

Technical

Information

Manual

MOD. C111 C

22 September 2010

Revision n.10

ETHERNET CAMAC
CRATE CONTROLLER

MANUAL REV. 10

NPO:
00108/04:C111C.MUTx/10

CAEN will repair or replace any product within the guarantee period if the Guarantor declares
that the product is defective due to workmanship or materials and has not been caused by
mishandling, negligence on behalf of the User, accident or any abnormal conditions or
operations.

CAEN declines all responsibility for damages or
injuries caused by an improper use of the Modules due
to negligence on behalf of the User. It is strongly
recommended to read thoroughly the CAEN User's
Manual before any kind of operation.

CAEN reserves the right to change partially or entirely the contents of this Manual at any time
and without giving any notice.

Disposal of the Product
The product must never be dumped in the Municipal Waste. Please check your local
regulations for disposal of electronics products.

MADE IN ITALY : We stress the fact that all the boards are made in Italy because in this globalized
world, where getting the lowest possible price for products sometimes translates into poor pay and
working conditions for the people who make them, at least you know that who made your board was
reasonably paid and worked in a safe environment. (this obviously applies only to the boards marked
"MADE IN ITALY", we can not attest to the manufacturing process of "third party" boards).

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 3

TABLE OF CONTENTS

1. GENERAL DESCRIPTION ...6
1.1. OVERVIEW ...6

2. STARTING UP ...7
2.1. FRONT PANEL...8

3. SERIAL PORT CONTROL..9

4. STARTUP OPTIONS ...10
4.1. STARTUP FLAGS ...10
4.2. JUMPER SETTINGS...10

5. REMOTE CONTROL...12
5.1. TCP ASCII CONTROL SOCKET..13
5.2. TCP BINARY CONTROL SOCKET..13
5.3. INTERRUPT HANDLING..14
5.4. BLOCK TRANSFERS...15
5.5. C LIBRARY ...16
5.6. REMOTE RESET ..16
5.7. LOCAL WEB SERVER ...17
5.8. COMMANDS PAGE...18
5.9. NIM I/O PAGE ..19

5.9.1. Input section ..19
5.9.2. Output section..20
5.9.3. COMBO section ..20

5.10. SYSTEM SETTINGS ..21
5.11. DIAGNOSTICS PAGE ..22
5.12. SNTP CLIENT ...22

6. LOCAL SCRIPTING..25
6.1. LUA SCRIPTING LANGUAGE ..25
6.2. LUA ENGINE IN C111C ...25

6.2.1. Bit manipulation extension ..26
6.2.2. Socket commands for Lua control ...26
6.2.3. C111C Script Manager ..26
6.2.4. Scripting on C111C ...27

7. FIRMWARE UPGRADE..28
7.1. FIRMWARE UPGRADE FOR FIRST GENERATION MODULES ...28

8. NIM SUBSECTION..30
8.1. DEFAULT BUTTON ..30
8.2. INPUTS ...30
8.3. OUTPUTS ..31
8.4. COMBO I/O ..32

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 4

9. ASCII COMMANDS REFERENCE ..33

10. BLOCK TRANSFER REFERENCE ..37
10.1. BLOCK TRANSFER ABORT ...38
10.2. BLOCK TRANSFER COMMANDS ...38
10.3. BLOCK TRANSFER EXAMPLE...40

11. BINARY COMMANDS REFERENCE ...41

12. BOARD SPECIFICATIONS ..44

LIST OF FIGURES
FIG. 1.1: MOD. C111C BLOCK DIAGRAM ..6
FIG. 2.1: FRONT PANEL DESCRIPTION...7
FIG. 2.2: MOD. C111C FRONT PANEL ..8
FIG. 5.1: REMOTE CONTROL WITH 3 SEPARATE CRATES..15
FIG. 5.1: WEB SERVER PAGE...17
FIG. 5.2: WEB SERVER STRUCTURE...17
FIG. 5.3: CAMAC COMMANDS WINDOW ...18
FIG. 5.4: NIM I/O SETTINGS ...19
FIG. 5.5: INPUT SECTION SETTINGS ...19
FIG. 5.6: OUTPUT SECTION SETTINGS..20
FIG. 5.7: COMBO SECTION SETTINGS ..20
FIG. 5.8: SYSTEM SETTINGS..21
FIG. 5.9: DIAGNOSTICS READOUT...22
FIG. 8.1: NIM INPUT SUBSECTION DIAGRAM ..30
FIG. 8.2: NIM OUTPUT SUBSECTION DIAGRAM ..31
FIG. 8.3: COMBO I/O SUBSECTION DIAGRAM..32

LIST OF TABLES
TABLE 1.1: SUMMARY OF FEATURES ..6
TABLE 3.1: SERIAL PORT AVAILABLE COMMANDS..9
TABLE 4.1: AVAILABLE JUMPERS ...11
TABLE 5.1: REMOTE CONTROL AVAILABLE COMMANDS...12
TABLE 5.2: CONTROL SOCKET FORMAT ..13
TABLE 5.3: Q LINE MEANING..15
TABLE 5.1: COMMANDS TABLE ..18
TABLE 6.1: LUA DESCRIPTION ..25
TABLE 6.2: LUA ADDITIONAL FUNCTIONS ..26
TABLE 6.3: LUA SOCKET COMMANDS ..26
TABLE 6.4: SCRIPT MANAGER COMMANDS ..27
TABLE 6.5: SCRIPT USAGE EXAMPLES ..27
TABLE 8.1: NIM INPUT SUBSECTION..30
TABLE 8.2: NIM OUTPUT SUBSECTION ..31
TABLE 8.3: COMBO I/O SUBSECTION ...32
TABLE 8.4: COMBO I/O SUBSECTION EXAMPLES..32
TABLE 9.1: TCP CONTROL SOCKET / LUA COMMANDS REFERENCE..33

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 5

TABLE 10.1: BLOCK TRANSFER COMMANDS...37
TABLE 10.2: BLOCK TRANSFER REPLIES...37
TABLE 10.3: HDR POSSIBLE VALUES ...37
TABLE 10.4: BLOCK TRANSFER COMMANDS...38
TABLE 11.1: BINARY COMMANDS ..41
TABLE 12.1: MOD. C111C SPECIFICATIONS...44

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 6

1. General description

1.1. Overview
The CAEN Mod. C111C is a complete CAMAC controller that allows advanced
interaction by means of standard Ethernet services, such as a local web server and TCP
socket based communication protocol. The present document supports modules running
Firmware Rev. 2.07 and later. The basic hardware architecture of C111 C is illustrated
below.

RISC PROCESSOR
uClinux OS

LAN 10/100
Front-panel

RJ45

Front-panel
serial port

CAMAC
bus

control

32 bit

Voltage
monitoring

CRATE power
supplies

CAMAC bus

LAM

COMBO 1 COMBO 2

4 NIM
in

4 NIM
out

NIM
input/output

control

Fig. 1.1: Mod. C111C block diagram

A local processor runs a version of Linux optimized for low memory footprint; a CAMAC
bus control subsection handles all bus access operations and interactions, and a
separate NIM subsection manages I/O signals located on the front panel.

Table 1.1: Summary of features

CAMAC
bus access

Full CAMAC bus control, including LAM detection
Plugs into slots 24 and 25

Local
NIM I/O Section

4 outputs, 4 inputs, event counters, 2 COMBO I/O (trigger/busy) modules
programmable pulse generators
input event counters
NIM default settings can be reloaded with front panel button

Remote
Control Library

ANSI C remote control library derived from the ESONE standard, with
extensions to control local resources
Remote control of all functions through TCP socket

Local
Web Server

Dynamic local web server allows advanced monitoring and control without the
need to install dedicated software (perfect for crate setup and maintenance)
User page with results from script

Advanced
Scripting Engine

Embedded script interpreter allows local execution of C-like code, with full
control on CAMAC and NIM functions
No need to install cross-compilation toolchains

Front Panel
Indicators

X and Q signals on last access
4 user LEDs (controllable from script)
Fault, connection status and NIM default indicators

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 7

2. Starting up
− Please insert the controller into slots 24 and 25 ONLY of a standard CAMAC crate

(rightmost when looking the crate from the front side)
− if default network settings are compatible with your setup, connect a LAN cable to

the front-panel RJ45 socket
− Power up the CAMAC crate
− Wait about 20 seconds to allow completion of operating system boot (It might require

a longer time, depending on your network configuration, especially DHCP).
− If default network settings are not suitable for your network environment, connect a

terminal to the front panel serial port and make the necessary variations (see Serial
port control section). After that, reboot (either by cycling the main power or by
pressing the RESET front panel button) and wait about 20 seconds.

− Note: if you connect directly an PC with the module (i.e., a point-to-point connection)
you MUST use a cross cable; this is a typical requirement for LAN devices.

Fig. 2.1: Front Panel description

Please open your browser (on a host connected to the same LAN used by C111C) and
point to its IP address; the default IP address is 192.168.0.98. From the web server
pages, you already have control over the NIM I/O section and the possibility to perform
individual commands on the CAMAC bus.

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 8

2.1. Front Panel

Fig. 2.2: Mod. C111C Front Panel

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 9

3. Serial port control
A serial port connector located on the front panel allows the user to modify system
settings; this procedure is required if current network parameters are incompatible with
the local network. It is also possible to modify startup options.
Default connection parameters are the following: 38400 baud, 8-N-1, no flow control.
Please notice that the baud rate can be modified by a dedicated command. Echo is not
enabled on the serial port, so please enable character echo on your serial terminal.
The following commands are available:

Table 3.1: Serial port available commands

help Provides a quick list of commands on terminal
setip <new IP addr> sets a new IP address, to be written in the format aaa.bbb.ccc.ddd
setmask <new mask> sets a new IP mask
setgw <new gw addr> sets a new gateway IP address
setdhcp <0|1> if set to 1, enables the local DHCP client
getip
getmask
getgw
getdhcp
getmac

Allows retrieval of current network settings and of the internal MAC
address

setrob <0|1> if set to 1, enables the Lua Run-On-Boot option
setcscan <0|1> if set to 1, enables the Crate Scan function (executed at startup only)
getrob
getcscan

Allows retrieval of current startup settings (Lua Run-On-Boot and Crate
Scan)

getserial
 Allows retrieval of current board serial number

getcspeed
setcspeed <baudarate>

Sets/gets current COM speed

Allowed speeds: 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800,
2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400; if the
baudrate value is not allowed, speed defaults to 38400 baud.

getname
setname <name string>

Sets/gets current name displayed on the web server index page

(string name can be up to 16 characters)

listuser
adduser <username:pwd>
deluser <username:pwd>

Manage current authorized web users list

(username and pwd are ascii string of any length)

Note: The front-panel connector requires a straight serial cable (pin 2 to pin 2,
pin 3 to pin 3); only RX, TX and GND are required.

The new firmware release (2.05 or greater) provides an additional feature that, when
enabled, takes control over the serial port and allocates a TCP socket to serial converter.
A TCP socket server is activated on port 2003; any terminal-like application can connect
as a TCP client and interact remotely with the serial port. To enable the TCP socket
server (see § 4.2). To modify serial port settings when in TCP server mode, see within
the System Parameters (see § 9). Please notice that when the TCP server is enabled,
the above protocol is not implemented. Therefore TCP communication allows to
write/read commands through the C111C Serial Port. This feature is extremely useful if a
serial-controlled device is located near the crate, i.e., a serial LCD display, a remote data
acquisition or I/O expander, a local PLC.

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 10

4. Startup options
C111C startup options can be tuned in order to provide a fine control over performance
and connectivity. There are some settings stored in nonvolatile memory that can be
changed with the control socket or from the serial port, and some options that require
placement or removal of jumpers inside the unit.

4.1. Startup flags
Two flags are available for startup fine-tuning:
Lua script Run-On-Boot flag
Crate Scan Enable flag
Both are stored in the local EEPROM and can be modified with dedicated commands on
the serial port (getrob, setrob, getcscan, setcscan) or from the control socket.
The Lua Run-On-Boot flag, when enabled, tells the system to run the stored Lua script
after starting up the application; its main usage is for automated crate initialization and for
unattended control.
Crate Scan is a function available on C111C to allow automatic detection of cards
inserted into the crate. It is a quick way of verifying the presence of cards that may be
required by the acquisition code (either within the Lua script or on the host application).
Being a heuristic approach to card detection (there is no formal way of detecting a card
when inserted into the crate) the Crate Scan function may interfere with specific CAMAC
cards; it is thus possible to disable the Crate Scan function. Note that Crate Scan is
executed only at startup (in order to avoid possible interaction with ongoing script or
actions from host); if the feature is disabled, it will not be possible even from socket.

A description in pseudo-code of the Crate Scan function follows:

for (slot=1; slot < 23; slot++) {
 end_slot = 0
 for (fun=0; fun < sizeof(SCAN_FUNCTION); fun ++)
 for (addr = 0; addr < 32; addr ++) {
 X = CSSA (slot, SCAN_FUNCTION[fun],addr, 0)
 if (X == 1) {
 slot_status[slot] = 1
 end_slot = 1
 }
 }
 if (!end_slot) slot_status[slot] = 0
 }

 where SCAN_FUNCTION is the following array:
 0, 1, 2, 3, 8, 9, 10, 11, 24, 25, 26, 27, 16, 17, 18, 19

4.2. Jumper settings
It is possible to force some startup options by placing or removing internal jumpers.
Only experienced personnel should perform this operation.
The operation is described in steps, as follows:
− switch off power from the crate
− remove the controller from the crate

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 11

− remove the lateral cover (left side when looking on the front panel) of the controller;
you should see the internal boards with components facing your side

− locate the jumper block, right behind the serial port connector
− note that if all jumpers are removed (default condition), then the unit will perform in

the standard mode; insert jumpers only if you want to modify the standard setup,
according to the table:

Table 4.1: Available jumpers

Please notice that, on C111C, TELNET is an insecure method to control the unit; no
password and no encryption are provided. Therefore, if the application requires it, it may
be safer to disable telnet access.

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 12

5. Remote control
The unit has been designed to allow full control from a remote location, taking advantage
of the available high-speed Ethernet interface.
A summary of the implemented TCP/IP services is detailed.

Table 5.1: Remote control available commands

Service Port Notes
HTTP server 80 Dynamic Web Server; it serves up to 5 client browsers at the same time.
TCP server 2000 TCP control socket for ASCII commands; up to 2 different clients are allowed at

the same time (see TCP ASCII control socket section).
TCP server 2001 TCP control socket for binary commands only (see TCP binary control socket

section).
TCP server 2002 TCP socket server for interrupt management (see Interrupt handling section).
TCP server 2003 TCP socket server for socket to serial link (see Jumper settings section)
Telnet server 23 System telnet server; it is used mainly for firmware updates and may be disabled

by the user (see Startup options section).
Please note that the telnet connection is unsafe (no password-protected access,
no encryption).

The local web server allows an easy and quick access to CAMAC commands, test and
monitoring functions. Simple CAMAC operations can be easily performed by means of a
user-friendly web interface, with no need of programming or learning manuals. This very
useful especially when performing quick lab tests on CAMAC modules. See section
Local Web Server for details.
The socket connection is the main control method for general applications: the host
computer opens a TCP connection to the C111C IP address at port 2000 and then starts
sending commands. A command is a simple ASCII string. Command can be sent by host
computers through a specific DAQ application, or manually, using a terminal program like
telnet (for Unix/Linux) or HyperTerminal (for Windows). For example, a socket
connection can be manually opened from a Linux host by typing: telnet <jenet IP addr>
2000. As soon as the connection is established, C111C is ready to accept commands
from the host keyboard. See section TCP ASCII control socket for details, and section
ASCII commands reference for a complete list of the ASCII commands.

The command set of C111C is composed of simple ASCII strings. Moreover, a command
subset is also available in “binary format” to improve speed performances. Port 2001 is
dedicated to this function. See section TCP binary control socket for details.

A telnet server is also available on port 23. Typing telnet <jenet IP addr> the user can
access the C111C internal filesystem. It is recommended for expert users only.

C111C can also notify the host computer that some asynchronous external events (LAM,
COMBO trigger and DEFAULT button pressure) have occurred. The TCP port 2002 is
dedicated to this function. See section Interrupt handling for details.

The internal software architecture is designed to allow control of multiple crates. It must
be considered that, when using an Ethernet-based CAMAC controller, the distinction
between crates is implicit as every crate is identified by a different IP address. Therefore
the crate number is typically not a parameter in many command definitions.

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 13

5.1. TCP ASCII control socket
Remote control is organized as follows:
the local firmware opens a TCP socket server on port 2000 and waits for connection from
a remote client;
when a client connection is detected, front panel LED status lights up; it will remain on
until there are active connection to the socket server;
the server accepts ASCII commands from the remote client (see section Commands
Reference); return string is always in the following format:

Table 5.2: control socket format

-1 Command exists, but parameter format or number is wrong
-2 Command does not exist
0 <return value> Command returns correctly the return value (it may also be null)

note that more than one remote client can connect to the socket server; it is up to the
programmer to avoid conflicts when accessing the same resources, as there is no built-in
protection for access conflicts (in other words: stick to one remote client only unless you
really know what your are doing). Multi-client usage is useful especially during
development and debug.
The socket server NEVER generates data autonomously; in the special case when
C111C needs to communicate to the host that a specific event has occurred (analogously
to an interrupt request), it works through a separate communication channel (IRQ port
2002).

A complete reference of ASCII commands is available in § 9.

Note:

On Windows 2000/XP, it is possible to perform a quick test with the
Hyperterminal application, by specifying connection with TCP/IP and
port 2000; on linux hosts, you can use the standard telnet client in
“raw” mode , by typing
 telnet <Jenet IP address> 2000

5.2. TCP binary control socket
A “binary command subset” is also available to increase speed and data transfer rate. A
TCP server for binary commands is available on port 2001: binary commands must be
sent through that port only.
A dedicated C/C++ library has been written to use these commands in a straightforward
and transparent way, with no need to know all the implementation details described here.
Users writing their host DAQ applications in C or C++, can skip this chapter.
See section C library for details.
In general, the binary command has the following format:

byte(0) = STX;
byte(1) = CMD_CODE;
byte(2) = databyte(0)
byte(3) = databyte(1)
....
byte(n) = databyte(k)
byte(n+1) = REQ_RESPONSE;
byte(n+2) = ETX;

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 14

where:
STX is the hexdecimal value 0x02
ETX is the hexdecimal value 0x04
CMD_CODE may be one of the followings value:
BIN_CFSA_CMD = 0x20 (equivalent to the ascii command cfsa)
BIN_CSSA_CMD = 0x21 (equivalent to the ascii command cssa)
BIN_CCCZ_CMD = 0x22 (equivalent to the ascii command cccc)
BIN_CCCC_CMD = 0x23 (equivalent to the ascii command ccci)
BIN_CCCI_CMD = 0x24 (equivalent to the ascii command ctci)
BIN_CTCI_CMD = 0x25 (equivalent to the ascii command ctci)
BIN_CTLM_CMD = 0x26 (equivalent to the ascii command ctlm)
BIN_CCLWT_CMD = 0x27 (equivalent to the ascii command cclwt)
BIN_LACK_CMD = 0x28 (equivalent to the ascii command lack)
BIN_CTSTAT_CMD = 0x29 (equivalent to the ascii command ctstat)
BIN_CLMR_CMD = 0x2A (equivalent to the ascii command clmr)
BIN_CSCAN_CMD = 0x2B (equivalent to the ascii command cscan)
BIN_NIM_SETOUTS_CMD = 0x30 (equivalent to the ascii command nim_setouts)
databyte(0) ..databyte(k) is of variable length according to the command code
REQ_RESPONSE may be:
NO_BIN_RESPONSE = 0xa0 (no response requested)
Any other value (response requested)

If one of the databyte(0)..databyte(k) contains 0x2, 0x4 e 0x10, then the databyte must
be converted in two bytes accordingly to the following rule:
if databyte(n) = 0x2 => converted in => databyte(n) = 0x10; databyte(n+1) = 0x80 +
0x02;
if databyte(n) = 0x4 => converted in => databyte(n) = 0x10; databyte(n+1) = 0x80 +
0x04;
if databyte(n) = 0x10 => converted in => databyte(n) = 0x10; databyte(n+1) = 0x80 +
0x10;

A complete reference of binary commands is available in section § 11.

5.3. Interrupt handling
On C111C, specific events can generate an interrupt (IRQ) that is notified to the host.
Being socket-based, the connection method is rather different from a bus-based
connection; therefore, interrupt are handled in a message-based way.

There are three possible IRQ sources:
LAM requests
COMBO Triggers (see COMBO I/O chapter)
DEFAULT pushbutton pressure

When an IRQ event is generated, C111C sends a special string to the host computer
through the dedicated TCP server at port 2002. The string format is a upper case letter
followed by a 32-bit hex value in ascii:
LAM events: “L_<00hhhhhh>”, where <hhhhhh> is the ASCII representation of the LAM
register content in hex (24-bit).
COMBO events: “C <bitmask> “, where:
bit0 = combo1 interrupt pending
bit1 = combo2 interrupt pending
bit2 = dtc combo1 interrupt pending

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 15

bit3 = dtc combo2 interrupt pending
bit4-31 = ignored
DEFAULT pushbutton pressure: “D defadefa”

On the host, an IRQ dedicated client receives the messages and launches the proper
IRQ-service program. For example, if a LAM or COMBO generated IRQ is received, the
host can start a reading sequence of some modules.
The IRQ generated by a DEFAULT pushbutton pressure is a very powerful feature that
allows the user to start different programs at each pressure of the button: for example,
different module setups can be activated when the button is pressed and different actions
can be performed.
Please refer to the C library documentation for further details.
In the following diagram, a typical scenario with 2 separate crates is shown.

TCP socket
client

(CRATE 1)

C111C
CAMAC CRATE
CONTROLLER

TCP ASCII
socket
server

2000

HOST

CRATE
1

192.168.0.98

TCP IRQ socket
client

(CRATE 1)

C
 library (optional)

A
PPLIC

A
TIO

N

TCP binary
socket
server

2001

TCP IRQ
socket
server

2002

TCP ASCII socket
client

(CRATE 1)

TCP binary socket
client

(CRATE 1)

TCP socket
client

(CRATE 1)

C111C
CAMAC CRATE
CONTROLLER

TCP ASCII
socket
server

2000

CRATE
2

192.168.0.99

TCP IRQ socket
client

(CRATE 2)

TCP binary
socket
server

2001

TCP IRQ
socket
server

2002

TCP ASCII socket
client

(CRATE 2)

TCP binary socket
client

(CRATE 2)

Fig. 5.1: Remote control with 3 separate crates

5.4. Block transfers
The C111C TCP protocol has been expanded with block transfer commands. Care has
been put in optimizing performance; while the whole protocol on TCP has been designed
to be as simple and intuitive as possible, block transfer commands are not following this
approach. The following block transfer modes are implemented:
Address Scan mode
Repeat mode
Stop mode
Following the IEEE standard, the Q line assumes different meanings depending on the
selected type of block transfer:

Table 5.3: Q line meaning

Reply Address Scan mode Repeat mode Stop mode

Q = 1 Register is present Register is ready Continue block transfer

Q = 0 Register is missing Register is not ready End block transfer

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 16

Some remarks follow on our solution to block transfer.
− Block data is transferred on the same TCP socket connection used for commands.
− During a block transfer, no other commands can be sent over the socket connection;

therefore, block transfer must be completed before other commands can be sent. The
user must take care of this limit, as any command can cause a block transfer abort.

− If multiple clients connect to the same TCP control socket server on C111C, they
might violate the condition detailed above. As already mentioned on the User’s
Manual, don’t use multiple clients unless you are debugging or you really know what
you’re doing.

− To allow transfer of large block data in read operations, local buffering is
implemented. Read data are transferred to the host in buffers, every time the local
buffer is filled. Buffer size is programmable to adapt different requirements and
calibrate the tradeoff between optimal transfer efficiency and response time.

− Read operations are available in ASCII and binary mode. ASCII mode is perfect for
quick debugging and verification, while binary mode offers higher performance at the
cost of increased protocol complexity (being a mixed ASCII-binary protocol).

− The block transfer operations are available only by TCP ASCII control socket (TCP
server on port 2000), not on the TCP binary control socket (TCP server on port 2001)

− Write operations are only available in in ASCII mode.
− Write operations are consumed in streaming mode: C111C does not wait for the

whole block data set to begin writing.
See § 10 for further details about block transfers.

5.5. C library
Although the host programs can be written in any language, a C library is available to
simplify code generation: host clients, IRQ handling and binary commands can be
handled in a very easy and transparent way that releases the programmer from taking
care of low-level details.
The C library is an ANSI C library, delivered in source form, providing an ESONE-like
abstraction to the socket protocol, including multiple crate support. Documentation
specific to the C library is on a separate document available on the C111C support web
site.
The C library is compatible with C++ compilers like g++.
Please note that the C library on host is provided “as is”, in source code form, without any
form of warranty of support. You are allowed to modify it freely, but under any
circumstance you are responsible for its use (o misuse).

5.6. Remote Reset
An hardware reset can be given either by pressing the “RESET” pushbutton on the front
panel or, by remote, closing an external switch connected to the “RESET” input on the
front panel.
A remote reset can also be sent from the network:From a socket connection on port
2000: send the command “reset”. If working from a terminal window, just type “reset”.
From a telnet connection (port 23): type “reboot”.

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 17

5.7. Local web server
The local web server is a dynamic server, in the sense that gathers relevant data and
information directly from the machine; therefore, depending on page contents, page
refresh may be slower than expected if compared to a fully static web site.
A username and a password are required to access the local web server. Default values
are “jenet”, “jenet”. Other usernames and passwords can be added, modified or deleted
by means of the commands “user_add”, user_del”, user_list”. See the Command
reference section for details.

Fig. 5.1: Web server page

Note: in order to trigger update operations in the optimal way, it is best to click on the link
available on the navigation bar, instead of hitting the refresh button of the browser (i.e.,
F5 on Internet Explorer). This is due to the difference in HTTP requests that are sent by
various web browsers when refreshing the page.

Fig. 5.2: Web server structure

HOME

Commands
Web interface to CAMAC commands,
with local log capability

NIM I/O
Control panel for NIM section (inputs,
outputs, COMBO I/O, counters, pulse
generator)

Configurations
Currently not used; for future
releases

Diagnostics
Voltage monitoring and Crate Scan
result

User
Application controlled content (from
Lua or socket)

System
Read-only settings for network and
hardware

help

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 18

5.8. Commands page
The local web server contains a page dedicated to CAMAC commands, in order to allow
immediate testing of crate functions. There is a log capability, currently limited to actions
performed on the web page. A drop-down selection box allows the choice of one of 7
CAMAC commands; on the entry box the relevant parameters have to be entered; when
pressing the EXECUTE button, the commands will be executed. For read functions, the
result is available on the data field of the log section; for testing functions, the result is
available in the data section, with values 0 or 1.
Please remember that in the current implementation logging is enabled only for
commands executed from this web page. Logging is ten events deep; it is also possible
to clear the log directly on the web page.

Table 5.1: Commands table

Syntax definition Description Notes

CSSA <function> <slot> <subaddr> <data> execute a CAMAC command with
16-bit data

response in Q
function=0..31,
slot=1...23
subaddr=0...15

CFSA <function> <slot> <subaddr> <data> execute a CAMAC command with
24-bit data

response in Q
function=0..31, slot=1...23
subaddr=0...15

CCCC generate dataway initialize

CCCZ generate crate clear

CCCI <value> set/clear dataway inhibit + Z cycle value=0 (reset), value=1
(set)

CTCI test dataway inhibit response in Q field

CTLM <which> test LAM response in Q field
which=1…23

LACK LAM acknowledge Must be called to clear lam
pending interrupts

Fig. 5.3: CAMAC commands window

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 19

5.9. NIM I/O page
The NIM I/O page is arranged like a real control panel, in order to allow immediate
interaction with the I/O section available on the front panel of the unit.
In addition, it is possible to retrieve default settings by pushing the DEFAULT front panel
button (just above the RESET button). Default settings are stored with a specific socket
command.
Note that not all interactions are allowed (a fuller control is available from socket or
scripting), as browser access is considered unsafe from the remote control point of view.

Fig. 5.4: NIM I/O settings

5.9.1. Input section

Fig. 5.5: Input section settings

− two event counters can be enabled on inputs 1 and 3 independently, by selecting the
required triggering transition (HI-to-LO or LO-to-HI) in the drop-down box

− event counter on input 1 can be asynchronously reset by input 2 (if the checkbox is
flagged); there is also a button on the page that allows a software reset of the
counter

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 20

− event counter on input 3 can be asynchronously reset by input 4 (if the checkbox is
flagged); there is also a button on the page that allows a software reset of the
counter

5.9.2. Output section

Fig. 5.6: Output section settings

− output 1 can be set as a programmable pulse generator, for which the period, pulse
width and polarity can be specified

− numerical entry of pulse generator period is automatically adjusted to fit the available
resolution when the page is reloaded

5.9.3. COMBO section

Fig. 5.7: COMBO section settings

− COMBO input 1 can be reset with the dedicated button; the usual way to reset a
COMBO input would be from software

− COMBO input 2 can be reset with the dedicated button; the usual way to reset a
COMBO input would be from software

− Dead Time Counter for both COMBO inputs is not shown on web page, as it has
relevant meaning only immediately before resetting the COMBO input.

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 21

5.10. System settings

Fig. 5.8: System settings

This is a read-only page that displays relevant network settings and local ID details;
please always check that your documentation is referring to the same firmware version
(release date is NOT relevant).
The MAC address is a read-only property that cannot be changed in any way, it may be
useful in certain network environments; the local IP address, subnet mask, default
gateway and DHCP enable flag can be modified from the serial port console (see Serial
Port Control section) or form the control socket (take into account that these settings are
effective only after rebooting). If DHCP = 1, then the local DHCP client is enabled. Please
refer to your system administrator for additional information relevant to these settings.
Note that wrong or conflicting IP address settings are the most typical issue that creates
connection problem when first using the system.
Before connecting a board with static IP (DHCP = 0), you can perform an additional
check by issuing a PING command, to verify that the IP address on the unit is really
available. If another system is answering at the same address, you may experience
intermittent failure (i.e., the web page sometimes does not reload and all other
communications will fail).

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 22

5.11. Diagnostics page

Fig. 5.9: Diagnostics readout

This page shows current voltage readouts, divided into crate power supplies and local
(digital-only) power supplies.
Note that C111C requires the following voltages to be present in order to work properly:
-24V, -6V, +6V, -24V.

On the bottom of the page, results of the Crate Scan (performed only at power-up if the
CSCAN flag is enabled, see Startup Options section) are shown in textual form.
Remember that if Crate Scan is problematic (depending on which cards are inserted into
the crate) it can be disabled either by serial or control socket.

5.12. SNTP client
Firmware Rev.2.10 and newer feature the SNTP client. As the system is started, the shell
script /app/start is executed; the firmware contains the command line:

 sh /data/custom_start

Normally the shell script custom_start is not present, therefore the command execution is
neglected.
The User can add the fore mentioned shell script in order to execute additional
commands to be performed at system boot, for example to update the system clok via
SNTP server;

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 23

For example, the shell script custom_start can be created by typing at prompt:
 echo "/app/msntp -r -l /ram/msntp.pid -P no 192.168.0.1" > /data/custom_start

The SNTP client is hosted in the folder /app; the executable filename is msntp (it is
recommended to be used exclusively as a client)

 The command line options are as follows
==

 msntp [--help | -h | -?] [-v | -V | -W]
 [{ -r | -a } [-P prompt] [-l lockfile]]
 [-c count] [-e minerr][-E maxerr]
 [-d delay | -x [separation] [-f savefile]]
 [address(es)]]

 --help, -h and -? all print the syntax of the command.

 -v indicates that diagnostic messages should be written to standard error,
and -V requests more output for investigating apparently inconsistent timestamps.
-W requests very verbose debugging output, and will interfere with the timing
when writing to the terminal (because of line buffered output from C);
it is useful only when debugging the source. Note that the times produced by -V
and -W are the corrections needed, and not the error in the local clock.

 -r indicates that the system clock should be reset by 'settimeofday'.
Naturally, this will work only if the user has enough privilege.

 -a indicates that the system clock should be reset by 'adjtime'.
Naturally, this will work only if the user has enough privilege.

 -x indicates that the program should run as a daemon (i.e. forever), and
allow for clock drift.

The default is to write the current date and time to the standard output in
a format like '1996 Oct 15 20:17:25.123 + 4.567 +/- 0.089 secs', indicating the
estimated true (local) time and the error in the local clock. In daemon mode,
it will add drift information in a format like ' + 1.3 +/- 0.1 ppm', and
display this at roughly 'separation' intervals.

 'minerr' is the maximum ignorable variation between the clocks.
Acceptable values are from 0.001 to 1, and the default is 0.1 if 'address' is specified
and 0.5 otherwise.

 'maxerr' is the maximum value of various delays that are deemed acceptable.
Acceptable values are from 1 to 60, and the default is 5. It should sometimes
be increased if there are problems with the network, NTP server or system
clock, but take care.

 'prompt' is the maximum clock change that will be made automatically.
Acceptable values are from 1 to 3600, and the default is 30. If the program
is being run interactively, larger values will cause a prompt. The value may

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 24

also be 'no', and the change will be made without prompting.

 'count' is the maximum number of NTP packets to require. Acceptable
values are from 1 to 25 if 'address' is specified and '-x' is not, and from 5 to 25
otherwise; the default is 5. If the maximum isn't enough, you need a better
consistency algorithm than this program uses. Don't increase it.

 'delay' is a rough limit on the total running time in seconds.
Acceptable values are from 1 to 3600, and the default is 15 if 'address' is specified
and 300 otherwise.

 'separation' is the time to wait between calls to the server in minutes if
'address' is specified, and the minimum time between broadcast packets if not.
Acceptable values are from 1 to 1440 (a day), and the default is 300.

 'lockfile' may be used in an update mode to ensure that there is only
one copy of msntp running at once. The default is installation-dependent,
but will usually be /etc/msntp.pid.

 'savefile' may be used in daemon mode to store a record of previous
packets, which may speed up recalculating the drift after msntp has to be
restarted (e.g. because of network or server outages). The default is
installation-dependent, but will usually be /etc/msntp.state. Note that
there is no locking of this file, and using it twice may cause chaos.

 'address' is the DNS name or IP number of a host to poll; if no name is
given, the program waits for broadcasts. Note that a single component numeric
address is not allowed.

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 25

6. Local scripting

6.1. Lua scripting language

An on-board script interpreter is available, allowing complex interactions with the CAMAC
bus and local NIM I/O section. The scripting language is Lua, extended with a TCP/IP
library and with specific commands that allow management of the underlying hardware.
Lua is a powerful, lightweight programming language designed for extending
applications, frequently used as a general-purpose, stand-alone language. More
information is available at www.lua.org.
Please take not that, while being free software, it is property of Tecgraf
(http://www.tecgraf.puc-rio.br/), of which we acknowledge the excellent work.
A brief description of the scripting engine and its extensions follows.

Table 6.1: Lua description

Lua Version
4.0

This is the base scripting engine. It has been conceived as an
efficient, compact add-on scripting library for various
applications.

Luasocket library Version
1.4

Extension to Lua 4.0 (developed by Diego Nehab) that adds
TCP and UDP functionality to the Lua scripting language.

Bit manipulation
extension --

Added by CAEN srl to offer bit-wise AND, OR, XOR
functions

NIM I/O extension -- Added by CAEN srl to offer full control of the local NIM I/O
section

System extension -- Added by CAEN srl to offer full control of system functions

CAMAC extension -- Added by CAEN srl to offer full control over CAMAC
commands and functions.

Note that a complete reference of Lua is available on www.lua.org and on the C111C
support site (courtesy of the Lua community) at
http.//www.caen.it/nuclear/product.php?mod=C111C

6.2. Lua engine in C111C
One of the desirable features of Lua is that the language can be easily extended with
new commands; this technique has been applied to allow full control of C111C from a
script.
A detailed reference of available extension commands is presented in chapter 9 (ASCII
Commands Reference).
A dedicated application that connects to the control socket server allows the user to load
the script and control its execution.
The script is launched and executed directly; in case of error, the FAULT red LED on the
front panel is lit and script execution is halted. By issuing a stop command it is possible
to restore the script engine to idle state.
The special function doevents() has been added to deal with the single-threaded nature
of the scripting engine; it allows the system to terminate execution of the script itself. If
this call is missing or called rarely, then it may not be possible to halt execution of the
current script.
The ROB (Run-On-Boot) dedicated flag is available on the local EEPROM to indicate
whether the FLASH script should be executed at startup. Note that there is no
assumption of the temporal evolution coded into the script; therefore, many different uses
may be made of the scripting capabilities.

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 26

6.2.1. Bit manipulation extension
As the base Lua library does not provide bit manipulation operands, CAEN added some
commands to allow binary operations, an essential feature for any embedded system. As
an example, the CLMR Camac function returns the current LAM mask, and a binary AND
operator is almost mandatory to allow individual bit testing.
The following additional functions are provided, all with two operands and one result:

Table 6.2: Lua additional functions

function Description C equivalent
 band(a,b) 32-bit binary AND a & b
 bor 32-bit binary OR a | b
 bxor() 32-bit binary XOR (exclusive-OR) a ^ b
 bmod() binary module a % b
 bsl binary shift left a << b
 bsr binary shift right a >> b

6.2.2. Socket commands for Lua control
A subset of control socket commands is dedicated to management of the local Lua
interpreter engine; these commands are used by the jsm application (C111C Script
Manager, see below). Note that these socket commands are the only messages to
violate the principle to have one command per line. The following commands are
available:

Table 6.3: Lua Socket commands

lua_setfile It transfers a script from host to C111C; the file is placed in RAM and can be saved on FLASH with
the lua_store command. The following procedure is required:

• host sends to control socket the following command:
 lua_setfile <filesize> where <filesize> is expressed in bytes
• control sockets answers with “OK”
• host sends the file directly
• control socket answers with “OK”

lua_getfile It transfers a script from C111C to host; the following procedure is required:
• host sends to control socket the following command:
 lua_getfile
• control sockets answers with <filesize> (expressed in bytes)
• host sends “OK”
• control socket sends the file directly

lua_store It saves the current script on FLASH

lua_getrun It returns the current execution state of the script interpreter

lua_setrun It changes the executionstate: lua_setrun <value>, where 1 = run, 0 = stop

lua_geterr It returns the error message (if any) returned by the script interpreter; being a multi-line string, it
follows the same protocol of lua_getfile

lua_getlog It returns the stdout log file returned by the script interpreter; it’s useful as a debugging aid as print()
messages are sent to the log. Being a multi-line output, it follows the same protocol of lua_getfile.
WARNING: using print() on Lua may crash the system if the log file gets too long. Please use it only
for debug !!!!

You can review the JSM source code to gain more insight into script file transfers. Please
note that JSM is provided in source code form “as is”, without support or guarantee.

6.2.3. C111C Script Manager
It is a dedicated application, available for Windows and Linux, that allows full control over
all operations related to script management; all operations are specified with command
line parameters. The following syntax is implemented (version 1.0):

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 27

Table 6.4: Script Manager commands

jsm -h displays program version and a list of allowed parameters

jsm -ip <IP addr> -u <filename.ext> uploads script text from specified file on host to C111C

jsm -ip <IP addr> -run starts execution of current script

jsm -ip <IP addr> -stop halts execution of current script

jsm -ip <IP addr> -s stores current script on non volatile memory for Run-on-Boot option

jsm -ip <IP addr> -rob <value> sets rob (Run-on-Boot) flag to specified value (0 or 1)

jsm -ip <IP addr> -d <filename.ext> downloads script text from C111C to specified file on host

jsm -ip <IP addr> -d stdout downloads script text from C111C to stdout on host

jsm -ip <IP addr> -e <filename.ext> stores error message (if any) from C111C to specified file on host

jsm -ip <IP addr> -e stdout stores error message (if any) from C111C to stdout on host

jsm -ip <IP addr> -l <filename.ext> stores log message (if any) from C111C to specified file on host

jsm -ip <IP addr> -l stdout stores log message (if any) from C111C to stdout on host

The jsm application is available in both source and compiled form on the documentation
section of the C111C web site (http://www.caen.it/nuclear/product.php?mod=C111C); it
uses dedicated commands to transfer files. Please check periodically for updates.

6.2.4. Scripting on C111C
A few usage examples follow.

Table 6.5: Script usage examples

Crate
initialization

In certain cases, it may be safe to initialize inserted CAMAC target cards as soon as possible after
power-up.
With ROB = 1, the FLASH script performs the required initialization, terminating after completion
jn_led(1,1) –- turn LED U1 on
run_once_init() -- function somewhere else in the script
jn_led(1,0) –- turn LED U1 off

Automatic
execution of
monitoring
loop

After a run-once initialization section, an infinite loop is executed, calling as often as possible the
doevents() function:
jn_led(1,1) –- turn LED U1 on
run_once_init() -- function somewhere else in the script
while (1) do
 doevents()
 run_in_loop() -- function somewhere else in the script
 pause (100) -- wait 100 msec
end

COMBO
servicing

jn_led(1,1) –- turn LED U1 on
run_once_init() -- function somewhere else in the script
while (1) do
 doevents()
 if (nim_testint(1) == 1) then
 do_something() -- function somewhere else in the script
 nim_cack(1)
 end
end

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 28

7. Firmware Upgrade
It is possible to upgrade a section of FLASH memory contents in order to allow firmware
upgrades on the field, either to correct any problems that may show up during usage or
to load application-specific executables.
Internal FLASH is structured into two banks: one for the operating system, and one for
the application; the application bank includes all the executables related to C111C.
Note:
When using a NFS-mapped disk, please remember to add the following line:
<nfs_directory> <IP address JNT01>(rw,all_squash)

to the /etc/exports file on the computer where disk is located.

Firmware upgrade (limited to the application bank) is performed using a telnet connection
to the unit, as follows:
− copy the new binary file on a known location on a network disk
− establish a telnet connection on default port 23 (please note that, depending on fw

version, it may be possible that the internal telnet server must be enabled by means
of HW jumpers); of course, you must know the unit IP address

− type the following commands:
cd app
sh flash <host:/nfs_directory> <jffs2 filename>

and wait until reprogramming completes
− reboot the unit (either by pressing the RESET button on the front panel or by

typing “reboot” from the telnet terminal window).

An example of a typical fw upgrade command line is the following:

sh flash 192.168.0.91:/home/jenet2/fwupgrade jenet2.img

7.1. Firmware Upgrade for first generation modules
First generation modules need a newer kernel (file: jenet2_kernel.bin 1 available at
http://www.caen.it/nuclear/product.php?mod=C111C web page) before firmware
upgrading; the upgrade procedure is therefore the following:

Procedure Start:

Connect to the Unit via TELNET (module IP, port 23)
the following text will be displayed:

BusyBox v0.60.3 (2003.03.19-17:07+0000) Built-in shell (msh)
Enter 'help' for a list of built-in commands.

Now at the prompt type:

Is
the following text will be displayed:

BusyBox v0.60.3 (2003.03.19-17:07+0000) Built-in shell (msh)
Enter 'help' for a list of built-in commands.

ls

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 29

data etc lib nfs ram usr bin
dev htdocs mnt proc sbin www

If the “www” directory does not appear, but instead the “app” directory appears, then the
module is a “new generation C111C” and therefore it is not necessary to update the
kernel, prior to update the firmware, that can be done by following the instructions at § 7.
The presence of the “www” directory indicates that the module is a “first generation
C111C” and it is therefore necessary to continue the procedure to upgrade the kernel:

at the prompt, type:

mount <nfs-shared-folder> /nfs -t nfs -o nolock
eraseall /dev/mtd/1
eraseall /dev/mtd/4
update_flash -v -t ram /nfs/jenet2_kernel.bin 1
reboot

Wait for the reboot, the telnet connection will end automatically.
Reconnect with telnet
at the prompt, type:

mount <nfs-shared-folder> /nfs -t nfs -o nolock
update_flash -v -t ram /nfs/jenet2_caen_2008_07_09.img 4
eeprom -e "APPDATAMOUNT=yes"
reboot

Procedure End.

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 30

8. NIM subsection
Please note that on the present document the following notation is used for NIM signals:

LO No current flowing into load
HI Current flowing into load (corresponding to a –0.8 V voltage level across a 50 ohm load)

This notation is maintained also on the NIM I/O web page.
A command parameter equal to 1 means HI.

8.1. Default button
A DEFAULT pushbutton, located on the front panel above the reset section, allows
immediate manual reload of a default configuration for the NIM I/O subsection, thus
allowing a quick reconfiguration of the system.
The same settings are applied at power-up, and can be set through the control socket.
The green LED located just below the DEFAULT pushbutton is turned on when default
settings are applied, and turned off whenever any of the relevant settings is altered,
providing an immediate visual feedback of the validity of default settings.
The DEFAULT pushbutton can also generate a special interrupt request and notify the
host computer through a dedicated socket connection on port 2002. This is a very
powerful feature that allows the user to start different programs at each pressure of the
button: for example, different module setups can be activated when the button is pressed
and different actions can be performed.

8.2. Inputs
The NIM INPUT subsection implements four independent NIM inputs that may be read
asynchronously to retrieve input status or configured to perform event counting; more
specifically, inputs 1 and 3 can be set as event counter, triggering on rising or falling
transition. Counter reset is performed either with a dedicated control command or with an
external reset, derived from input 2 (for counter on input 1) and from input 4 (for counter
on input 3). Note that external reset capability must be enabled with the proper
commands. External reset is active when relevant input is HI; while HI, counter is kept to
zero and will not count further.

NIM in 1 EVENT COUNTER

NIM in 2
RESET

INPUTS
NIM in 3 EVENT COUNTER

NIM in 4
RESET

INPUTS

OR

OR

LO to HI trigger

HI to LO trigger

Fig. 8.1: NIM INPUT subsection diagram

Table 8.1: NIM INPUT subsection

Read from inputs Notes
TCP socket commands Lua code snippet
nim_getin
nim_getin j

A = nim_getin();
B = nim_getins(j)

Basic reading of input
values
(j=1,2,3,4)

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 31

Set event counter on IN 3 to falling edge
TCP socket commands Lua code snippet
nim_setievcnt 3 1 1 0 nim_setievcnt(3,1,1,0)
Enable async reset for counter on IN 1
TCP socket commands Lua code snippet
nim_setievcnt 1 1 1 0 a,b,c=nim_getievcnt(1);

nim_setievcnt(1,a,b,1)

8.3. Outputs
The OUTPUT subsection implements four independent NIM output that can be
independently set and reset; in addition, a programmable pulse generator that can be
enabled on the first output.

Fig. 8.2: NIM OUTPUT subsection diagram

PULSE GENERATOR
Period 186.2 μs to 95325.2 μs

(in 93.1 μs steps, 10791 Hz base clock)
Width 88 ns to 616 ns

Direct

HI

LO

 Output

polarity

Reverse

HI

LO

Please note that duty cycle is never higher than 0,05 % (with reversed polarity flag
disabled), therefore it may be difficult in certain cases to see the pattern on a scope.

Table 8.2: NIM OUTPUT subsection
Write to outputs Notes
TCP socket commands Lua code snippet
nim_setout 1 1 1 1
nim_setouts <out> <val>

nim_setout(1,1,1,1)
nim_setouts(2,0)

Basic output control
out=1,2,3,4
val=0,1

Single pulse generation
nim_setoutp <out> <pulse_width> Lua n.a.

out=1,2,3,4
pulse_width is
expressed in multiples
of 20 ms

Set pulse generator to 1 ms period, 440 ns width
TCP socket commands Lua code snippet
nim_setpulse 11 5 0 nim_setpulse(11,5,0)

11*93.1 = 1,024 ms
5*88 = 440 ns

Turn pulse generator off and activate outputs 1,3
TCP socket commands Lua code snippet
nim_pulseoff
nim_setouts 1 1
nim_setouts 3 1

nim_pulseoff()
nim_setouts(1,1)
nim_setouts(3,1)

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 32

8.4. COMBO I/O
The COMBO I/O subsection implements a commonly requested Trigger/Busy functional
block. The diagram below details one of the two COMBO subsections.

 TRIG in

EVENT COUNTER

BUSY out

RESET EVC

INTERRUPT REQUEST

FF

RESET DTC

DEAD TIME COUNTER

front panel LED

10.791 kHz

SET

RESET

Q

COUNT ENABLE

Fig. 8.3: COMBO I/O subsection diagram

Whenever a LO-to-HI transition occurs on the TRIG input, an internal Flip-Flop is set to
capture the event; the Flip-Flop output is connected to the BUSY output and its
associated LED. The Dead Time Counter starts counting at a 10.791 kHz rate, and it is
reset when the software application resets the Flip-Flop; therefore, the Dead Time
Counter provides an indication of the service time of the TRIG input. It is automatically
reset when BUSY is reset (therefore it must be read before the BUSY reset command).
An independent Event Counter is incremented at each LO-to-HI transition of the BUSY
output, providing an indication of the number of pulses. The Event Counter can be reset
by means of an explicit command (through control socket) or from the NIM I/O web page.
Please note that, in order to be ready to accept new events, the COMBO section must be
explicitly served by the user, in one of the following ways: with a script section that resets
the relevant COMBO FF; within the application running on host, with a routine that in
response to the COMBO event resets the relevant COMBO FF; by clicking on the
RESET button on the NIM I/O web page.

Table 8.3: COMBO I/O subsection

COMBO I/O
Event Counter Incremented on BUSY output rising edge
Trigger event TRIG input rising edge
Dead Time Counter 1 (92.67 usec) to 65535 (6.7 sec)
TRIG-to-BUSY response 35 ns

Table 8.4: COMBO I/O subsection examples

Acknowledge COMBO 1 trigger Notes
TCP socket commands Lua code snippet
nim_cack 1 nim_cack(1)

Wait for TRIG on 1 and then turn NIM outs 3,4 ON
TCP socket commands Lua code snippet

nim_waitint(1); nim_cack(1)
jn_led(3,1); jn_led(4,1)

Blocking mode (wait) not
available on socket

nim_testint 1 {repeat then}
nim_cack 1
jn_led 3 1
jn_led 4 1

if (nim_waitint(1) == 1) then
 nim_cack(1); jn_led(3,1); jn_led(4,1)
end

Test mode

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 33

9. ASCII Commands reference
A reference of available commands on both the TCP control socket server and the local
Lua scripting language is detailed in this section.
Note that whenever possible, TCP control commands are as short as possible in order to
minimize Ethernet traffic; on the other hand, Lua commands are more descriptive.
Some general rules follow:
− Control socket commands ALWAYS return an error code as first parameter; it is

equal to 0 if the commands executed with success, -1 if command parameters are
wrong, -2 if the command is non existent; in the table below this error code is NOT
indicated when describing return values, as it must be always 0 to yield a correct
answer.

− TCP control sockets are not case sensitive, while Lua commands are case sensitive
(this is a specific property of the language).

− As much as possible, all commands have the same name for Lua and for TCP
control socket.

Table 9.1: TCP control socket / Lua Commands reference

TCP control socket Lua Description
CAMAC bus control
CCCZ CCCZ() Generate Dataway Init
CCCC CCCC() Generate Crate Clear
CFSA <function> <slot>
<addr> <data>

CFSA(function,slot,a
ddr,data)

24-bit CAMAC command;
returns Q and data

CSSA <function> <slot>
<addr> <data>

CSSA(function,slot,a
ddr,data)

16-bit CAMAC command;
returns Q and data

CCCI <value> CCCI(value) Change Dataway Inhibit to
specified value (0 or 1) +
Z Cycle

CTCI CTCI() CAMAC test Inhibit; returns
0 or 1

CTLM <slot> CTLM(slot) CAMAC test LAM on
specified slot = 1…..23

CCLWT <slot> CCLWT(slot) CAMAC wait for LAM on
specified slot (only for Lua)

CLMR CLMR() Returns current LAM register,
in hex

LACK LACK LAM acknowledge
CTSTAT CTSTAT() Returns Q and X values (from

last access on bus)
CSCAN Executes a Crate scan and

returns a bit mask with bitn =
1 if in the slot n a CAMAC
board is detected

DIAGNOSTIC SECTION
vn24 vn24() Returns the measured voltage

on –24V power supply, in
float format

vn12 vn12() Returns the measured voltage
on –12V power supply, in
float format

vn6 vn6() Returns the measured voltage
on –6V power supply, in float
format

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 34

vp6 vp6() Returns the measured voltage
on +6V power supply, in float
format

vp12 vp12() Returns the measured voltage
on +12V power supply, in
float format

vp24 vp24() Returns the measured voltage
on +24V power supply, in
float format

vp33 vp33() Returns the measured voltage
on +3.3V power supply, in
float format

vp5 vp5() Returns the measured voltage
on +5V power supply, in float
format

SYSTEM PARAMETERS (stored in EEPROM)
ee_getcomspeed --- Returns the speed of the

RS232 COM port
ee_setcomspeed <baudrate> --- Sets the speed of the RS232

COM port
ee_getcscan --- Returns current Crate Scan

flag value (0 or 1)
ee_getdhcp ee_getdhcp() Returns 0 if DHCP client is

not enabled, 1 otherwise
ee_getdns ee_getdns() Returns current DNS, in

dotted notation
ee_getgw ee_getgw() Returns current Gateway, in

dotted notation
ee_getip ee_getip() Returns current IP address, in

dotted notation
ee_getmac ee_getmac() Returns current MAC

address, in hex format with ‘-‘
delimiters,
like in “00-50-C2-26-E0-0A”

ee_getmask ee_getmask() Returns current IP mask, in
dotted notation

ee_getname --- Returns current Crate Name
as it appears in the local web
pages

ee_getrob --- Returns current Run-on-Boot
flag value (0 or 1)

ee_getserial --- Returns C111C serial number
ee_setcscan --- Sets Crate Scan flag to

specified value (0 or 1)
ee_setname <name string> --- Sets the Crate Name shown in

the local web pages
ee_setrob <value> --- Sets Run-on-Boot flag to

specified value (0 or 1)
ee_storeconf --- Stores current NIM section

configuration into EEPROM
default settings

NIM I/O SECTION
nim_getin nim_getin() Returns NIM input values; it

returns “a(1) a(2) a(3) a(4)”,
where a(n) = 0 or 1

nim_getins <which> nim_getins(which) Returns a single NIM input value
(0 or 1); <which> = 1, 2, 3 or 4

nim_setievcnt <which> <en>
<pol> <ext_reset>

nim_setievcnt(which,en
,pol,ext_reset)

Sets Input Event Counter;
<which>=1,3; <en>=0,1;
<pol>=0,1; <ext_reset >=0,1

nim_getievcnt <which> nim_getievcnt(which) Returns Input Event Counter
settings

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 35

nim_geticnt <which> nim_geticnt(which) Returns current Input Event
Counter value

nim_reseticnt <which> nim_reseticnt(which) Reset specified Input Event
Counter: <which> = 1 or 3

nim_getouts <which> nim_getouts(which) Returns current value of specified
output; <which> = 1…4

nim_getout nim_getout() Returns current value of all
outputs

nim_setouts <which> <value> nim_setouts(which,valu
e)

Sets value of specified output;
<which> = 1…4

nim_setout <v1> <v2> <v3> <v4> nim_setout(v1,v2,v3,v4
)

Sets current value of all output;
<which> = 1…4

nim_setoutp <which>
<pulse_width>

--- Generates a pulse event on a
selected output with specified
width in multiples of 20 ms. See
section Outputs for details

nim_setpulse <period> <width>
<polarity>

nim_setpulse(period,wi
dth,polarity)

Sets Pulse Generator, values in
decimal; <period>=1…1023;
<width>=1…7; <polarity>= 0 or
1. See section Outputs for details

nim_getpulse nim_getpulse() Returns Pulse Generator settings
nim_pulseoff nim_pulseoff() Disables Pulse Generator
nim_setcthr <which> <value> nim_setcthr(which,

value)
Sets threshold value for COMBO
section; <which> = 1 or 2

nim_getcthr <which> nim_getcthr(which) Returns current threshold value
for COMBO section; <which> =
1 or 2

nim_getcdtc <which> nim_getcdtc(which) Returns current COMBO Dead
Time Counter value; <which> =
1, 2

nim_cack <which> nim_cack(which) Acknowledges COMBO event,;
<which> = 1 or 2 ; reset DTC and
FF

nim_getcev <which> nim_getcev(which) Returns current COMBO Event
Counter value; <which> = 1, 2

nim_resetcev <which> nim_resetcev(which) Reset specified COMBO Event
Counter: <which> = 1 or 2

nim_enablecombo <which>
<value>

nim_enablecombo(which,
value)

Enables or disables specified
COMBO section, preventing
unwanted triggering; <which> =
1, 2; <value>= 0 (enable)
,1(disable)

--- nim_waitcombo(ch) Wait for COMBO interrupt; it
returns only when COMBO is
busy (blocking call) ; ch = 1, 2 or
3 (= both)

--- nim_waitdtc(ch) Wait for DTC interrupt; it returns
only when DTC has crossed the
threshold (blocking call) ; ch = 1,
2 or 3 (= both)

nim_testcombo <ch> nim_testcombo (ch) Test COMBO interrupt; it
immediately returns current
values (1 if COMBO busy, 0
otherwise); ch = 1, 2 or 3 (= both)

nim_testdtc <ch> nim_testdtc(ch) Test DTC interrupt; it
immediately returns current value
(1 if DTC has crossed the
threshold, 0 otherwise) ; ch = 1, 2
or 3 (= both)

Control socket only commands
lua_setfile
<data...........>

-- Lua-related command;
enables direct transfer of
script file

lua_store -- Lua-related command; stores
transferred filew into non-
volatile memory

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 36

lua_getfile -- Lua-related command;
enables direct retrieval of
script file

lua_getrun -- Lua-related command; returns
0 if script is stopped, 1 if
running

lua_setrun <value> -- Lua-related command;
<value>=1 runs the script;
<value>=0 stops the script

lua_geterr -- Lua-related command; returns
last Lua error message

lua_getlog -- Lua-related command; returns
log file (in place of stdout)

SYSTEM IDENTFICATION and VARIOUS
jn_fpgaver jn_fpgaver() Returns a string containing FPGA

details (read-only information
from FPGA registers)

jn_fwver jn_fwver() Returns a string containing the
current firmware version running
on the system

jn_led <which> <value> jn_led(which,value) Set front panels LEDs (U1, U2,
U3, U4); <which> = 1 to 4,
<value> = 0 or 1

reset ---- Perform a board reset
user_add <username>:<password> ---- Add a new user to the local web

server
user_del <username>:<password> ---- Delete a user from the local web

server
user_list ---- List all users of the local web

server
ver ---- Returns a string containing

firmware and FPGA versions
web_getuser web_getuser() Returns text appearing in User

page (see web server section)
web_setuser <text> web_setuser(text) Sets text that appears in User

page (see web server section)
help ----
Lua only commands
-- doevents() Enable system control of Lua

loop
-- pause(ms) Wait for specified interval (in

ms)
 band(a,b) bor(a,b)

bxor(a,b) mod(a,b)
bsl(a,b) bsr(a,b)

Binary operators:
AND: a & b OR: a | b
XOR: a ^ b MOD: a % b
BSL: a << b BSR: a >> b

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 37

10. Block transfer reference
A brief summary of available commands follows:

Table 10.1: Block transfer commands
BLKBUFFS Block transfer buffer size set Utility BLKBUFFG Block transfer buffer size get
BLKSS Block transfer, 16-bit, Q-stop mode Q-stop BLKFS Block transfer, 24-bit, Q-stop mode
BLKSR Block transfer, 16-bit, Q-repeat mode Q-repeat BLKFR Block transfer, 24-bit, Q-repeat mode
BLKSA Block transfer, 16-bit, address scan mode Address

Scan BLKFA Block transfer, 24-bit, address scan mode
In general the command is expressed as BLKsm
where s = S (short), F(full)
 m = S (Q-stop), R (Q-repeat), A (address scan)
Read or write mode is determined by the Function code passed as a parameter, as follows:
F = 0,……,7 READ mode
F = 16,…,27 WRITE mode

All block transfer commands have the same behavior, both for ASCII and Bin.

C111C replies to the command itself immediately after reception, before executing the
actual block transfer, with one of the following possible replies (compliant with the
standard command response of the TCP control socket protocol):

Table 10.2: Block transfer replies
Reply
0 OK, operation in progress
-1 error, wrong parameters
-2 error, non existing command

The format of a reply is: reply\cr\lf
The general format of a data block is: hdr data1 data2 ….. dataK
where:
− K is the current buffer size
− in ASCII mode, hdr is formatted as %03d
− in ASCII mode, dataj is formatted as %06X (for both 16-bit and 24-bit access types,

separated by <space> char; 16bit right aligned: 00xxxx)
− in ASCII mode, the data block is terminated by a “\cr” character
− in binary mode, hdr and dataj are all 32-bit left aligned (16bit: xxxx0000 ; 24bit:

xxxxxx00) values; in binary mode, hdr and dataj are little-endian format (low byte
first) left aligned, without separators

− in binary mode, the data block is (K+1)*4 bytes
− if there are non significant data values (if hdr < K, or hdr = 0), data block size is

always the same as above

hdr can assume one of the following values:

Table 10.3: HDR possible values
hdr notes

0 End of block transfer data1= actual datasize
data2,…dataK = non significant

N > 0 Number of data words
being transferred

If N<K, then dataN,dataN+1,…..,dataK are non
significant

-3 Timeout error data1= actual datasize
data2,…dataK = non significant

-4 Abort error data1= actual datasize
data2,…dataK = non significant

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 38

10.1. Block transfer abort
Any block read operation can be aborted by sending an arbitrary character to C111C;
C111C will answer with hdr = -4 followed by actual_datasize (the number of datawords
effectively transferred). Any block write operation can be aborted by sending a data block
with hdr = -4, taking care to maintain data block formatting and size. C111C will answer
(always in ASCII, as it has returned to ordinary command mode) with hdr=-4 followed by
actual_datasize (the number of datawords effectively transferred).
Note: please take care to avoid multiple clients connected to the control socket server, as
any command sent by other clients will abort the data transfer currently ongoing.

10.2. Block transfer commands
Table 10.4: Block transfer commands

Buffer size get/set (only for read operations)
Default buffer size is 16
Buffer size is expressed in terms of data values (not in bytes)
Buffsize = current block transfer size

command Reply (by C111C) Notes

BLKBUFFG 0 <buffsize> Get current buffer size

BLKBUFFS <buffsize> 0 Set buffer size; valid range is 1…256 (decimal format)

STOP mode
reply = see Table 10.2

K = Block Transfer buffer size
Maxsize = maximum size of data block transfer (32768 max.)

ASCII read Notes

 HOST> BLKFS <F> <N> <A> <maxsize>
JENET> reply
JENET> hdr data1 data2 data3 dataK
JENET> hdr data1 data2 data3 dataK
.....
JENET> 000 data1 data2 data3 dataK

24-bit operation
F = 0…7

 HOST> BLKSS <F> <N> <A> <maxsize>
 ------- same as above -------

16-bit operation
F = 0…7

ASCII write Notes

 HOST> BLKFS <F> <N> <A> <maxsize>
JENET> reply
 HOST> hdr data1 data2 data3 dataK
 HOST> hdr data1 data2 data3 dataK

 HOST> hdr data1 data2 data3 dataK
JENET> 0 <actual_datasize>

24-bit operation
F = 16…27

 HOST> BLKSS <F> <N> <A> <maxsize>
 ------- same as above -------

16-bit operation
F = 16…27

BINARY read Notes

 HOST> BLKFS <F> <N> <A> <maxsize> bin
JENET> reply
JENET> <binary data>
JENET> <binary data>
.....
JENET> <binary data>

24-bit operation
F = 0…7

 HOST> BLKSS <F> <N> <A> <maxsize> bin
 ------- same as above -------

16-bit operation
F = 0…7

REPEAT mode
reply = see Table 10.2
K = Block Transfer buffer size
Maxsize = maximum size of data block transfer (32768 max.)
<timeout> in seconds, range = 0,….,32767

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 39

ASCII read Notes

 HOST> BLKFR <F> <N> <A> <maxsize> <timeout>
JENET> reply
JENET> hdr data1 data2 data3 dataK
JENET> hdr data1 data2 data3 dataK
.....
JENET> 000 data1 data2 data3 dataK

24-bit operation
F = 0…7

Check for timeout possible reply from Jenet (hdr =
-3)

 HOST> BLKSR <F> <N> <A> <maxsize> <timeout>
 ------- same as above -------

16-bit operation
F = 0…7

ASCII write Notes

 HOST> BLKFR <F> <N> <A> <maxsize> <timeout>
JENET> reply
 HOST> hdr data1 data2 data3 dataK
 HOST> hdr data1 data2 data3 dataK

 HOST> hdr data1 data2 data3 dataK
JENET> 0 <actual_datasize>

24-bit operation
F = 16…27

Check for timeout possible reply from C111C (hdr
= -3)

 HOST> BLKSR <F> <N> <A> <maxsize> <timeout>
 ------- same as above -------

16-bit operation
F = 16…27

BINARY read Notes

 HOST> BLKFR <F> <N> <A> <maxsize> <timeout> bin
JENET> reply
JENET> <binary data>
JENET> <binary data>
.....
JENET> <binary data>

24-bit operation
F = 0…7

Check for timeout possible reply from C111C (hdr
= -3)

 HOST> BLKSR <F> <N> <A> <maxsize> <timeout> bin
 ------- same as above -------

16-bit operation
F = 0…7

ADDRESS SCAN mode1
reply = see Table 10.2
K = Block Transfer buffer size
Nstart = station from which address scan begins
Nwords = maximum size of data block to transfer

ASCII read Notes

 HOST> BLKFA <F> <Nstart> <Nwords>
JENET> reply
JENET> hdr data1 data2 data3 dataK
JENET> hdr data1 data2 data3 dataK
.....
JENET> 000 data1 data2 data3 dataK

24-bit operation
F = 0…7

 HOST> BLKSA <F> <Nstart> <Nwords>
 ------- same as above -------

16-bit operation
F = 0…7

ASCII write Notes

 HOST> BLKFA <F> <Nstart> <Nwords>
JENET> reply
 HOST> hdr data1 data2 data3 dataK
 HOST> hdr data1 data2 data3 dataK

 HOST> hdr data1 data2 data3 dataK
JENET> 0 <actual_datasize>

24-bit operation
F = 16…27

 HOST> BLKSA <F> <Nstart> <Nwords>
 ------- same as above -------

16-bit operation
F = 16…27

BINARY read Notes

1 In ADDRESS SCAN mode, valid data must be tranferred in a single block, whose dimension is
defined by buffsize; if this dimension is too small to contain all data, it is necessary to complete
the transfer with more BLKFA or BLKSA separate commands

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 40

 HOST> BLKFA <F> <Nstart> <Nwords> bin
JENET> reply
JENET> <binary data>
JENET> <binary data>
.....
JENET> <binary data>

24-bit operation
F = 0…7

 HOST> BLKSA <F> <Nstart> <Nwords> bin
 ------- same as above -------

16-bit operation
F = 0…7

N.B.: C libraries by default perform binary read Block Transfer (on TCP ASCII control
socket on port 2000)

10.3. Block transfer example
The following example shows BLKFS 0 2 0 200 sent in order to readout the result of a
single acquisition on a CAEN C1205 module that returns 51 readout data.
If maxsize = 200, buffsize = 100, readout will provide data formed by two blocks with 100
data each

=~=~=~=~=~=~=~=~ PuTTY log 2010.09.06 17:23:35 =~=~=~=~=~=~=~=

-2
blkbuffs 100
0
blkfs 0 2 0 200
0
051 800080 00875D 008593 0083F1 01879D 0185A4 0183D0 02876B 02857E 0283EB
03879D 038597 038414 048760 04859D 0483E8 058760 05858B 0583CC 0687B0
0685BA 068437 0786E5 0785A4 0783BF 08870E 0885AE 088437 098758 0985BE
098411 0A872A 0A857C 0A83A1 0B87CB 0B859E 0B83C2 0C879B 0C85C3 0C841B
0D879B 0D8587 0D8440 0E8774 0E8583 0E83F8 0F8797 0F8598 0F842A C00000
4000FF 000000 000000 000000 000000 000000 000000 000000 000000 000000
000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000
000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000
000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000
000000 000000 000000 000000 000000 000000 000000
000 000033 00875D 008593 0083F1 01879D 0185A4 0183D0 02876B 02857E 0283EB
03879D 038597 038414 048760 04859D 0483E8 058760 05858B 0583CC 0687B0
0685BA 068437 0786E5 0785A4 0783BF 08870E 0885AE 088437 098758 0985BE
098411 0A872A 0A857C 0A83A1 0B87CB 0B859E 0B83C2 0C879B 0C85C3 0C841B
0D879B 0D8587 0D8440 0E8774 0E8583 0E83F8 0F8797 0F8598 0F842A C00000
4000FF 000000 000000 000000 000000 000000 000000 000000 000000 000000
000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000
000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000
000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000
000000 000000 000000 000000 000000 000000 000000
0

-2

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 41

11. Binary commands reference
In general, the binary command has the following format:
byte(0) = STX;
byte(1) = CMD_CODE;
byte(2) = databyte(0)
byte(3) = databyte(1)
....
byte(n) = databyte(k)
byte(n+1) = REQ_RESPONSE;
byte(n+2) = ETX;
where:
STX is the hexdecimal value 0x02
ETX is the hexdecimal value 0x04
CMD_CODE may be one of the followings value:
BIN_CFSA_CMD = 0x20 (equivalent to the ascii command cfsa)
BIN_CSSA_CMD = 0x21 (equivalent to the ascii command cssa)
BIN_CCCZ_CMD = 0x22 (equivalent to the ascii command cccc)
BIN_CCCC_CMD = 0x23 (equivalent to the ascii command ccci)
BIN_CCCI_CMD = 0x24 (equivalent to the ascii command ctci)
BIN_CTCI_CMD = 0x25 (equivalent to the ascii command ctci)
BIN_CTLM_CMD = 0x26 (equivalent to the ascii command ctlm)
BIN_CCLWT_CMD = 0x27 (equivalent to the ascii command cclwt)
BIN_LACK_CMD = 0x28 (equivalent to the ascii command lack)
BIN_CTSTAT_CMD = 0x29 (equivalent to the ascii command ctstat)
BIN_CLMR_CMD = 0x2A (equivalent to the ascii command clmr)
BIN_CSCAN_CMD = 0x2B (equivalent to the ascii command cscan)
BIN_NIM_SETOUTS_CMD = 0x30 (equivalent to the ascii command nim_setouts)
databyte(0) ..databyte(k) is of variable length according to the command code
REQ_RESPONSE may be:
NO_BIN_RESPONSE = 0xa0 (no response requested)
Any other value (response requested)

If one of the databyte(0)..databyte(k) contains 0x2, 0x4 e 0x10, then the databyte must
be converted in two bytes accordingly to the following rule (a simple escape sequence to
avoid out-of-sync transmissions):
if databyte(n) = 0x2 => converted in => databyte(n) = 0x10; databyte(n+1) = 0x80 + 0x02;
if databyte(n) = 0x4 => converted in => databyte(n) = 0x10; databyte(n+1) = 0x80 + 0x04;
if databyte(n) = 0x10 => converted in => databyte(n) = 0x10; databyte(n+1) = 0x80 + 0x10;

Table 11.1: Binary commands
Command
CFSA Response
bin_cmd[0] STX resp[0] STX
bin_cmd[1] BIN_CFSA_CMD resp[1] BIN_CFSA_CMD
bin_cmd[2] F resp[2] Q
bin_cmd[3] N resp[3] X
bin_cmd[4] A resp[4] (DATA & 0xFF)
bin_cmd[5] (DATA & 0xFF) resp[5] ((DATA >> 8) & 0xFF)
bin_cmd[6] ((DATA >> 8) & 0xFF) resp[6] ((DATA >> 16) & 0xFF)
bin_cmd[7] ((DATA >> 16) & 0xFF) resp[7 + delta] ETX
bin_cmd[8 + delta] RESPONSE
bin_cmd[9 + delta] ETX

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 42

Command
CSSA Response
bin_cmd[0] STX resp[0] STX
bin_cmd[1] BIN_CSSA_CMD resp[1] BIN_CSSA_CMD
bin_cmd[2] F resp[2] Q
bin_cmd[3] N resp[3] X
bin_cmd[4] A resp[4] (DATA & 0xFF)
bin_cmd[5] (DATA & 0xFF) resp[5] ((DATA >> 8) & 0xFF)
bin_cmd[6] ((DATA >> 8) & 0xFF) resp[6 + delta] ETX
bin_cmd[7 + delta] RESPONSE
bin_cmd[8 + delta] ETX

Command
CCCZ Response
bin_cmd[0] STX resp[0] STX
bin_cmd[1] BIN_CCCZ_CMD resp[1] BIN_CCCZ_CMD
bin_cmd[2] RESPONSE resp[2] ETX
bin_cmd[3] ETX

Command
CCCC Response
bin_cmd[0] STX resp[0] STX
bin_cmd[1] BIN_CCCC_CMD resp[1] BIN_CCCC_CMD
bin_cmd[2] RESPONSE resp[2] ETX
bin_cmd[3] ETX

Command
CCCI Response
bin_cmd[0] STX resp[0] STX
bin_cmd[1] BIN_CCCI_CMD resp[1] BIN_CCCI_CMD
bin_cmd[2] DATA_IN resp[2] ETX
bin_cmd[3] RESPONSE
bin_cmd[4] ETX

Command
CTCI Response
bin_cmd[0] STX resp[0] STX
bin_cmd[1] BIN_CTCI_CMD resp[1] BIN_CTCI_CMD
bin_cmd[2] ETX resp[2] test_res
 resp[3] ETX

Command
CTLM Response
bin_cmd[0] STX resp[0] STX
bin_cmd[1] BIN_CTLM_CMD resp[1] BIN_CTLM_CMD
bin_cmd[2] slot resp[2] test_res
bin_cmd[3 + delta] ETX resp[3] ETX

Command
CCLWT Response
bin_cmd[0] STX resp[0] STX
bin_cmd[1] BIN_CCLWT_CMD resp[1] BIN_CCLWT_CMD
bin_cmd[2] slot resp[2] ETX

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 43

bin_cmd[3 + delta] ETX

Command
CTSTAT Response
bin_cmd[0] STX resp[0] STX
bin_cmd[1] BIN_CTSTAT_CMD resp[1] BIN_CTSTAT_CMD
bin_cmd[2] ETX resp[2] Q
 resp[3] X
 resp[4] ETX

Command
CLMR Response
bin_cmd[0] STX resp[0] STX
bin_cmd[1] BIN_CLMR_CMD resp[1] BIN_CLMR_CMD
bin_cmd[2] ETX resp[2] (reg & 0xFF)
 resp[3] ((reg >> 8) & 0xFF)
 resp[4] ((reg >> 16) & 0xFF)
 resp[5] ((reg >> 24) & 0xFF)
 resp[6+delta] ETX

Command
CSCAN Response
bin_cmd[0] STX resp[0] STX
bin_cmd[1] BIN_CSCAN_CMD resp[1] BIN_CSCAN_CMD
bin_cmd[2] ETX resp[2] (bitmask & 0xFF)
 resp[3] ((bitmask >> 8) & 0xFF)
 resp[4] ((bitmask >> 16) & 0xFF)
 resp[5] ((bitmask >> 24) & 0xFF)
 resp[6+delta] ETX

Command
LACK Response
bin_cmd[0] STX resp[0] STX
bin_cmd[1] BIN_LACK_CMD resp[1] BIN_LACK_CMD
bin_cmd[2] RESPONSE resp[2] ETX
bin_cmd[3] ETX

Command
NIM_SETOUTS Response
bin_cmd[0] STX resp[0] STX
bin_cmd[1] BIN_NIM_SETOUTS_CMD resp[1] BIN_NIM_SETOUTS_CMD
bin_cmd[2] nimo resp[2] ETX
bin_cmd[3] value
bin_cmd[4 + delta] RESPONSE
bin_cmd[5 + delta] ETX

The server response to a non-existing command is the following:
 resp[0] = STX;
 resp[1] = CMD_ERROR = 0xCE;
 resp[2] = ETX;
If the command has the wring number of parameters, or the wrong length, the server
response is the following:
 resp[0] = STX;
 resp[1] = PAR_ERROR = 0xCF;
 resp[2] = ETX;

Document type: Title: Revision date: Revision:
User's Manual (MUT) Mod. C111C Ethernet CAMAC Crate Controller 22/09/2010 10

NPO: Filename: Number of pages: Page:
00108/04:C111C.MUTx/10 C111C_REV10 44 44

12. Board Specifications
Table 12.1: Mod. C111C Specifications

Power Supply
Required voltages on crate +24 V (100 mA)

- 24 V (100 mA)
- 6 V (100 mA)
+ 6 V (700 mA)

Ethernet interface
Settings 10/100 Mbit autonegotiating
Default configuration IP address: 192.168.0.98

subnet mask: 255.255.255.0
default gateway: 0.0.0.0
DHCP client: 0 (disabled)
(default configuration can be changed through serial
port)

Serial port
Settings 38400 baud, 8-N-1, no flow control
Function for configuration changes:

- system settings
- startup options

CAMAC bus interface
Compliance to ANSI-IEEE std. 583-1982

NIM interface
Connectors SUHNER type
CPU section
Processor ARM7TDMI running at 44 MHz
Operating System uClinux ver. 2.4.17
FLASH 4 Mbytes
SDRAM 16 Mbytes

