTCRead(UINT8 *buffer)

This command reads the contents of the RTC device and writes
into the buffer.

INPUT Not Applicable

OUTPUT Contents of the buffer which indicate the time.

Board Information Block Driver

The Board Information Block (BIB) is a data structure that allows
storing information of all hardware devices in a compact manner
in a non-volatile memory usually a serial I2C bus EEPROM called
the ID-ROM which is mounted on the board.

Supported Features

Displays the entire contents of the BIB.

Note: For more details on how data structure for the BIB is de-
fined refer to the "BIB Specifications 2.0" from Force Computers.

Software Modules

The driver is implemented in:

• i2cDrv.c

• frcBibDrv.c

• frcBibDrv.h

• frcBibShow.c

• frcBib.c

• frcBIB.h
5 - 108 PPMC-280

API Call Reference List of APIs
External Interfaces- External APIs

void frcBibDataWrite(char *FTPSERVER_IP_ADRS,char *directory,char *filename)

DESCRIPTION This routine writes the hardware related information in the format
required by the BIB driver into the EEPROM. Tools are available
to convert the BIB definition file (as mentioned in the BIB
specification) into the required format.

INPUT

char
*FTPSERVER_IP_AD
RS

The server IP Address from where the file has to be downloaded

char *directory The directory within the FTP root where the file in s-record format
is stored char *filename The filename of the file in s-record format
that has to be programmed into the EEPROM

OUTPUT Not Applicable

RETURNS Not Applicable

The file that contains BIB information can be defined using the
The BIB description language section in the BIB specifications.
Then the definition file which has an extension .bib and the
frcBib.h file are provided as input to the mk_bib tool .The output
of which is fed along with the product specific information in the
SAP file to the upd_bib which gives the final bib image that should
be stored on the network.
The tool chain is as follows.
+ Tool Chain
file.bib, frcBIB.h -> mk_bib : rawBIB.x -> upd_bib :
finalBIB.x
^
BarCode -> SerialNum -> SAP : sap_info.dat ____|
The tools in detail
mk_bib : BIB Compiler, generates a "raw" BIB S-
record file.
upd_bib : Updates the "raw" BIB with board-specific data
(from file "sap_info.dat") and recalculates the checksum.
Generates
a "final" BIB image (S-record file).
PPMC-280 5 - 109

List of APIs API Call Reference
GLOBAL STATUS frcBibAttach(UINT32 handle)

DESCRIPTION This routine must be called once to attach a handle to a BIB device,
usually an I2C-bus EEPROM (ID-ROM). The handle is used as a
unique identifier for the internal driver structures, and it is passed
to the interface routines bibReadIntfRtn() and bib-WriteIntfRtn(),
which are specified in the structure BIB_INTF, referred by pIntf.
As described in section "3.1 Data Block Structure" of The Board
Information Block (BIB) Version 2.0
document by Force Computers, more than one data block can be
stored in the same IDROM by building a linked list. The driver
searches this linked list of data blocks for a valid BIB image, veri-
fies its checksum and copies the BIB image into an internal mem-
ory buffer. The routine returns ERROR in case of insufficient
memory, if the device cannot be read, no BIB is found, or the BIB
image is not valid.

INPUT The address of the EEPROM device that has to be attached.

Note: The device address is 0xa8, where the BIB storage area re-
sides.

OUTPUT Not Applicable

RETURN

OK If the handle is attached.

Error The routine returns ERROR in case of
insufficient memory, if the device cannot be
read, no BIB is found, or the BIB image is not
valid.

GLOBAL STATUS frcBibDrvShow(int infoLvl)

DESCRIPTION This show routine displays all attached BIB handles and the associ-
ated information, such as the previous error code, whether a local
memory pool is used, and the address of the BIB interface routines.
If infoLvl is higher than 1 and an external show routine has been
defined via the global function pointer frcBibShowRtn, the con-
tents of the BIB itself is also displayed.
5 - 110 PPMC-280

API Call Reference List of APIs
INPUT An integer which indicates the infolvl required:

• 0 describes information about the handle

• 1 describes information about the interface routines and cache

• buffer

• 2 describes the entire information contained in the BIB

OUTPUT The information required.

RETURN

OK If the handle is attached.

Error The routine returns ERROR in case of
insufficient memory, if the device cannot be
read, no BIB is found, or the BIB image is not
valid.

frcBibShowRtn

When frcBibDrvShow() is called with an information level
above 1, and this function pointer has previously been set to a BIB
show routine, this will be called.

The prototype of a BIB show routine is:
STATUS yourBibShow (void *pImage, size_t imgSize, BOOL ver-
bose, FILE *output)
Parameter pImage is the address of the BIB image which should
be displayed. It is set to the driver's internal cache buffer.
The imgSize parameter contains the number of bytes of the
BIB image.
The verbose flag is set TRUE if frcBibDrvShow() is called with an
infoLvl greater than 2, otherwise it is FALSE.

The output is not used here, it is set to NULL to specify "standard
out". Usually the application sets this function pointer to the
frcBibShow() routine, which has to be included by the application.
frcBibShowRtn = frcBibShow

STATUS (*bibReadIntfRtn) (BIB_HDL handle, UINT32 offset, UINT32 byteCnt, void *pDstBuf)

DESCRIPTION This function pointer specifies the BIB read interface routine for
the respective BIB device. This routine directly passes control to
PPMC-280 5 - 111

List of APIs API Call Reference
EEPROM Device which in turn reads from the specified offset and
the specified device.

INPUT

handle The BIB device handle specifies the memory device to access. This
is usually an I2C-bus EEPROM (ID-ROM). The handle is not
defined by the driver, but directly passed from the application to
the respective interface routine. If an individual set of interface
routines has been defined for each BIB device, this parameter may
be discarded.

offset Byte offset within the memory device where to start reading or
writing.

byteCnt Byte count, number of bytes to read or write.

pDstBuf Destination buffer, specifies where to store the data which was
read.

OUTPUT Not Applicable.

RETURN The interface routines return a status code.

OK If the operation was successful.

ERROR When an invalid parameter was passed to
the routine, such as when an offset value which
is out of range, or if the read/write operation
failed.

STATUS (*bibWriteIntfRtn)(BIB_HDL handle, UINT32 offset, UINT32 byteCnt, void *pSrcBuf)

DESCRIPTION This function pointer specifies the BIB write interface routine for
the respective BIB device. For a description of the function param-
eters see Arguments of the Interface Routines.

INPUT

Handle The BIB device handle specifies the memory device to access. This
is usually an I2C-bus EEPROM (ID-ROM). The handle is not
defined by the driver, but directly passed from the application to
the respective interface routine. If an individual set of interface
5 - 112 PPMC-280

API Call Reference List of APIs
routines has been defined for each BIB device, this parameter may
be discarded.

offset Byte offset within the memory device where to start reading or
writing.

byteCnt Byte count, number of bytes to read or write.

pSrcBuf Source buffer, specifies where to get the write data from.

OUTPUT Not Applicable

RETURN The interface routines return a status code.

OK If the operation was successful,

ERROR If an invalid parameter was passed to the
routine, for example an offset value which is out
of range, or if theread/write operation failed.

VPD Driver

The PPMC-280 BSP supports reading and writing of VPD (vital
product data), to and from any PCI 2.2 compliant device.

Supported Features

The driver provides the following features:

• Read

• Write

Software Modules

This driver is implemented in:
vpd.c

Software Requirements

WindRiver VxWorks Operating System, Version 5.5 should be
up and running.
PPMC-280 5 - 113

List of APIs API Call Reference
External Interface- External APIs

STATUS frcVPDInit()

DESCRIPTION This functions initializes the VPD functionality of the loacl board
and hence had to called by the local CPU in pciScan().

INPUT None.

OUTPUT None.

RETURNS OK if successful, else ERROR.

void frcVPDWrite(UINT32 bus, UINT32 dev, UINT32 fun,UINT16 vpdAddr,UINT32 vpdData)

DESCRIPTION This function is to write a 32 bit data into the VPD area of a PCI
device.

INPUT

bus PCI device bus number.

dev PCI device number.

fun PCI device function number.

vpAddr The VPD address where the VPD has to be written. This is only 15
bits wide.

vpdData The VPD to be written.

OUTPUT None.

RETURNS None.
5 - 114 PPMC-280

API Call Reference List of APIs
void frcVPDRead(UINT32 bus, UINT32 dev, UINT32 fun,UINT16 vpdAddr,UINT32 *vpdData)

DESCRIPTION This function is to read a 32 bit VPD from the VPD area of a PCI
device.

INPUT

bus PCI device bus number.

dev PCI device number.

fun PCI device function number.

vpAddr The VPD address where the VPD has to be read. This is only 15
bits wide.

vpdData The returned VPD.

OUTPUT None.

RETURNS None.

Boot Flash Driver

The PPMC-280 BSP provides a driver for programming onboard
Boot Flash AMD AM29LV008. This can be used for programming
the boot flash with a new bootable image once VxWorks is up and
running with an existing image.

Supported Features

The driver provides the following features:

• Erasing of Sectors

• Verification of the device by writing and reading data from a
specified location.

• Programming the flash device from a specified location

• Programming the flash with a file over network.

Software Modules

This driver is implemented in:
bflashdrv.c
PPMC-280 5 - 115

List of APIs API Call Reference
Software Requirements

WindRiver VxWorks Operating System, Version 5.5 should be
up and running.

External Interface- External APIs

short frcBootFlashSectorErase (volatile unsigned char *addr);

DESCRIPTION This function erases the contents with "FF" from the specified
address till end of the sector. The function replaces the contents of
the flash with data "FF".

INPUT

Unsigned char
*addr

Sector Address

OUTPUT Not Applicable

RETURNS

FLASH_SUCCESS If OK

short frcBootFlashProgram (volatile unsigned char *Address, unsigned char *data, unsigned
int size)

DESCRIPTION This function programs the Flash device from a specified
address. The address, data and size are input parameters of
this routine as mentioned below.

INPUT

unsigned char
*address

Starting Address of the Flash to be programmed.

Unsigned
char*data

Starting Address of the data to be written.

Unsigned int
size

Number of Bytes to be written.

OUTPUT Not Applicable.
5 - 116 PPMC-280

API Call Reference List of APIs
RETURN

FLASH_SUCCESS If OK.

FLASH_TIMEOUT If any error.

short frcBootFlashVerify (volatile unsigned char *Address, unsigned char *data, unsigned
intsize)

DESCRIPTION This function verifies the Flash device from a given location by
writing specified data for given size. It reads the contents of
written data from the specified location and compares it with
actual data, and reports if there are any mis-matches.

INPUT

Unsigned char
Address

Starting Address of the Flash to be Programmed / Verified.

Unsigned char
*data

Starting Address of the data to be Written / Verified.

Unsigned int size
Number of Bytes to be verified.

OUTPUT Not Applicable.

RETURN

SUCCESS If OK.

void frcBootFlashFile (char * FTPSERVER_IP_ADRS ,char * DIRECTORY,char * filename)

DESCRIPTION This function loads the file from the Network and then programs
the Boot Flash device with that file.

INPUT

char
*FTPSERVER_IP_AD
RS

The server IP Address from where the file has to be downloaded
PPMC-280 5 - 117

List of APIs API Call Reference
char *directory The directory within the FTP root where the file in s-record format
is stored

char *filename The name of the file that has to programmed into the Boot flash
device.

OUTPUT Not Applicable.

RETURN Not Applicable.

void frcBootFlashFileV(char * filename)

DESCRIPTION This function verifies the contents of the boot flash with file data.

INPUT

Unsigned char

*filename Name of the file to be verified with the flash data.

OUTPUT Not Applicable.

RETURN Not Applicable.

User Flash Driver

The PPMC-280 BSP provides a driver for reading/writing
on-board User Flash 28F128J3A. PPMC-280 has four of these
devices. Each device is 8M x 16 (16 bits wide and 8M locations).
The four devices are divided into two banks. Each bank has two
devices. The size of each bank is 32MB (8M x 32). Each device has
128 blocks each of 128KB. The size of a block in each bank is
256KB. Hence there 128 blocks in each bank , each of size 256KB.

Note: The Bootline parameters are stored in User Flash. During
the boot sequence, if an error in Bootline is encountered, then
the you must perform a bootChange operation in order to over-
come the error.
5 - 118 PPMC-280

API Call Reference List of APIs
Supported features

The supported features are:

• Block erase.

• Verification of the device by reading (block wise) from it and

• storing in a defined area (in memory).

• Verification of the device by writing (block wise) defined data.

• Erasing a bank.

Software modules

This driver is implemented in flashDrv.c.

void frcFlashReadRst (unsigned int Flashbase)

DESCRIPTION This routine resets the flash to the read mode. After the execution
of this routine the specified user flash would be ready to read.

INPUT

Flashbase The base of the flash device.
0xA0000000 - user flash bank 0
0xA2000000 - user flash bank 1

RETURN None.

int frcFlashAutoSelect (unsigned * Mnfct, unsigned * DevCode, unsigned int Flashbase)

DESCRIPTION This routine returns the manufacturer and device code of the spec-
ified user flash.

INPUT Flashbase The base address of the user flash.
0xA0000000 - user flash bank 0.
0xA2000000 - user flash bank 1.

Mnfct Pointer to a variable where the manufacturer code has to be
returned.

DevCode Pointer to a variable where the device code has to be returned.
PPMC-280 5 - 119

List of APIs API Call Reference
RETURN

FLASH_SUCCESS (0x0)If the routine was successful
to get the manufacturer and device code.

FLASH_TIMEOUT (0x100)If the routine was not
successful in either finding the flash device or
getting the device and manufacturer code of the
flash device.

short frcFlashErase (short sector,unsigned int Flashbase)

DESCRIPTION This routine will erase all the blocks of the specified user flash. If
successful will then reset the flash device to the read mode.

INPUT

sector Should be 0. (For future use).

Flashbase The base address of the flash device.
0xA0000000 - user flash bank 0.
0xA2000000 - user flash bank 1.

RETURNS

FLASH_SUCCESS (0x00)If successful in erasing the
specified flash device.

FLASH_TIMEOUT (0x100)If not successful in erasing
the specified flash device.

void frcFlashRead(UINT32 StartAdd, UINT32 noLongs, UINT32 *buffer)

DESCRIPTION This routine reads specified number of bytes from a specified flash
device.

INPUT StartAdd - The starting address of the flash where to read from.
noLongs - Number of Longs.
buffer - Destination address for the read data.

RETURNS None
5 - 120 PPMC-280

API Call Reference List of APIs
int frcFlashBlockWrite(unsigned int BlockNo,unsigned int Flashbase, unsigned int *buffer))

DESCRIPTION This routine writes into the specified block

INPUT BlockNo - Number of the block to be written.
Flashbase- Base address of the flash device
buffer - Array of data that has to be written. This array should be
256KB in size.

RETURNS FLASH_SUCCESS - If successful
FLASH_TIMEOUT - If not successful

int frcFlashBlockErase(unsigned int BlockNo,unsigned int Flashbase)

DESCRIPTION This routine erases a block in the user specified user flash bank.If
successful in erasing, this routine also resets the flash to the read
mode.

INPUT

BlockNo The number of the block which has to erased.

Flashbase The base address of the user flash whose block has to be erased.
0xA0000000 - user flash bank 0.
0xA2000000 - user flash bank 1.

RETURNS

FLASH_SUCCESS (0x00)If the erase was successful.

FLASH_TIMEOUT (0x100)If the erase was not
successful.

int frcFlashUnlock (unsigned int * flashBase)

DESCRIPTION In PMC-280 Rev. B, the block to which the address belongs will be
unlocked. In PMC-280 Rev E0, the flash bank to which the address
belongs will be unlocked. If successful in unlocking , this routine
returns 1.

INPUT

flashBase The base address of the user flash which has to be unlocked.
PPMC-280 5 - 121

List of APIs API Call Reference
0xA0000000 - user flash bank 0.
0xA2000000 - user flash bank 1.

RETURNS

1 If flash unlock was successful.

0 If flash unlock was unsuccessful.

int frcFlashLock (unsigned int * flashBase)

DESCRIPTION This routine locks a block in the user specified user flash bank.If
successful in locking this routine returns 1.

INPUT

flashBase The base address of the user flash block which has to be unlocked.
RETURNS

1 If flash lock was successful.

0 If flash lock was unsuccessful.

Watchdog Timer Driver

The MV internal watchdog timer is a 32-bit count down counter
that can be used to generate a non-maskable interrupt or reset the
system in the event of unpredictable software behavior. After the
watchdog is enabled, it is a free running counter that needs to be
serviced periodically in order to prevent its expiration. This driver
provides APIs for full domination over the WatchDog.
The API includes:

• frcWatchdogLoad() - Load WatchDog counter with a new
value

• frcWatchdogService()- WatchDog service

• frcWatchdogNMILoad()- Load WatchDog value register with
NMI_VAL

• frcWatchdogEnable()- Enable WatchDog operation
5 - 122 PPMC-280

API Call Reference List of APIs
• frcWatchdogDisable()- Disable WatchDog operation

Note:

• In order to use the NMI correctly, make sure to service the
WD (using the frcWatchdogService routine) in the NMI con-
nected to this driver. Avoiding this service will hang the sys-
tem.

• In order to have the watchDog facility function correctly
make sure the value of the watchdog timer is greater than the
preset value, which is used for the invocation of the NMI.
Avoiding this will cause the watchdog to assert WDE inter-
rupt (reset the system) prior to the NMI event.

• In order to be able to receive NMI the user must make HW
changes to the development board. The watchdog facility
generates the NMI in GPP pin 10 (output). This pin is short to
GPP pin 24 (input) using RNC8. Only after making this
change the user will be able to see the NMI on GPP pin 24.

frcWatchdogInit()

This routine initiates the MPP and GPP facilities to have NMI
interrupt on GPP pin 24. This routine also connects the user ISR for
the NMI using the GPP driver routine frcGppIntConnect()

INPUT None

OUTPUT The MPP + GPP facilities are now ready for WatchDog interrupt
reception and user defined NMI service routine is connected to the
GPP interrupt controller.

RETURNS Not Applicable

frcWatchdogLoad()

This function loads a value into the 24 most significant bits of the
Watchdog Configuration Register, each time it is enabled or ser-
viced.

INPUT

VALUE 24-bit counter
PPMC-280 5 - 123

List of APIs API Call Reference
OUTPUT The value is loaded into the 24 Least Significant Bit of Watchdog
Configuration Register

RETURNS

True If output succeeds.

False If argument is invalid.

frcWatchdogService()

WatchDog service and NMI interrupt acknowledge. This function
service the WD in order to avoid NMI or reset (WDE#). Watchdog
service is performed by writing ‘01’ to CTL2, followed by writing
‘10’ to CTL2. Upon watchdog service, the GT clears the NMI bits
(if set) and reloads the Preset_VAL into the watchdog counter.

INPUT None.

OUTPUT The Preset_VAL is loaded.

RETURNS Not Applicable.

frcWatchdogNMILoad()

Load WatchDog value register with a new value (NMI_VAL). This
function loads a value into the Watchdog Value Register. This
value is the 24 least significant bits of a 32 bit value. When the
WatchDog counter reaches a value equal to NMI_VAL an NMI
interrupt is generated.

INPUT 24-bit wide number.

OUTPUT The value is loaded into the 24 Least Significant Bit of Watchdog
Value Register.
5 - 124 PPMC-280

API Call Reference List of APIs
RETURN

True If output succeeds.

False If argument is invalid.

frcWatchdogEnable()

Enable WatchDog operation. This function enables the WatchDog
operation.A write sequence of ‘01’ followed by ‘10’ into CTL1 dis-
ables/enables the watchdog. The watchdog’s current status can be
read in bit 31 of WDC. When disabled, the GT clears the NMI bits
(if set) and reloads the Preset_VAL into the watchdog counter.

INPUT None.

OUTPUT The disabled WatchDog is now enabled.

RETURN Not Applicable.

frcWatchdogDisable()

Disable WD operation. This function Disables the WD operation.
A write sequence of ‘01’ followed by ‘10’ into CTL1 dis-
ables/enables the watchdog. The watchdog’s current status can be
read in bit 31 of WDC. When disabled, the GT clears the NMI bits
(if set) and reloads the Preset_VAL into the watchdog counter.

INPUT None.

OUTPUT The Enabled Watchdog is now Disabled.

RETURN Not Applicable.

DoorBell Interrupt Support

This driver provides various interface routines to manipulate and
connect the hardware interrupts concerning the MV Doorbell facil-
ity. The main features are listed here:

• The controller provides an easy way to hook a C Interrupt Ser-
vice Routine (ISR) to a specific interrupt caused by the Doorbell
register
PPMC-280 5 - 125

List of APIs API Call Reference
• The controller interrupt mechanism provides a way for the pro-
grammer to set the priority of an interrupt

• Full interrupt control over the Doorbell facility

The Interrupt handler has a table which holds information on the
connected user ISR. An Interrupt generated by one of the doorbell
bits will result a search through this table in order to allocate the
generating interrupt cause. After the initiating interrupt cause is
identify, the ISR reside in the same table entry is executed. The
controller interface also includes interrupt control routines which
can enable/disable specific interrupts.

Software Modules

• VxDbIntCtrl.c

• VxDbIntCtrl.h

External Apis

void frcDbIntCtrlInit(void)

This routines connects the drivers interrupt handler, to its corre-
sponding bits in the MV device main Interrupt Controller using
the gtIntConnect() routine. It is also cleans and masks interrupts.

INPUT Not Applicable

OUTPUT The Doorbell cause & mask register are initialized (set to zero).
Driver's ISR are connected to the main cause register.

RETURNS Not Applicable

STATUS frcDbIntConnect(DB_CAUSE cause,VOIDFUNCPTR routine, int parameter, int prio)

DESCRIPTION This routine connects a specified user ISR to a specified Doorbell
interrupt cause. The ISR handler has its own user ISR array. The
connection is done by setting the desired routine and parameter in
the cause array (dbCauseArray[])

• Check for existing connection for the cause bit in the table.

• Connecting the user ISR by inserting the given parameters into
an entry according to the user ISR given priority.
5 - 126 PPMC-280

API Call Reference List of APIs
INPUT

DB_CAUSE cause Doorbell interrupt cause. See SDMA_DB.

VOIDFUNCPTR
routine

User ISR.

 int
parameter

User ISR parameter.

int prio Interrupt handling priority where 0 is highest.

 OUTPUT A table entry is filled.

 RETURN

OK If the table entry of the cause bit, was
filled.

 ERROR If cause argument is invalid or connected
cause is already found in table.

STATUS frcDbIntEnable(DB_CAUSE cause)

DESCRIPTION This routine unmasks a specified Doorbell cause in the mask regis-
ter. The routine will preform argument validity check.

INPUT

DB_CAUSE cause Doorbell interrupt cause as defined in DB_CAUSE.

OUTPUT The appropriate bit in the Doorbell mask register is set.
PPMC-280 5 - 127

List of APIs API Call Reference
RETURN

OK If the bit was set.

 ERROR If the bit was invalid.

STATUS frcDbIntDisable(DB_CAUSE cause)

DESCRIPTION This routine masks a specified Doorbell interrupt in the mask reg-
ister. The routine will preform argument validity check.

INPUT

DB_CAUSE CAUSE Doorbell interrupt cause as defined in DB_CAUSE.

 OUTPUT The appropriate bit in the SDMA mask register is reset.

 RETURN

OK If the bit was reset.

ERROR If the bit was invalid

STATUS frcDbIntClear(DB_CAUSE cause)

DESCRIPTION This routine clears a specified Doorbell interrupt in the cause reg-
ister. The routine will preform argument validity check.

INPUT

DB_CAUSE cause Doorbell interrupt cause as defined in DB_CAUSE.

OUTPUT The appropriate bit in the Doorbell Clear register is reset.
5 - 128 PPMC-280

API Call Reference List of APIs
RETURN

OK If the bit was reset.

 ERROR If the bit was invalid.

STATUS frcDbIntSend(DB_CAUSE cause)

DESCRIPTION This routine sends a specified Doorbell interrupt in the cause
register. The routine will preform argument validity check.

INPUT

DB_CAUSE cause Doorbell interrupt cause as defined in DB_CAUSE.

OUTPUT The appropriate bit in the Doorbell Clear register is set.

RETURN

OK If the bit was reset

ERROR If the bit was invalid

void frcDbIntHandler (void)

DESCRIPTION This routine handles the Doorbell interrupts. As soon as the
interrupt signal is active the CPU analyzes the Doorbell Interrupt
Cause register in order to locate the originating interrupt event.
Then the routine calls the user specified service routine for that
interrupt cause.The function scans the dbCauseArray[]
(dbCauseCount valid entries) trying to find a hit in the
dbCauseArray cause table.When found, the ISR in the same entry
is executed.

Note: The handler automatically acknowledges the generating
interrupts.

INPUT None.
PPMC-280 5 - 129

List of APIs API Call Reference
OUTPUT If a cause bit is active and it's connected to an ISR function, the
function will be called.

RETURN None.

DMA Driver

This Driver gives the user a complete interface to the powerful
DMA engines, including functions for controlling the priority
mechanism.

Software Modules

• gtDma.c

• gtDma.h

External Apis

bool gtDmaCommand(DMA_ENGINE engine,unsigned int command)

This function writes a command to a specific DMA engine. The
command defines the mode in which the engine will work in.
There are several commands and that are defined in the
MV64360/362 spec. It is possible to combine several commands
using the or (|) operation. This function will not enable the DMA
transfer unless the CHANNEL_ENABLE command is combined
within the command parameter.

INPUT

engine One of the possible engines

command The command to be written to the given engine number .

OUTPUT None.

RETURN True on success, false on erroneous parameter.
5 - 130 PPMC-280

API Call Reference List of APIs
DMA_STATUS gtDmaTransfer (DMA_ENGINE engine, unsigned int sourceAddr, unsigned int
destAddr, unsigned int numOfBytes, unsigned int command, char srcIf, char tgtIf,
DMA_RECORD *pNextRecordPointer)

DESCRIPTION This routine transfers data from sourceAddr to destAddr on one
of the 4 DMA channels.

When using the chain mode feature, the records must be 16 Bytes
aligned. If the records reside on the system local memory, the
function will take care of that for you. However, you need to allo-
cate one more record for that; where if you have three records, you
must declare four (see the example below) and start using the sec-
ond one. If the records reside over PCI0/1 , it is the user’s respon-
sibility to make sure they are a 16 Bytes aligned.

When using the override feature (source or destination address
over PCI) windows 1 and 2 must be allocated for PCI0 and PCI1
respectively before using this function.

DMA_DTL_8BYTES was intentionally defined as BIT1 from back-
wards compatibility reasons although its defined differently in the
datasheet. If using different DTL on source and destination ,use
the DMA_DTL_8BYTES (if needed) as is , the function will take
care of the rest for you.

INPUT

engine Select one of the four available DMA engines.

sourceAddr The source address on which the transfer will begin.

destAddr The destination address on which the transfer will move the data.

numOfBytes The total number of bytes to transfer.

command The command selects different operation mode of the DMA engine
such as different DTL , source/destination address override and
so (for more details please refer to the MV's datasheet). The com-
mand can be combined with the | operator.

srcIf The source interface either the DRAM,SRAM or PCI

tgtIf The target interface -the DRAM,SRAM or PCI
PPMC-280 5 - 131

List of APIs API Call Reference
*pNextRecordPoin
ter

If you are using chain mode DMA transfer, then this pointer
should point to the next record, otherwise it should be NULL.

OUTPUT DMA transfer.

RETURN

 DMA_NO_SUCH_CHANNEL If channel does not exist.

 DMA_CHANNEL_BUSY if channel is active.

DMA_OK If the transfer ended successfully.

DMA_STATUS gtDmaIsChannelActive(DMA_ENGINE engine)

DESCRIPTION This function checks whether a given DMA engine ('engine'
parameter) is active or not .Useful for polling on a DMA engine to
check if its still working.

INPUT

engine One of the possible engines

 OUTPUT None.

RETURN

 DMA_CHANNEL_IDLE If the engine is idle.

 DMA_CHANNEL_BUSY If the engine is busy.

 DMA_NO_SUCH_CHANNEL If there is no such engine.

bool gtDmaEngineDisable(DMA_ENGINE engine)

This function halts a DMA engine number delivered by 'engine'
parameter. The engine will abort even if not all the transfer is com-
pleted.

INPUT

engine One of the possible engines .

 OUTPUT DMA engine aborted.
5 - 132 PPMC-280

API Call Reference List of APIs
 RETURN True on success, false on erroneous parameter.

bool gtDmaUpdateArbiter(DMA_PIZZA *pPriorityStruct)

This function updates the arbiter`s priority for all the four DMA
engines.

INPUT

pPriorityStruct A priority Structure with 16 fields, each field (slice) can be
assigned to one of the DMA engines.

OUTPUT None.

RETURN

False If one of the parameters is erroneous,
true otherwise.

bool gtDmaSetMemorySpace(DMA_MEM_SPACE memSpace, DMA_MEM_SPACE_TARGET
memSpaceTarget, unsigned int memSpaceAttr, unsigned int baseAddress, unsigned
int size)

The Atlantis IDMA has its own address decoding map that is de-
coupled from the CPU interface address decoding windows. The
four DMA channels share eight address windows. Each region can
be individually configured by this function by associating it to a
target interface and setting base and size values.

INPUT

memSpace One of the possible memory spaces (defined in gtDma.h).

memSpaceTarget The target interface to be associated with the region (DRAM, PCI,
devices...).

memSpaceAttr Memory space attributes.The memory space attributes differ in
each memory space target (please refer to the IDMA section in the
Atlantis specification for more details).
PPMC-280 5 - 133

List of APIs API Call Reference
baseAddress Memory space's base address.

size Memory space's size. This function will decrement the 'size'
parameter by one and then check if the size is valid. A valid size
must be programmed from LSB to MSB as sequence of '1's fol-
lowed by sequence of '0's. To close a memory window simply set
the size to 0.

Note: The size must be in 64Kbyte granularity. The base ad-
dress must be aligned to the size.

OUTPUT None.

RETURN

True Upon success

False Otherwise.

void gtDmaSetMemorySpaceAttr(DMA_MEM_SPACE memSpace,unsigned int
memSpaceAttr)

This function sets attributes for a DMA memory space.

INPUT

memSpace One of the possible memory spaces (defined in gtDma.h).

memSpaceAttr gtMemory space attributes.The memory space attributes differ in
each memory space target (please see the IDMA section in the
Atlantis specification for more details). Values for each memory
space are defined in gtDma.h.Please note that you give the appro-
priate values to the corresponding interface .

OUTPUT None.

RETURN None.
5 - 134 PPMC-280

API Call Reference List of APIs
bool gtDmaSetEngineAccessProtect(DMA_ENGINE engine,DMA_MEM_SPACE memSpace,
DMA_MEM_SPACE_ACCESS access)

This function configures access attributes bits for DMA engine.
Each engine can be configured with access attributes for each of
the gtMemory spaces defined by 'gtDmaSetMemorySpace' func-
tion. This function sets access attributes to a given window for the
given engine.

 INPUTS

 engine One of the 4 possible engines

 memSpace One of the 8 possible gtMemory spaces

 access The access type for the region .

OUTPUT None.

RETURN True for success, false otherwise.

DMA Interrupt Controller

This driver provides various interface routines to manipulate and
connect the hardware interrupts concerning the MV DMA facility.

• The controller provides an easy way to hook a C Interrupt Ser-
vice Routine (ISR) to a specific interrupt caused by the MV
DMA engines.

• The controller interrupt mechanism provides a way for the pro-
grammer to set the priority of an interrupt.

• Full interrupt control over the MV DMA facility.

 The driver's execution flow has three phases:

1. Driver initialization. This initiation includes hooking driver's
ISR to the MV Interrupt controller. Composed of frcDmaIntCtr-
lInit() routine.
PPMC-280 5 - 135

List of APIs API Call Reference
2. User ISR connecting. Here information about user ISR and
interrupt priority is gathered. Composed of vxDmaIntCon-
nect() routine.

3. Interrupt handler. Here an interrupt is being handle by the
Interrupt Handlers (driver's ISR). Composed of vxDmaInt()

void frcDmaIntCtrlInit(void)

This routines connects the drivers interrupt handlers, each to its
corresponding bit in the MV main Interrupt Controller using the
gtIntConnect() routine.

INPUT None.

OUTPUT The DMA Engine cause & mask register are initiated (set to zero).
Driver's ISR are connected to the main cause register. Interrupts
are unmasked.

 RETURN None.

STATUS frcDmaIntConnect(DMA_CAUSE cause, VOIDFUNCPTR routine, int parameter, int
prio)

This routine connects a specified user ISR to a specified MV DMA
interrupt cause (0x8c0 or 0x9c0).Each ISR handler has its own user
ISR array. The connection is done by setting the desired routine
and parameter in the corresponding cause array (i.e.
dma0_1Array[])

• Locating the correct Array to make the connection. This is
made according to the cause. DMA channel completion events
has unique ISRs.

• Check for existing connection for the cause bit in the table.

• Connecting the user ISR by inserting the given parameters into
an entry according to the user ISR given priority.

INPUT

cause DMA interrupt cause. See DMA_INT_CAUSE.

routine User ISR.

parameter User ISR parameter.
5 - 136 PPMC-280

API Call Reference List of APIs
prio Interrupt handling priority where 0 is highest.

 OUTPUT An appropriate table entry is filled.

RETURN

OK If the table entry of the cause bit, was
filled.

ERROR If cause argument is invalid or connected cause is already found in
table.

STATUS frcDmaIntEnable(DMA_CAUSE cause)

This routine unmasks a specified DMA interrupt cause on the
appropriate mask register. The routine will perform argument
validity check.

INPUT

cause DMA interrupt cause as defined in DMA_CAUSE.

OUTPUT The appropriate bit in the appropriate mask register is set.

RETURN

 OK If the bit was unmasked

 ERROR If the bit was invalid

STATUS frcDmaIntDisable(DMA_CAUSE cause)

This routine masks a specified DMA interrupt cause on the appro-
priate mask register. The routine will preform argument validity
check.

INPUT

CAUSE DMA interrupt cause as defined in DMA_CAUSE.
PPMC-280 5 - 137

List of APIs API Call Reference
 OUTPUT The appropriate bit in the appropriate mask register is reset.

RETURN

OK If the bit was masked

ERROR if the bit was invalid

void frcDmaCompIntHandler (void)

This routine handles the DMA 0-3 completion interrupts. As soon
as the interrupt signal is active the CPU analyzes the MV DMA 0-3
Interrupt Cause register in order to locate the originating interrupt
event. Then the routine calls the user specified service routine for
that interrupt cause. The function scans the dma0_3Array[]
(dma0_3Count valid entries) trying to find a hit in the
dma0_3Array cause table.When found, the ISR in the same entry is
executed.

 INPUT None.

 OUTPUT If a cause bit is active and it's connected to an ISR function, the
function will be called.

 RETURN None.

void frcDmaErrorIntHandler(void)

This routine handles the DMA 0-3 Error interrupts. As soon as the
interrupt signal is active the CPU analyzes the MV DMA 0-3 Inter-
rupt Cause register in order to locate the originating interrupt
event. Then the routine calls the user specified service routine for
that interrupt cause. The function scans the dmaError0_3Array[]
(dmaError0_3count valid entries) trying to find a hit. When found,
the ISR in the same entry is executed.

INPUT None.

OUTPUT If a cause bit is active and it's connected to an ISR function, the
function will be called.

RETURN None.
5 - 138 PPMC-280

API Call Reference List of APIs
PciBoot Feature

The BSP supports the MV64360/362 feature of initialization of all
its internal registers through I2C interface. If serial ROM initializa-
tion is enabled, the MV64360/362 I2C master starts reading initial-
ization data from serial ROM and writes it to the appropriate
registers .

void frcPCIDataWrite(char * FTPSERVER_IP_ADRS,char * filename,UINT8 DevAdd)

This routine burns into the EEPROM device the contents of a file
which contain the register offset and register contents that are
required for the PCI boot feature.

INPUT

FTPSERVER_IP_ADR
S

The FTP server's IP Address from where the file requires to be
downloaded.

Filename The name of the file that has to be downloaded from the FTP
server.

Devadd The device address of the EEPROM to which the data has to be
programmed

SMP Driver

This driver gives the user a complete interface to the SMP func-
tionality of MV64360/362.

Software modules

• gtSmp.c

• gtSmp.h

External APIs

Note: The MV Semaphores 0,1,2 and 3 are reserved for use by
MPSC, counter and timer facility, GPP and DMA respectively
and hence cannot be used for other purposes.
PPMC-280 5 - 139

List of APIs API Call Reference
int frcMV64360semGive(unsigned int sem_reg_no, unsigned int timeout)

DESCRIPTION This routine gives a semaphore using the MVs SMP facility.

INPUT

unsigned int
sem_reg_no

The register number of the semaphore.

unsigned int
timeout

1 To indicate wait forever

0 To indicate a wait is not required to take
the semaphore.

OUTPUT

OK If the semaphore is successfully taken

ERROR If the semaphore is not taken.

int frcMV64360semTake(unsigned int sem_reg_no)

DESCRIPTION This routine takes a semaphore using the MV’s SMP facility.

INPUT

unsigned int
sem_reg_no

The register number of the semaphore.

5 - 140 PPMC-280

API Call Reference List of APIs
OUTPUT

OK If the semaphore is successfully given

ERROR If the semaphore has not been given.

Test Application Support

The PPMC-280 BSP provides test applications to test the
main features of the board such as Memory, I2C, Doorbell Inter-
rupt. This includes simple test applications that are written for
user to test these features.

Supported Features

The Driver supports test applications for:

• Baud Rate Change

• gettime

• settime

Software Modules

This driver is implemented in:

• rtc.c

• commDrv/vxMpscUart.c

Software Requirements

VxWorks

To Test APIs for RTC

void gettime()

DESCRIPTION Reads the time from the RTC device and displays it in a formatted
manner. This is required to test the APIs for the RTC.

INPUT Not Applicable

OUTPUT Displays the time

RETURN Not Applicable
PPMC-280 5 - 141

List of APIs API Call Reference
void settime()

DESCRIPTION This command obtains the formatted string from the user and
writes the contents into the RTC device. This is required to test the
APIs for the RTC.

INPUT The time in a formatted string. The following format is required
WWW-MMM-DD-HH:MM:SS-YYYY
For example
SUN-JUL-14-13:23:56-2002
.

To Test Baud Rate Change

void gtUartBaudRateChange(int portNum,int baudRate)

This routine changes the Baud rate of the specified port number to
the required baud rate.

INPUT

Int portNum 0 or 1 indicating MPSC0 or MPSC1

 Int
baudrate

The baudrate that it requires to be changed to. For exam-
ple:9600,19200,38400 etc

OUTPUT Changes the baud rate .

RETURNS Not Applicable
5 - 142 PPMC-280

A
Appendix

Appendix Overview
Appendix Overview

This appendix details the following:

• “Memory Map” page A-4

• “Interrupt Routing on PPMC-280” page A-5

• “PCI Boot Procedure on PPMC-280” page A-6

• “Using Test Tool” page A-8

Note: Refer to the PCI Local Bus Specifications Revision 2.2 for VPD Data Structure.
PPMC-280 A - 3

Memory Map
Memory Map

The following table describes the default memory map for VxWorks PPMC-280 BSP. Any changes to
the address mapping are made by modifying the MV-64360 address decode registers.The memory
map for PPMC-280 is given in the following table:

Address Range Description Size

FF800000 – FFFFFFFF Boot Flash (BootCS#) 8MB

F2040000 – FF7FFFFF Unused

F2000000 – F203FFFF Integrated SRAM 256KB

F1010000 – F1FFFFFF Unused

F1000000 – F100FFFF MV64360/362 Internal Registers 64KB

A8000000 – F0FFFFFF Unused

A4000000 – A7FFFFFF Reserved for User Flash expansion Upto 128MB

A2000000 – A3FFFFFF User Flash 1 (DevCS [1]#) 32MB

A0000000 – A1FFFFFF User Flash 0 (DevCS [0]#) 32MB

99000000 – 9FFFFFFF Unused

98000000 – 98FFFFFF Reserved for PCI_1 I/O 16MB

96000000 – 97FFFFFF Reserved for PCI_1 Memory 3 32MB

94000000 – 95FFFFFF Reserved for PCI_1 Memory 2 32MB

92000000 – 93FFFFFF Reserved for PCI_1 Memory 1 32MB

90000000 – 91FFFFFF Reserved for PCI_1 Memory 0 32MB

89000000 – 8FFFFFFF Unused

88000000 – 88FFFFFF PCI_0 I/O 16MB

86000000 – 87FFFFFF PCI_0 Memory 3 32MB

84000000 – 85FFFFFF PCI_0 Memory 2 32MB

82000000 – 83FFFFFF PCI_0 Memory 1 32MB

80000000 – 81FFFFFF PCI_0 Memory 0 32MB

20000000 – 7FFFFFFF Reserved for SDRAM expansion Upto 2GB

00000000 – 1FFFFFFF On-board SDRAM (CS [0]#) 512MB
A - 4 PPMC-280

Interrupt Routing on PPMC-280
Interrupt Routing on PPMC-280

PCI Interrupts

The PCI interrupts INTA#, INTB#, INTC# and INTD# are routed to MV64360/362's pins as shown in
the table below:

The mapping between the MPPx to the IRQ number is given by the following formula:
IRQ = 64 + x;

where x = MPP pin number. The offset of 64 is because of the fact that the Main Interrupt Cause reg-
isters (Low and High) are 32-bit registers each with every bit corresponding to interrupt from a
device (internal or external to MV64360/362).

Based on this, the PCI INTA#, INTB#, INTC# and INTD# take IRQ values as shown in the table
below:

PCI Interrupts Pin number

PCI_INTA# MPP27

PCI_INTB# MPP29

PCI_INTC# MPP16

PCI_INTD# MPP17

PCI Interrupts IRQ Values

PCI_INTA# 27

PCI_INTB# 29

PCI_INTC# 16

PCI_INTD# 17
PPMC-280 A - 5

PCI Boot Procedure on PPMC-280
PCI Boot Procedure on PPMC-280

The procedure depends on whether PPMC-280 is monarch or non monarch. The procedure depends
on whether;

a) PPMC-280 is monarch and is required to boot from memory of the non-monarch card

OR

b) PPMC-280 is non-monarch and is required to boot from memory of the monarch card

Case A: PPMC-280 is Monarch

The procedure when PPMC-280 is monarch and is required to boot from memory of the non-mon-
arch card is detailed here:

1. Set up the PPMC-280 image on any FTP server (in its root directory)

2. After the system has powered up, and the non-monarch card has booted up, download
thePPMC-280 image into location 0x08F00000 of the monarch's memory. (See Note on
page A-3).

3. Set up 0x8000F104 into a variable on the non-monarch card. (See Note on page A-3.)

 y = 0x8000F104;

4. Trigger PPMC-280 to boot by writing 0x0 into the pointer *y

*y = 0x0;

Immediately after this, you should see boot prints from PPMC-280.

Case B: When PPMC-280 is Non-Monarch

The procedure when PPMC-280 is non-monarch and is required to boot from the memory of the
monarch card is detailed here:

1. Set up the PPMC-280 image on any FTP server (in its root directory)

2. After the system has powered up, PPMC-280 automatically releases the EREADY signal
to allow the monarch card to boot up. When the monarch card has booted up, download
the PPMC-280 image into location 0x08F00000 of the monarch's memory.

3. Identify the PCI device number <DEVNUM> of PPMC-280 by running a PCI scan on the
monarch.
A - 6 PPMC-280

PCI Boot Procedure on PPMC-280
4. From the monarch card, read the PCI Internal Registers BAR of PPMC-280 (at offset
0x20). Say the read returns <BADDR>

5. On the monarch, setup <BADDR> + 0xF8 in a variable. For example, if <BADDR> =
0x86F00000,

y = 0x86F000F8

6. Write 0x80080000 into the pointer *y. This is independent of <BADDR>

*y = 0x80080000

This sets up the PCI memory address remap register of the MV64360/362 on PPMC-280.

7. On the monarch, setup <BADDR> + 0xF104 in a variable; for example

y = 0x86F0F104

8. Trigger PPMC-280 to boot by writing 0x0 into the pointer *y

*y = 0x0

You should now see boot prints from PPMC-280.

Note:

• Download location 0x08F00000 is hard coded in PPMC-280 BSP (as well as the PCI boot serial
EEPROM on PPMC-280). If your setup can not accommodate this, you would need to change
the PCI boot serial EEPROM content. See “PciBoot Feature” page 5-139.

• It is assumed that MV64360/362's internal registers are mapped at 0x80000000 (on the PCI). If
your carrier card cannot accommodate this address, you will need to set up an address in PCI
Internal Registers Base Address (Low) in MV64360/362's Function 0 PCI configuration.

• In case of a watchdog reboot, depending on whether PPMC-280 is in the Monarch, or the Non-
Monarch mode, follow the steps listed in the respective sections, “Case A: PPMC-280 is Mon-
arch” page A-6 or “Case B: When PPMC-280 is Non-Monarch” page A-6, of this appendix.
PPMC-280 A - 7

Using Test Tool
Using Test Tool

Integrated in BSP Rel. 3.x is a Test Tool. Use this test tool to perform various tests. Some of the tests
you can perform are listed here:

• Check Serial Port Settings

• Verify ECC Enabled Mode

• IDMA Scrub Test

• Main Memory Test

• PCI Test

• Dual CPU Tests
This section details how you can use the test tool and the various types of tests that you can perform.

Invoking the Test Tool

Invoke the test tool with the frcSysTest()function at the command shell. A main menu is dis-
played. All menu items are numbered. You can select the menu you want to use by typing the
appropriate number. Submenu options are also menu driven.
The following table details the main and sub menu options available.

Main Menu Use this to: Sub Menu Item Sub
Menu
Option
Number

Use this to:

Who Am I Identify the CPU correctly.
CPU-0 is displayed at the
console connected to CPU-0
and CPU-1 is displayed at the
console for CPU-1

Not Applicable
(NA)

NA NA

Serial Port Settings Display serial port and baud
rate settings

Display serial
port settings

1 Display baud rate setting for
the given port (either Port0
or Port1)

2 Change the baud rate for a
given port (either Port0 or
Port1)
A - 8 PPMC-280

Using Test Tool
ECC Test Check whether ECC is
enabled or not. If ECC is not
enabled, a message is printed
and you return to the main
menu.
If ECC is enabled, memory
tests are conducted for a
given range and given num-
ber of cycles. Single bit and
double bit errors are checked
and their status displayed.

NA NA NA

IDMA Scrub Test Test for proper scrubbing of
memory in a given range.

Note: Ensure that you
select the range in such
a way that the OS will
not modify the memory
locations.

NA NA NA

Main Memory Tests Run the memory tests for a
given range and for given
number of cycles.

Basic Tests 1 Execute basic tests

Extended Tests 2 Execute extended memory
tests

All Tests 3 Execute basic and extended
memory tests together

Main Memory Per-
formance Tests

Calculate the memory perfor-
mance (Memory Bandwidth)

mam_perf or
ASML

1 Measure Memory
read Bandwidth with L1
cache, L2 cache and memory

Main Menu Use this to: Sub Menu Item Sub
Menu
Option
Number

Use this to:
PPMC-280 A - 9

Using Test Tool
lmbench bench-
mark tool

2 Measure Memory
Read/Write/Read-
Write/Copy Bandwidth and
also calculate Memory Read
Latency.

Note: nbench test is
not included in the
menu, but is included
in tests. Use the com-
mand nbench at the
command prompt to
execute the nbench
tool.

PCI Tests Scan all buses and display
information

NA NA NA

Configure LAN
Ports

Perform various operations
with the LAN ports.

Display Ether-
net Port Settings

1 This prints mode of opera-
tion (10/100/1000-Full/Half)
for the given port.

Note: This support is
for On-Board Gigabit
Ethernet Ports.

Configure Ether-
net Port Settings

2 Attach an IP address to a
given port.

Set the mode of
operation

3 Force a given port to the
required mode
(10/100/1000- Full/Half or
Auto negotiation)

Note: This support is
for on-board Gigabit
Ethernet ports only.

Initialize
pingLib

4 Initialize the pingLib

Main Menu Use this to: Sub Menu Item Sub
Menu
Option
Number

Use this to:
A - 10 PPMC-280

Using Test Tool
Register dump
(MV64360/362/PCI-
0)

Dump the contents of
MV64360/362 and PCI-0.
This is implemented using a
Regparse tool.

Note: Owing to the in-
ternal configuration of
Regparse tool, for each
byte the contents will
be printed in the re-
verse order.

NA NA NA

DMA Tests Test the DMA operation. This
transfers the given size of
memory using the user men-
tioned DMA engine (#0 to
#3) and calculate the check-
sum at source and destina-
tion. Comparison of the two
is then done. If there is any
mismatch, then an error mes-
sage is displayed. You can
also select the option to
choose the source/destina-
tion as SDRAM/SRAM/
PCI.

NA NA NA

Dual CPU Tests

Note: Shemem-
App address is
given as input.
The Shemem-
App address is
obtained by exe-
cuting the op-
tion 24 from the
main menu.

Test Dual CPU features such
as Doorbell Interrupts,
Shared Memory and
MV64360/362 semaphores.

Doorbell Inter-
rupts/Shared
Memory Test

1 Read the checksum from a
known location and obtain a
print message upon error
and mismatch. Invoke this
first from CPU0 and then
CPU1. When this tool is exe-
cuted from CPU1, data is
read from the same shared
memory location, the check-
sum is calculated and stored
in the Shared Memory Loca-
tion A Doorbell Interrupt is
given to CPU0. CPU0 then
reads the checksum from the
known location and per-
forms a comparison. On mis-
match, an error is printed.

Main Menu Use this to: Sub Menu Item Sub
Menu
Option
Number

Use this to:
PPMC-280 A - 11

Using Test Tool
2 Sema-
phore
Test

Give or take semaphore.
When you take semaphore
on CPU0 and try to take the
same semaphore on CPU1,
the test identify that the
semaphore is locked.

I2C/EEPROM Test EEPROM Read/Write EEPROM Write 1 Test EEPROM Write

EEPROM Read 2 Test EEPROM Read

BIB Tests Test BIB functionality. BIB data write 1 Test BIB data write

Attach BIB
device

2 Attach BIB device

Show BIB info 3 Show BIB info

VPD Tests Test VPD operation Program VPD
Structure

1 Program VPD Structure

VPD Write 2 Test VPD Write

VPD Read 3 Test VPD Read

VPD
Write/Read

4 Test VPD Write/Read

RTC Tests Set or get the RTC time NA NA NA

Monarch/Non-Mon-
arch Tests

Print whether the card is in
the Monarch state or Non-
Monarch State

NA NA NA

Display Memory
Map

Display Memory Map NA NA NA

Mac Address Pro-
gramming/Display

Display/program MAC
addresses

MAC Address
Programming

1 To program MAC Address

MAC Address
Display

2 To display MAC Address

Main Menu Use this to: Sub Menu Item Sub
Menu
Option
Number

Use this to:
A - 12 PPMC-280

Index of Functions

F
Functions

bool etherInitTxDescRing() 5-36
bool ethernetPhyReset() 5-33
bool ethPortStart() 5-27
bool frcEEPROMRead16() 5-105
bool frcEEPROMRead8() 5-106
bool frcEEPROMWrite16() 5-104
bool frcEEPROMWrite8() 5-106
bool gtDmaCommand() 5-130
bool gtDmaEngineDisable() 5-132
bool gtDmaSetEngineAccessProtect() .. 5-135
bool gtDmaSetMemorySpace() 5-133
bool gtDmaUpdateArbiter() 5-133
bool mpscChanSetCdv() 5-85
bool mpscChanStart() 5-84
bool sdmaInitRxDescRing() 5-59
bool sdmaInitTxDescRing() 5-59
DMA_STATUS gtDmaIsChannelActive() .. 5-

132
DMA_STATUS gtDmaTransfer() 5-131
END_OBJ* mgiEndLoad() 5-89
ETH_FUNC_RET_STATUS ethPortReceive()

5-39
ETH_FUNC_RET_STATUS ethPortSend() 5-

37
ETH_FUNC_RET_STATUS ethRxReturn-

Buff() 5-40
ETH_FUNC_RET_STATUS ethTxReturn-

Desc() 5-38
frcWatchdogEnable() 5-125
frcWatchdogInit() 5-123
frcWatchdogLoad() 5-123
frcWatchdogNMILoad() 5-124
frcWatchdogService() 5-124
GLOBAL STATUS frcBibAttach() 5-110
GLOBAL STATUS frcBibDrvShow() . 5-110
int frcFlashAutoSelect () 5-119
int frcFlashBlockErase() 5-121
int frcFlashBlockRead() 5-120

int frcFlashUnlock () 5-121
LOCAL int mgiIoctl() 5-95
LOCAL int vxMpscUartCallbackInstall() ... 5-

103
LOCAL int vxMpscUartPollInput() 5-102
LOCAL int vxMpscUartPollOutput() 5-102
LOCAL STATUS memoryInit() 5-90
LOCAL STATUS mgiMCastAddrAdd() . 5-95
LOCAL STATUS mgiSend() 5-92
LOCAL STATUS mgiStart() 5-91
LOCAL STATUS mgiStop() 5-91
LOCAL STATUS mgiUnload() 5-90
LOCAL STATUS vxMpscUartIoctl() 5-99
LOCAL void mgiReceive() 5-94
LOCAL void recvIntHandle() 5-93
LOCAL void rxInt() 5-93
LOCAL void rxRsrcReturn() 5-94
LOCAL void txRsrcReturn() 5-94
LOCAL void vxMpscUartStartChannel() 5-99
LOCAL void vxMpscUartStartup() 5-101
SDMA_STATUS sdmaChanReceive() ... 5-62
SDMA_STATUS sdmaChanSend() 5-60
SDMA_STATUS sdmaRxReturnBuff() .. 5-63
SDMA_STATUS sdmaTxReturnDesc() .. 5-61
short frcBootFlashProgram () 5-116
short frcBootFlashSectorErase () 5-116
short frcBootFlashVerify () 5-117
short frcFlashErase () 5-120
static bool ethPortOmcAddr() 5-31
static bool ethPortSmcAddr() 5-30
static bool ethPortUcAddr() 5-28
static int ethernetPhyGet() 5-33
STATUS (*bibReadIntfRtn) () 5-111
STATUS (*bibWriteIntfRtn)() 5-112
STATUS frcDbIntClear() 5-128
STATUS frcDbIntConnect() 5-126
STATUS frcDbIntDisable() 5-128
STATUS frcDbIntEnable() 5-127
STATUS frcDbIntSend() 5-129
STATUS frcDmaIntConnect() 5-136
STATUS frcDmaIntDisable() 5-137
PPMC-280 I - 1

STATUS frcDmaIntEnable()5-137
STATUS frcGppCPU1IntDisable()5-16
STATUS frcGppCPU1IntEnable()5-15
STATUS frcGppIntConnect ()5-16
STATUS frcPciConfigRead ()5-22
STATUS frcPciConfigWrite ()5-22
STATUS gtIntCntrlInit ()5-10
STATUS gtIntConnect()5-10
STATUS gtIntCtrlInit ()5-13
STATUS gtIntDisable()5-11
STATUS gtIntEnable()5-11
STATUS sdmaAllocateDescriptorsForOnePort

() ..5-65
STATUS sdmaReleaseRxDesc ()5-66
STATUS sdmaSendPackets ()5-66
STATUS sdmaTransmitPackets ()5-67
UINT 32 frcGppIntDisable ()5-17
UINT 32 frcGppIntEnable ()5-17
unsigned int ethernetGetConfigReg()5-34
unsigned int frcPci0ReadConfigReg ()5-20
void brgInit() ...5-96
void brgStart()5-97
void ethBCopy()5-42
void ethClearMibCounters()5-32
void ethernetResetConfigReg()5-34
void ethernetSetConfigReg()5-34
void ethPortInit()5-26
void ethPortInitMacTables()5-31
void ethPortMcAddr()5-29
void ethPortReset()5-33
void ethPortSetRxCoal ()5-41
void ethPortSetTxCoal()5-41
void ethPortUcAddrSet()5-28
void frcBibDataWrite()5-109
void frcBootFlashFile()5-117
void frcBootFlashFileV()5-118
void frcDbIntCtrlInit()5-126
void frcDbIntHandler()5-129
void frcDmaCompIntHandler()5-138
void frcDmaErrorIntHandler()5-138
void frcDmaIntCtrlInit()5-136
void frcFlashReadRst ()5-119
void frcGppIntCtrlInit ()5-16
void frcPci0WriteConfigReg()5-21

void frcPCIDataWrite() 5-139
void frcPciSetActive () 5-23
void frcPciShow() 5-20
void frcRTCRead() 5-108
void frcRTCWrite() 5-107
void gettime() 5-141
void gtDmaSetMemorySpaceAttr() 5-134
void gtUartBaudRateChange() 5-142
void mpscChanInit() 5-83
void mpscChanStopRx() 5-84
void mpscChanStopTx() 5-84
void mpscChanStopTxRx() 5-85
void sdmaChanInit() 5-57
void sdmaChanStart() 5-57
void sdmaChanStopRx() 5-57
void sdmaChanStopTx() 5-58
void sdmaChanStopTxRx() 5-58
void settime() 5-142
void vxMpscUartDevInit((..................... 5-98
void vxMpscUartDevReset() 5-99
void vxMpscUartRxInt() 5-100
void vxMpscUartTxInt() 5-101
I - 2 PPMC-280

Product Error Report

☞ Send this report to the nearest Force Computers headquarter listed on the address page.

Product: Serial No.:

Date Of Purchase: Originator:

Company: Point Of Contact:

Tel.: Ext.:

Address:

Present Date:

Affected Product:
❏ Hardware ❏ Software ❏ Systems

Affected Documentation:
❏ Hardware ❏ Software ❏ Systems

Error Description:

This Area to Be Completed by Force Computers:
Date:

PR#:

Responsible Dept.: ❏ Marketing ❏ Production
Engineering ➠ ❏ Board ❏ Systems

	VxWorks/Tornado ‰
	Using This Guide
	Conventions
	Abbreviations
	Revision History

	Other Sources of Information
	Introduction
	System Architecture
	System Environment
	Board Settings
	Devices
	VxWorks BSP I/O Interface

	PPMC-280 BSP Features
	BSP Features
	Supported Features
	Board Initialization
	Interrupt Routing
	Boot from PCI
	Monarch and Non-Monarch operation
	Memory Partitioning
	Loosely coupled Symmetric Multi-Processing operation
	Serial Console
	Board Information

	Support for On-board Devices
	I2C
	Serial EEPROM
	Real Time Clock
	PCI
	MPSC
	Gigabit Ethernet

	Dual CPU Configuration
	Dual CPU Configuration
	SDRAM Partitioning
	Single CPU BSP Defines
	LOCAL_MEM_SIZE
	USER_RESERVED_ MEM

	Dual CPU BSP Defines
	BOARD_MEM_SIZE
	APP_SHMEM_SIZE
	SYS_PGT_SIZE
	SYS_DRV_SIZE
	SYS_SHMEM_SIZE
	USER_RESERVED_ MEM

	Setting up of BAT registers
	Setting up of Page Table Entries
	MV64360/362 Resource Partitioning
	Exception handling

	Software Basics
	System Software Preparation
	Installing the BSP
	Installation Procedure for Solaris and Windows NT

	Compile Source Code to Build Binaries

	API Call Reference
	List of APIs
	MV-64360 General Driver
	Software Modules
	External Interface

	MV-64360 INTERRUPT CONTROLLER
	Software Modules
	Software Requirements
	Restrictions
	Execution Flow
	Driver Initialization
	ISR Connection
	Interrupt Handling
	External Interface Data Structure
	External Interface APIs
	STATUS gtIntCntrlInit ()

	System Interrupt Controller
	Supported Features
	Software Modules
	Software Requirements
	System Resource Usage
	Restrictions
	External Interface
	GPP pin descriptions
	Driver's API

	General Purpose Port Interrupt Controller
	Supported Features
	Software Modules
	Requirements
	Restrictions
	External Interface Data Structures
	External API

	PCI Scan Driver
	Driver Initialization
	PCI0 Scanning
	Debugging Facilities
	Software Modules
	Structures
	pciDeviceStruct

	Variables
	GalNetMappingArray
	pciDeviceArray

	Driver APIs

	Communication Unit Management Driver
	Software Modules
	Supported Features:
	Operation flow
	Initialization phase
	Driver ring initialization
	Driver start
	Data flow
	Receive operation
	Transmit operation
	EXTERNAL SUPPORT REQUIREMENTS
	External Interface -Api's

	Communication Unit Serial Dynamic Memory Access Driver
	Supported features
	Operation
	Receive operation
	Transmit operation

	Software Modules
	SDMA Low Level Driver Features
	System Resource Usage
	External Interface (Low Level Driver)
	Low Level Driver Data Structure
	External Interface APIs

	Driver Introduction
	Software Modules
	Restriction
	System Resource Usage
	External Interface
	Driver Data Structure
	Driver External Interface APIs

	Communication Unit MPSC Driver
	Low Level Driver Introduction
	Software Modules
	Low Level Driver External Interface- Data Structure
	Driver Introduction
	Implementation Files
	Restriction
	Driver External Interface- Data Structure
	External Interface APIs

	Ethernet Driver
	Supported Features
	Software Modules
	Operation Flow
	External Interface
	Target-specific Parameters
	External Interface-APIs

	BRG Driver
	Introduction
	Software Modules

	UART Over MPSC Port Driver
	Supported Features
	Software Modules
	External Interface -APIs

	Serial EEPROM Driver
	Supported Features
	Software Modules
	Software Requirements
	External Interface - External APIs

	Real Time Clock Driver
	Supported Features
	Software Modules
	External API's

	Board Information Block Driver
	Supported Features
	Software Modules
	External Interfaces- External APIs

	VPD Driver
	Supported Features
	Software Modules
	Software Requirements
	External Interface- External APIs

	Boot Flash Driver
	Supported Features
	Software Modules
	Software Requirements
	External Interface- External APIs

	User Flash Driver
	Supported features
	Software modules

	Watchdog Timer Driver
	DoorBell Interrupt Support
	Software Modules
	External Apis

	DMA Driver
	Software Modules
	External Apis

	DMA Interrupt Controller
	PciBoot Feature
	SMP Driver
	Software modules
	External APIs

	Test Application Support
	Supported Features
	Software Modules
	Software Requirements
	To Test APIs for RTC
	To Test Baud Rate Change

	Appendix
	Appendix Overview
	Memory Map
	Interrupt Routing on PPMC-280
	PCI Interrupts

	PCI Boot Procedure on PPMC-280
	Case A: PPMC-280 is Monarch
	Case B: When PPMC-280 is Non-Monarch

	Using Test Tool
	Invoking the Test Tool

	Index of Functions
	Product Error Report

