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Main features
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Block Diagram
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Multi-board synchronization

• Clock distribution

• The reference clock can be distributed in daisy chain through the clock-in 

and out connectors (LVDS)

• One board can act as a clock master

• High performance and low jitter PLL for clock synthesis

• Programmable clock phase adjust to compensate the cable delay

• Time tag

• Trigger time tag synchronous with the ADC sampling clock 

• Sync input to keep the time alignment between boards 
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• Global trigger (hardware or software) or individual self-triggers

• Pulse triggering

• Trigger propagation from one channel/board to the others

• Analog output with linear sum or majority

• 16 programmable digital I/Os (event tagging, trigger logic, etc…)

• Coincidence/anti-coincidence logic

• Other trigger logic can be implemented in the FPGAs

Triggers and acquisition
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• Programmable Thresholds and Windowing
• Full event suppression: one event (acquisition window) is discarded if the 

signal (or its integral) does not exceed the threshold
• Zero Length Encoding: only the parts exceeding the threshold (plus a 

certain number of samples before and after) are saved. 
• Other data reduction techniques are being developed in collaboration with 

some users
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Digitizers for Physics Applications

DETECTOR
TIMING CHARGE = ENERGY

POSITION or TRAJECTORY

PARTICLE  TYPE

• Detectors give pulses: want to know charge, timing, shape, etc…
• Modern ADC chips allow to digitize the signals with high sampling 

frequency and/or number of bits: good resolution!
• A/D conversion must be done as early as possible to preserve 

the information
• The major problem is the throughput rate (readout bandwidth)
• No possible to read row data and make the analysis off-line
• The FPGA can do on-line digital pulse processing (DPP) to extract 

and save only the quantities of interest
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Traditional analogue chain
using charge sensitive (integrating) preamplifiers
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Traditional analogue chain
using current sensitive (trans-impedance) preamplifiers
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• The QDC is not self-triggering; you 
need a gate generator
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delay of the gate logic (long cables!)
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OSCILLOSCOPE MODE
• there is a circular buffer of programmable size
• when a channel is triggered, the current buffer 

is saved (acquisition window)
• the acquisition can continue without dead-time 

in a new buffer 

MCA/LIST MODE
• the digitized signal is processed on-line and the 

acquisition is continuous
• the quantities of interest are calculated and 

saved in the memory buffer
• the amount of data to readout is very small 

respect to the oscilloscope mode
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Triggering on the pulses

• Triggering problems are due to:

• Baseline fluctuation

• Noise

• Pile-up

• Random distribution

• Missed pulses can cause:

• Loss of significant events 

• Bad pile-up rejection

• Bad baseline restoration

• Wrong coincidence or anti-coincidence
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DPP algorithms for triggering

Time
Trigger

Missed Pulse

Threshold

Bad Trigger

Time
Trigger

Threshold
Input Signal

mean +
1st or 2nd 

order derivate

• Programmable digital threshold
• Mean on a moving window to reduce the effect of the high 

frequency noise
• Signal derivation (1st or 2nd order) to look for the voltage steps
• Constraints on the Time Over Threshold and/or zero crossing
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Exponential Decay 
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INPUT
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peaking area

The trapezoidal height 
is proportional to the 
input pulse amplitudeLike the traditional 

shaping amplifier, the 
shaping time of the 

trapezoid has effects on 
the resolution and pile-up

Like the traditional 
shaping amplifier, 

the Pole-Zero 
cancellation must 
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DPP algorithms for the energy (MCA)
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The TimeTag of 
the trigger is

calculated at the 
zero-crossing of 
the signal delta2

Delta2 is a sort of digital
CFD (the zero-crossing
doesn’t depend on the 

pulse amplitude)
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DPP algorithms for the timing (TDC)
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Eb,4

Ta,1 Ea,1
CHANNEL a

CHANNEL b

Energy Thr high

Energy Thr low

ENERGY WINDOWING (SCA)

COINCIDENCE

T1, E1

Ta,2 Ea,2 Ta,3 Ea,3

Tb,1 Eb,1 Tb,2 Eb,2 Tb,3 Eb,3

T2, E2 T3, E3

Tb,4

OUTPUT FILE a

OUTPUT FILE b

ETHlow < E3 < ETHhigh

ENERGY WINDOW MATCHED:

| Ta,3 – Tb,4 |  <  Tc
COINCIDENCE MATCHED:

Tc

• Read the time-tag and energy lists from the memory of the 
digitizer and save the data to local buffers or output files

• Select only the pulses within a certain energy range
• Search for coincidence/anticoincidence comparing the time tags
• Generate “virtual” veto/inhibit signals in the software
• The digitizers feature 16 general purpose I/Os and a Sync signal

that can operate as hardware gate, veto, tagging signals

DPP algorithms for counting (SCA+scaler)
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• Traditional QDC (Charge Integrator)
– A simple circuit with a very good resolution but…
– Need a gate
– Splitter + Discriminator + Delay line (long cable)
– May have long conversion time

• Digital integrator
– Poor resolution with fast signals but…
– Goes straight into the digitizer input 
– Enormous dynamic range
– Self and adaptive gate
– Timing information
– Pulse analysis and selective rejection
– Dead-timeless
– New V1742 (12 bit, 5GSps): the optimal compromise?

DPP algorithms for the charge integration
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• Particle identification: traditional approaches
– Rise time / energy correlation
– Rise time discrimination
– Double charge method
– Likelihood ratio methods

• Digital algorithms for γ-n discrimination
– It’s a work in progress (some tests have been done at 

Legnaro)
– Pulse Shape Analysis (PSA) can be done on either charge 

or current sensitive preamplifier output
– Digital charge integration can easily manage double gates 
– Fast sampling rate needed in most cases (250MHz is OK?)
– 12 bit should be OK

DPP algorithms for the particle identification
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ADVANTAGES:
• One single board can do energy, timing and pulse shape analysis => low cost 

and reliability
• All in digital => good linearity and stability => reproducibility
• Wider dynamic range and uniformity of the performances over the range 
• Digital techniques allow better correction of pile-up, ballistic deficit and baseline 

fluctuation effects
• Preserve pulse information
• You can easily keep synchronized and correlated several channels and make 

coincidence/anticoincidence after the acquisition (off-line)
• Low dead-time in the acquisition => high counting rate
• Flexibility (all in FPGAs) => you can change and adapt the algorithms => easy 

tailoring to the application
• Tuning and calibration: register programming instead of manual regulations => 

faster and automatic

DISADVANTAGES:
• Setting up the system requires a deep knowledge of the digital algorithms and 

the relevant parameters. It takes more time for the beginners.
• Customization requires VHDL knowledge and/or CAEN support
• Loss of resolution with fast signals

Comparision Analog vs DPP
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Software: DPPrunner

• It is a Demo and a Software Development Kit
• It allows the user to 

• manage the parameters of the acquisition
• program and readout the digitizers
• view the waveforms (oscilloscope mode) and the spectra
• save the data (histograms and lists) to file

• It is not an and user application (no spectroscopic analysis)
• It can be easily interfaced to existing tools (Root, Winner, etc...)
• It is open source; the user can adapt it to the application
• Linux and Windows supported
• The DPPrunner can run in emulation mode (waveform 

generated by software and/or DPP made off-line)
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DPPrunner block diagram
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Screenshots 
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Tests with Germanium Detectors
Nov 2008, Feb 2009: Laboratori Nazionali di Legnaro (Padova – Italy)
May 2009: GSI (Darmstadt - Germany)

• Detector: GAMMA-X Germanium (Model ORTEC GMX 20200-S) 
• Detector Resolution: 1.90 KeV fwhm (@1.33 MeV)
• Source: 60Co
• Measured and comparison of energy resolution @ 1.33MeV using 

– Digital Pulse Processing (using CAEN V1724 with Trapezoidal Filters )
– Analog chain (using CAEN N968 Shaping Amplifier and N957 8k MCA)

• Acquisition rate: from 300 Hz to 3KHz
• Charge Sensitive Preamplifier features:

– 0.1mV/Kev
– Decay time: 50 us
– Rise time: 100 ns

Acknowledgements
Enrico Fioretto (LNL)
Henning Shaffner (GSI)
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V1724-DPP Spectrum

 

• V1724 standard: 2.25Vpp (Gain=1)
– FSR: 30 MeV
– Resolution @ 1.33MeV: 3.6 KeV fwhm

• V1724 modified gain: 220mVPP (Gain ~ 10 )
– FSR: 3.34 MeV
– Resolution @ 1.33MeV: 2.3 KeV fwhm
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Tests with Silicon Strip Detectors
Mar 2009: Lund University (Sweden)

• Detector: SSSSD and DSSSD 
• Sources: 228Th and  207Bi
• Digitizer: V1724 with trapezoidal filters

Acknowledgements
Pavel Golubev
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Tests with Cesium Iodide Detectors
Apr 2009: The Svedberg Laboratory (TSL) (Uppsala - Sweden)

• Detector: CsI(Tl)/PD - Cesium iodide Crystal doped with Thallium
• Ion beam test
• Digitizer: V1724 with trapezoidal filters

Acknowledgements
Pavel Golubev
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Tests with Silicon Photomultipliers
May 2009: Università dell’Insubria (Como – Italy)

• Detectors: scintillator tile coupled with 
– SensL SiPM (9k cells, 3x3 mm2)
– Hamamatsu SiPM (400 cells, 1x1 mm2)

• Fast amplifier output feeding the input of the V1720
• Tested algorithms for the Digital Charge Integration

Acknowledgements
Massimo Caccia
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SiPM test setup
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SiPM test results
Single Photon 

Counting
(LED pulser)

CESIUM

662 KeV
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Lyso+SiPM
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Conclusions
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• The waveform digitizer is a general purpose equipment; you 
need dedicated hardware, firmware and software to tailor it to 
the specific application (system integration)

• Some vendors sell the simple hardware, other vendors sell the 
full system

• CAEN stays in the middle and aims to be a solution provider 
selling the building blocks and supporting the customers to 
integrate them in their systems
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