16-Channel Discriminator/Scaler VME Module

Manual

(DRAFT)

Jefferson Lab Fast Electronics Group

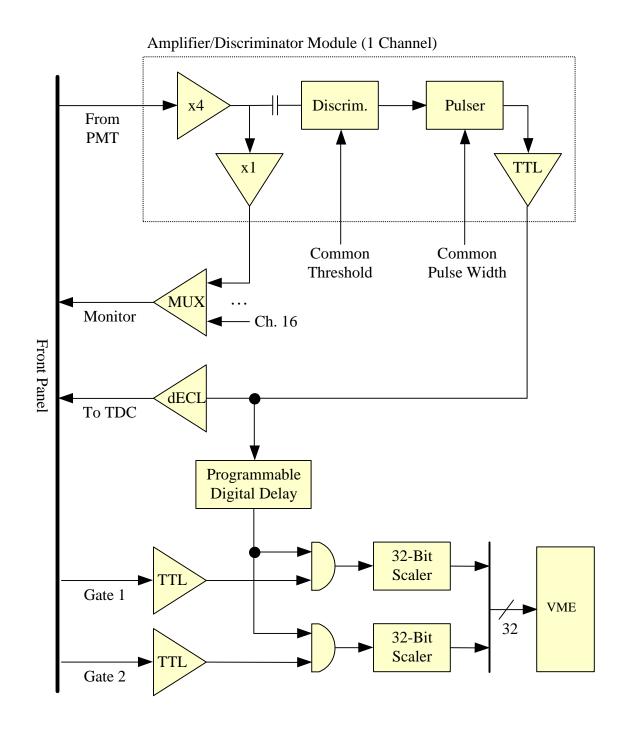
J. Proffitt 20-Nov.-2002

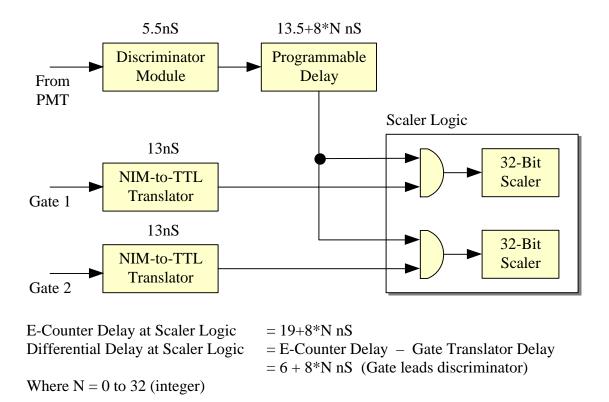
Overview

The 16-Channel Discriminator/Scaler contains 16 non-updating discriminators with programmable digital delay and two 32-bit scalers per channel. The discriminator pulses are output as differential ECL logic levels through a front-panel header. An analog multiplexer permits monitoring of any one of 16 discriminator inputs (after gain).

The discriminators reside on four 4-channel socketed modules. Each channel contains a 4x gain amplifier, buffered monitor, comparator, and a non-updating pulser. All discriminator thresholds and pulse widths are voltage-programmable with a potentiometer or 12-bit DAC.

The digital delay circuit delays each discriminator pulse up to 248nS in 8nS steps. It is implemented with one 32-bit 125MHz shift register per channel. For each channel, software selects which shift location is output to the scalers.

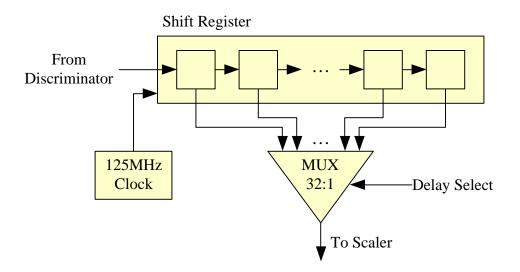

There are two 32-bit scalers for each discriminator. One scaler is gated with the Gate1 (NIM) input and the other scaler is gated with the Gate2 (NIM) input. Scalers can be latched, read, and cleared by software.


All discriminator inputs are buffered (after gain) and multiplexed. Dual buffered multiplexer outputs are provided on the front panel. A front-panel toggle switch selects the channel and an LED indicates the channel selected. Selection can also be made through software.

Discriminator outputs are provided as dECL levels on the front panel for interfacing with TDCs.

The VME interface is A32/D32 only with support for interrupts.

Discriminator/Scaler Block Diagram Single Channel



On-Board Signal Delays (1 Channel)

Differential delay in Scaler Logic assumed to be less than 1nS.

Digital Delay Circuit (1 Channel)

Specifications

~	
General	
Power consumption (no load)	+12V, 0.65A; -12V, 0.65A; +5V, 1.5A
Fuses	+12V, 1A; -12V, 1A; +5V, 4A
On-board power	-5V, 2.54A; +2.5V, 0.12A; +3.3V, 0.09A
Dimensions	6U VME, single-wide
I/O connectors	MUX Output: 2 LEMO
	PMT Input: 16 LEMO
	Gate Input: 2 LEMO
	dECL Output: 34-pin Header
On-board connectors	JTAG: 10-Pin header for Altera ByteBlaster programmer
	AUX: Dual 72-pin connectors for future upgrade
LEDs	Green (2): +2.5V, +3.3V
	Yellow (18): Status A, Status B, MUX channel select (1-16)
	All yellow LEDs and MUX are disabled on voltage error.
Jumpers	JP1: $C-P = Threshold set by potentiometer$
r r	JP2: $C-D = Threshold set by DAC$
Analog Inputs	From PMT
Channels	16
Signal level	$<\pm 800$ mV with gain = +4, diode-clamped to ± 1.5 V, DC-Coupled
Termination	50-Ohm
Termination	50-0mm
Gate Inputs	Gates scalers
Channels	2
Signal Level	NIM
Signal Level	
Analog Monitor Outputs	
Channels	2, buffered
Signal level	± 3.5 V, DC-Coupled
Termination	50-Ohm, source-terminated
	so onin, source terminated
Amplifier/Discriminator Module	
Channels per module	4
Voltage gain	+4
Min rise time (input-to-discriminator	
Min rise time (input-to-buffer)	1.5nS
Threshold control	0V? - 4.5V control voltage = $0V$? -1V threshold
Minimum useful threshold	10 mV
Pulser type	Non-updating $2.0 \text{ V}^2 = 4.5 \text{ V}$ control upltage $-8\pi \text{ S}/2 = 00\pi \text{ S}$ rules width
Pulser control	-2.0V? $-4.5V$ control voltage = 8nS ? 90nS pulse width
Pulser output level	TTL 200 V
Channel-to-channel crosstalk	<1mV for rise time = 1nS and Vin = $-200mV$
Discriminator baseline noise	<±2.5mV
Amplifier output offset (Av = $+4$)	12±3 mV
Pulser dead-time	<5nS
Monitor buffer	Gain = $+1$; located after gain stage (Gain= $+4$)
Monitor buffer output range	$\pm 0.7V$ with Gain=+4

<u>dECL Outputs</u> Channels Connector Signal	16 34-pin header in LeCroy TDC format. Discriminator pulser
Common Discriminator Control Threshold Pulse width Signal distribution DAC Threshold control Pulse width control Minimum pulse width	Set by potentiometer or DAC (jumper selectable). Set by potentiometer or DAC (jumper selectable). All channels have individually buffered threshold pulse width. 12-Bit; Set to zero by logic after reset. DAC/Potentiometer: zero-scale = 0V, full-scale = -1V DAC/Potentiometer: zero-scale = NO PULSE, full-scale = 90nS 8nS with DAC setting of 5mV
Analog Multiplexer Configuration Control Outputs Gain from MUX in to buffer out Gain from discr. in to buffer out Coupling between input modules Coupling due to: Channel 1 trigger only Channel 2 trigger only All other channels (single trigger)	 1:16 Front-panel toggle switch cycles through channels; VME control 2, buffered, front-panel +0.25 (with 50-ohm termination) +1 (with discriminator gain = +4) <1mV for Vin = -200mV and rise times = 1.5 nS 4.5mV zero-to-peak 2.5mV = 1.7mV
Digital Delay Delay step size Delay range Uncertainty Maximum effective rate Delay from discriminator input to Digital delay input: Scaler input: Delay from gate input to scaler logic	 8nS, VME controlled 0nS ? 248nS 0nS ? +8nS due to synchronization of discriminator pulse. 62.5MHz with discriminator set to 8nS. This is the maximum rate to produce a high-low pattern at delay output for scalers. 5.5nS 19nS with delay setting = 0 13nS
Scalers Quantity Width Input source Gating Maximum rate Readout dead-time Control	2 per discriminator channel (32 total) 32-bit Logical AND of digital delay output and gate. GATE1 gates scaler 1 of all channels, GATE2 gates scaler 2 of all channels. 140Mhz None VME latch, read, clear, scaler overflow status
<u>VME Interface</u> Compliance Registers Address space used	A32/D32 only; D16/D08/unaligned not supported 53 128 32-bit words (A08A02) in A32 or A24;

<u>Misc.</u> Voltage monitor

Temperature sensor EEPROM

Monitors +5V, -5V, +3.3V, +2.5V; Error reported for 5% droop. All yellow LEDs and MUX are disabled on voltage error. Monitors discriminator module temperature (next revision) Optional – Stores configuration parameters

Specifications to be improved in production boards

Large signal isolation leakage within amp/discriminator module measured input-to-monitor out.	$\begin{aligned} Vin &= 200mV : None detectable \\ Vin &= 300mV := 2.5mV \\ Vin &= 400mV := 13mV \\ Vin &= 500mV := 40mV \\ Vin &= 600mV := 75mV \\ Vin &= 800mV := 140mV \end{aligned}$
Crosstalk within amp/discriminator module measured input-to-monitor out Vin = -200mV Discriminator-in to monitor-out, Within input module, No trigger, 0-to-peak measurement	Rise time = $1nS$: = $3mV$ Rise time = $10nS$: = $2mV$ Rise time = $40nS$: = $3mV$ Rise time = $50nS$: = $0.3mV$ Rise time = $70nS$: = $0.1mV$

Register	Description	Read Function	Write Function
00	CSR	Read CSR	Write CSR
01	Threshold	Read Threshold	Write Threshold
02	Pulse Width	Read Pulse Width	Write Pulse Width
03	Gate1 Counter	Read Counter	Latch Gate1 Counter
04	Gate2 Counter	Read Counter	Latch Gate2 Counter
051F	UNUSED	0x00000000	N/A
20	Channel 1, Scaler1	Read scaler	Latch all scalers
21	Channel 2, Scaler1	Read scaler	Latch all scalers
22	Channel 3, Scaler1	Read scaler	Latch all scalers
23	Channel 4, Scaler1	Read scaler	Latch all scalers
24	Channel 5, Scaler1	Read scaler	Latch all scalers
25	Channel 6, Scaler1	Read scaler	Latch all scalers
26	Channel 7, Scaler1	Read scaler	Latch all scalers
27	Channel 8, Scaler1	Read scaler	Latch all scalers
28	Channel 9, Scaler1	Read scaler	Latch all scalers
29	Channel 10, Scaler1	Read scaler	Latch all scalers
2A	Channel 11, Scaler1	Read scaler	Latch all scalers
2B	Channel 12, Scaler1	Read scaler	Latch all scalers
2C	Channel 13, Scaler1	Read scaler	Latch all scalers
2D	Channel 14, Scaler1	Read scaler	Latch all scalers
2E	Channel 15, Scaler1	Read scaler	Latch all scalers
2F	Channel 16, Scaler1	Read scaler	Latch all scalers
30	Channel 1, Scaler2	Read scaler	Latch all scalers
31	Channel 2, Scaler2	Read scaler	Latch all scalers
32	Channel 3, Scaler2	Read scaler	Latch all scalers
33	Channel 4, Scaler2	Read scaler	Latch all scalers
34	Channel 5, Scaler2	Read scaler	Latch all scalers
35	Channel 6, Scaler2	Read scaler	Latch all scalers
36	Channel 7, Scaler2	Read scaler	Latch all scalers
37	Channel 8, Scaler2	Read scaler	Latch all scalers
38	Channel 9, Scaler2	Read scaler	Latch all scalers
39	Channel 10, Scaler2	Read scaler	Latch all scalers
3A	Channel 11, Scaler2	Read scaler	Latch all scalers
3B	Channel 12, Scaler2	Read scaler	Latch all scalers
3C	Channel 13, Scaler2	Read scaler	Latch all scalers
3D	Channel 14, Scaler2	Read scaler	Latch all scalers
3E	Channel 15, Scaler2	Read scaler	Latch all scalers

Registers

Register	Description	Read Function	Write Function
3F	Channel 16, Scaler2	Read scaler	Latch all scalers
40	Channel 1 Delay	Read delay	Write delay
41	Channel 2 Delay	Read delay	Write delay
42	Channel 3 Delay	Read delay	Write delay
43	Channel 4 Delay	Read delay	Write delay
44	Channel 5 Delay	Read delay	Write delay
45	Channel 6 Delay	Read delay	Write delay
46	Channel 7 Delay	Read delay	Write delay
47	Channel 8 Delay	Read delay	Write delay
48	Channel 9 Delay	Read delay	Write delay
49	Channel 10 Delay	Read delay	Write delay
4A	Channel 11 Delay	Read delay	Write delay
4B	Channel 12 Delay	Read delay	Write delay
4C	Channel 13 Delay	Read delay	Write delay
4D	Channel 14 Delay	Read delay	Write delay
4E	Channel 15 Delay	Read delay	Write delay
4F	Channel 16 Delay	Read delay	Write delay
	-	-	-
507F	UNUSED	Error (BERR)	Error (BERR)

Register Format

Register	Bit	Function	Notes
00	21 24	Interment Vector	
00	3124 2320	Interrupt Vector UNUSED	D and -0 Write $-N/4$
	1917		Read = 0, Write = N/A
	1917	Interrupt Level	000 = Disable Interrupts
	10	Interrupt Status +5V Status	
	13	+3 V Status +3.3V Status	
	14	+2.5V Status	
	13	-5V Status	
	12	Monitor Disable	
	10	Monitor Disable	
	9	Monitor Select 3	
	8	Monitor Select 1	
	7 6	Monitor Select 0 Gate 2 On	1 = Force Gate 2 On
	0	Gale 2 On	Also clears Gate 2 counter
	5	Cata 1 On	
	5	Gate 1 On	1 = Force Gate 1 On
	4		Also clears Gate 1 counter
	4	Clear Gate 2 Counter	Level (not pulsed)
	3	Clear Gate 1 Counter	Level (not pulsed)
	2	Clear Scaler Overflow	Level (not pulsed)
	1	Scaler Overflow	T 1 ((1 1)
	0	Clear Scalers	Level (not pulsed)
01	3112	UNUSED	Read = 0, Write = N/A
01	110	Threshold DAC	Range = $0V$? -1V Threshold
	110		
02	3112	UNUSED	Read = 0, Write = N/A
° -	110	Pulse Width DAC	Range = $0V$? 90nS Pulse Width
03	310	Gate 1 Counter	
04	310	Gate 2 Counter	
01	510		
203F	310	Scaler Count	Write = Latch scaler values
201101	01110		Read = Get data since last latch
404F	318	UNUSED	Read = 0, Write = N/A
	40	Delay	

dECL Output Connector J1

Pin	Function	Pin	Function
1	Ch 1 +	2	Ch 1 -
3	Ch 2 +	4	Ch 2 -
5	Ch 3 +	6	Ch 3 -
7	Ch 4 +	80	Ch 4 -
9	Ch 5 +	10	Ch 5 -
11	Ch 6 +	12	Ch 6 -
13	Ch 7 +	14	Ch 7 -
15	Ch 8 +	16	Ch 8 -
17	Ch 9 +	18	Ch 9 -
19	Ch 10 +	20	Ch 10 -
21	Ch 11 +	22	Ch 11 -
23	Ch 12 +	24	Ch 12 -
25	Ch 13 +	26	Ch 13 -
27	Ch 14 +	28	Ch 14 -
29	Ch 15 +	30	Ch 15 -
31	Ch 16 +	32	Ch 16 -
33	No Connect	34	No Connect

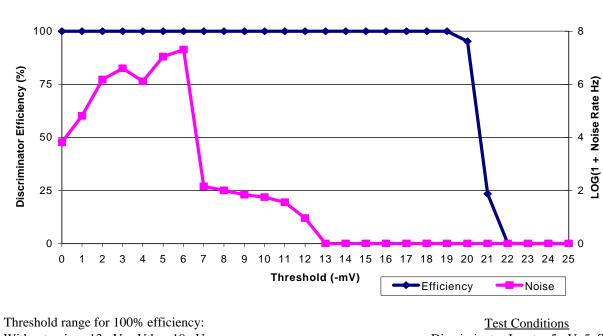
JTAG Connector J2

Function	Pin	Function
TCK	2	GND
TDO	4	+3.3V
TMS	6	N/C
N/C	8	N/C
TDI	10	GND
	TMS N/C	TCK 2 TDO 4 TMS 6 N/C 8

NOTES

- JTAG connector is compatible with Altera ByteBlaster serial download cable.
- +3.3V and GND pins are driven on board.
- TCK is pulled to ground with 1K resistor.
- TDI, TMS are pulled to +3.3V with 1K resistor.

JTAG Device Chain Device 1: EP4QC100 Device 2: EPM3064ATC100


Aux. Connectors J3/J4

		J 3				J 4	
Pin	Function	Pin	Function	Pin	Function	Pin	Function
1	A09	2	D15	1	GND	2	GND
3	A08	4	D14	3	+5V	4	PLD1
5	GND	6	D13	5	+5V	6	PLD2
7	A07	8	D12	7	+5V	8	PLD3
9	A06		D11	9	GND	10	GND
11	GND	12	D10	11	+3.3V	12	PLD4
13	A05		D09	13	+3.3V	14	PLD5
15	A04	16	D08	15	+3.3V	16	
17	GND	18	GND	17	GND	18	GND
19	A03	20	D07	19	+2.5V	20	PLD7
21	A02	22	D06	21	+2.5V	22	PLD8
23	GND	24	D05	23	+2.5V	24	
25	DISCR1	26	D04	25	GND	26	GND
27	DISCR2	28	D03	27	-5V	28	PLD10
29	GND	30	D02	29	-5V	30	PLD11
31	DISCR3	32	D01	31	-5V	32	PLD12
33	DISCR4	34	D00	33	GND	34	GND
35	GND	36	GND	35	P2:C1	36	P2:A1
37	DISCR5	38	D16	37	P2:C2	38	P2:A2
39	DISCR6	40	D17	39	P2:C3	40	P2:A3
41	GND	42	D18	41	P2:C4	42	P2:A4
43	DISCR7	44	D19	43	GND	44	GND
45	DISCR8	46	D20	45	P2:C5	46	P2:A5
47	GND	48	D21	47	P2:C6	48	P2:A6
49	DISCR9	50	D22	49	P2:C7	50	P2:A7
51	DISCR10	52	D23	51	P2:C8	52	P2:A8
53	GND	54	GND	53	GND	54	GND
55	DISCR11	56	D24	55	P2:C9	56	P2:A9
57	DISCR12	58	D25	57	P2:C10	58	P2:A10
59	GND	60	D26	59	P2:C11	60	P2:A11
61	DISCR13	62	D27	61	P2:C12	62	P2:A11
63	DISCR14	64	D28	63	GND	64	GND
65	GND	66	D29	65	P2:C13	66	P2:A13
67	DISCR15	68	D30	67	P2:C14	68	P2:A14
69	DISCR16	70	D31	69	P2:C15	70	P2:A15
71	GND	72	GND	71	P2:C16	72	P2:A16

Amplifier/Discriminator Module Pin Assignments

Pin	Function	Pin	Function
1	Ch1 In	50	Ch1 Pulse Out
2	GND	49	GND
3	Ch1 Monitor	48	Ch1 Pulse Width
4	GND	47	Ch1 Threshold
5	EN1	46	+5V
6	-5V	45	-5V
7	+5V	44	GND
8	Ch2 In	43	Ch2 Pulse Out
9	GND	42	GND
10	Ch2 Monitor	41	Ch2 Pulse Width
11	GND	40	Ch2 Threshold
12	EN2	39	+5V
13	EN3	38	-5V
14	GND	37	GND
15	Ch3 In	36	Ch3 Pulse Out
16	GND	35	GND
17	Ch3 Monitor	34	Ch3 Pulse Width
18	GND	33	Ch3 Threshold
19	EN4	32	+5V
20	-5V	31	-5V
21	+5V	30	GND
22	Ch4 In	29	Ch4 Pulse Out
23	GND	28	GND
24	Ch4 Monitor	27	Ch4 Pulse Width
25	GND	26	Ch4 Threshold

Page 13 of 19

Trigger Efficiency & Noise Rate vs. Threshold Channel 1

Threshold range for 100% efficiency: Without noise: 13mV = Vth = 18mV<100Hz noise: 8mV = Vth = 18mV

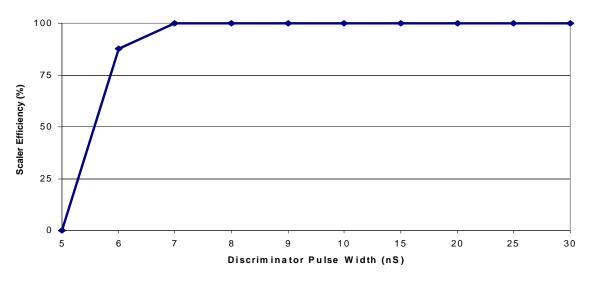
0

6 7 8 9 10 11

<u>Test Conditions</u> Discriminator Input = 5mV, 5nS Discriminator Output = 20nS

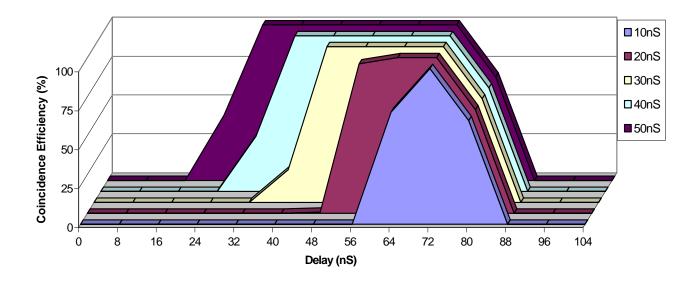
Channel Average Noise vs. Threshold

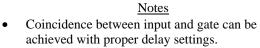
Note: Minimum useful threshold for < 100Hz Noise is 10mV


12 13 14 15 16 17 18 19

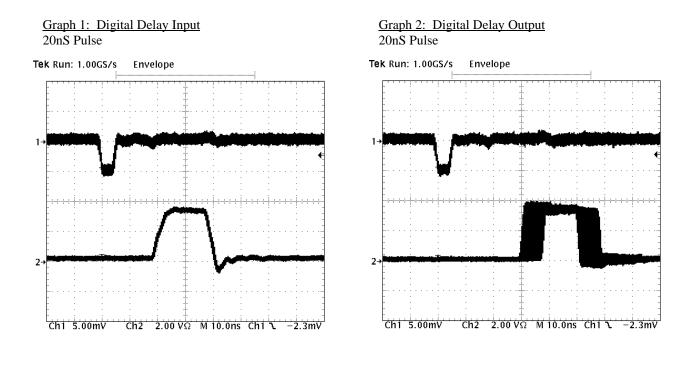
Threshold (-mV)

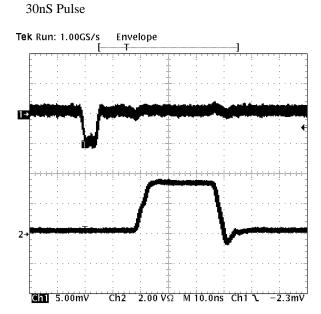
 $\frac{\text{Test Conditions}}{\text{Discriminator Input} = -5mV, 5nS}$ Discriminator Output = 20nS


20 21 22 23 24 25

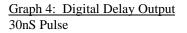


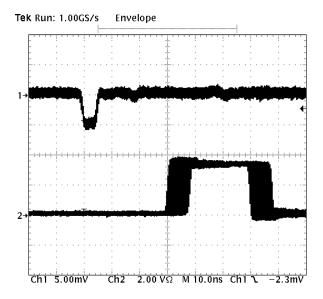
Note: Minimum useful Pulse Width = 8nS

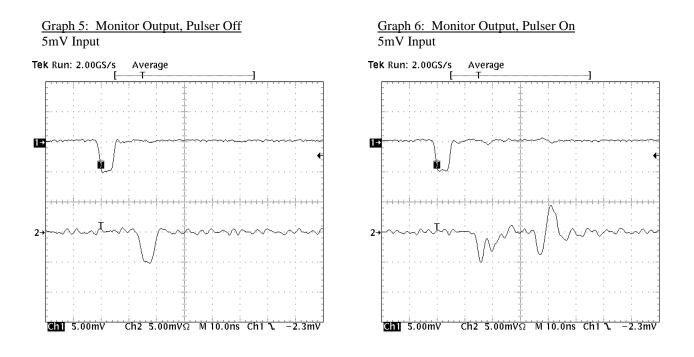

Coincidence Efficiency vs. Discriminator Delay & Pulse Width


• A discriminator pulse width of ≥25nS should be sufficient to detect coincidence with an 8nS gate.

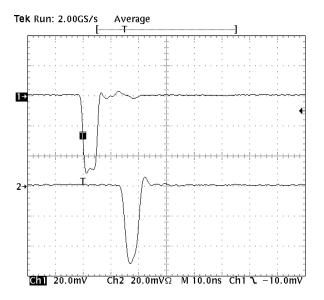
 $\frac{\text{Test Conditions}}{\text{Discriminator Input} = -5mV, 5nS}$ Gate = 8nS Gate lags discriminator input by 90nS Simulates E-counter delay.



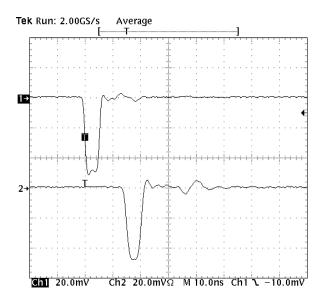

Digital delay circuit samples pulse shown on left at 125MHz. Delay output synchronization jitter and reshaping is indicated on right. Jitter is always 8nS on independent of pulse width.

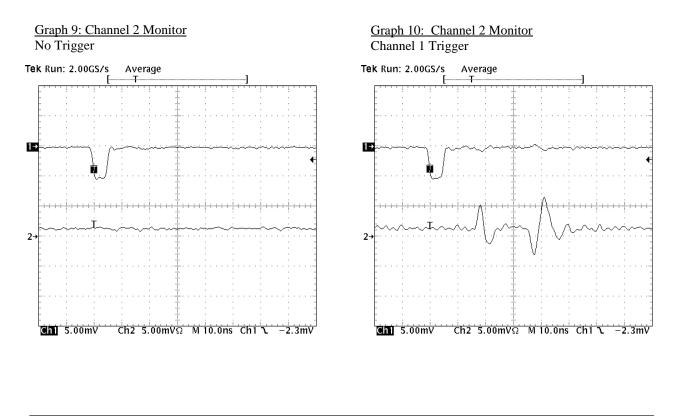

Top Right:Delay should be set for coincidence within the 12nS center of delayed pulse.Bottom Right:Delay should be set for coincidence within the 24nS center of delayed pulse

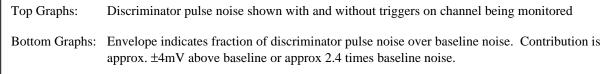
Graph 3: Digital Delay Input

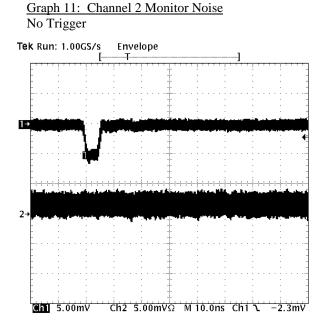


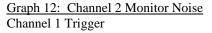
The discriminator pulser introduces 5mV noise in the monitor multiplexer. This noise:

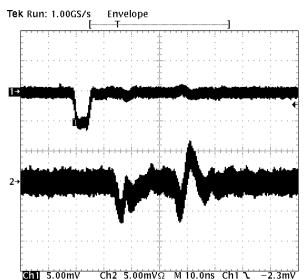

- Appears on both rising and falling edges of discriminator pulse.
- Is constant in magnitude and shape.
- Is additive at mux for all channels.
- Couples through board power.
- Couples <2mV to discriminator threshold noise.

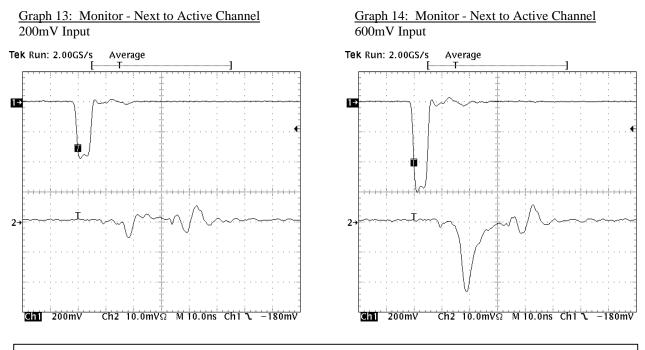

Top Graphs:Noise is additive to signal at monitor and is a large component of small signals.Bottom Graphs:Noise is additive but is a much smaller contribution to large signals.

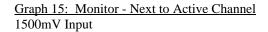

<u>Graph 7: Monitor Output, Pulser Off</u> 50mV Input

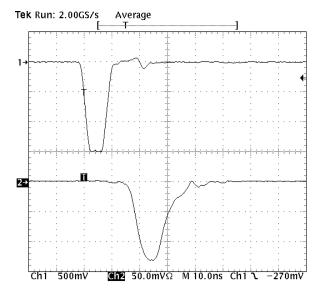


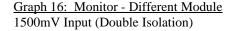

<u>Graph 8: Monitor Output, Pulser On</u> 50mV Input

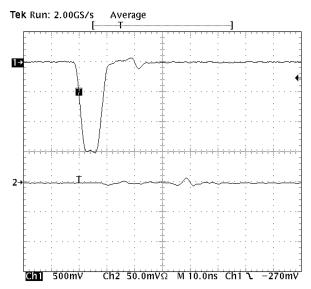







The monitor mux provides double-buffer isolation on 12 disabled channels but only single-buffer isolation on the three disabled channels that share the discriminator module with the selected channel.


It was discovered that large-signal isolation "leakage" appears on the single-isolated channels and adds to the monitor signal at the mux. Note that this effects the monitor only – not the discriminator.


This problem will be solved on the production boards by double isolating all channels.

Top Left:400mV on discriminator channel 1 (upper trace) does not leak to channel 2 (lower trace).Top Right:Leakage from ch.1 to ch.2 shows up at 600mV but contribution is small (20mV).Bottom Left:Leakage is at maximum at 1.5V due to gain amplifier (x4) saturation. Contribution is 130mV.No leakage is shown when monitoring a different module through double isolation.

